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ABSTRACT: Bianchi type-II dark energy cosmological model with variable equation of state (EoS) parameter in 

(Nordtvedt 1970) general scalar tensor theory of gravitation .To get a determinate solution of the field equation we take 

the help of special law of variation for Hubble parameter presented by Barman(1983) which yields a cosmological model 

with negative constant deceleration parameter. Some physical and kinematical properties of model are also discussed. 
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1. INTRODUCTION  

Einstein’s theory of general relativity is one of the most beautiful structures of theoretical physics which describes the theory of 

gravitation in terms of geometry. It has provided a sophisticated theory of gravitation. It is based on the fundamental idea of 

relativity of all kinds of motion. The special theory of relativity formulated by Einstein (1905) makes a restricted use of this 

general idea since it merely assumes the relativity of uniform translator motion in a region of free space where gravitational 

effects can be neglected. As such it fails to study relative motion in accelerated frame of reference and is not applicable to all 

kinds of motion. Taking into account these limitations, Einstein (1916) generalized the special theory of relativity.  

In recent years, there have been some interesting attempts to generalize the general theory of relativity by incorporating Mach’s 

principle and other certain desired features which are lacking in the original theory. With this objective, various versions of 

scalar-tensor theories of gravitation have been suggested and widely discussed. Among these theories which are attracting more 

and more attention from physicists are the scalar-tensor theories proposed by Brans and Dicke (1961) [4], Nordtvedt (1970) [15], 

Saez and Ballester (1986) [30] etc.  

Nordtvedt(1970) proposed a general class of scalar-tensor gravitational theories in which the parameter   of the Brans and 

Dicke theory is allowed to be an arbitrary (positive definite) function of the scalar field ))((  . 

The field equations of Saez - Ballester (1986) scalar tensor theory are 
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and the scalar field   satisfies the equation 
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  is an Einstein tensor, R  is the scalar curvature,   and m are constants, ijT  is the 

stress energy tensor of the matter. 

The equation of motion is  

   0, j
ijT         (2) 

 Recently, there has been considerable interest in cosmological models with dark energy in general relativity because of 

the fact that our universe is currently undergoing an accelerated expansion which has been confirmed by a host of observations, 

such as type Ia Supernovae (Reiss et al.1998 [29]; Perl Mutter et al.1999 [17]; and Tegmark et al.2004[35]). Based on these 

observations, cosmologists have accepted the idea of dark energy, which is a fluid with negative presence making up around 70% 

of the present universe energy content to be responsible for this acceleration due to repulsive gravitation. Cosmologists have 

proposed many candidates for dark energy to fit the current observations such as cosmological constant, tachyon, quintessence, 

phantom and so on. Current studies to extract the properties of a dark energy component of the Universe from observational data 

focus on the determination of its equation of state )(tw , which is the ratio of the dark energy’s pressure to its energy density 
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

p
tw )(  , which is not necessarily constant. The methods for restoration of the quantity )(tw from expressional data have 

been developed (Sahni and Starobinsky 2006  [31]), and an analysis of the experimental data has been conducted to determine this 

parameter as a function of cosmological time (Sahni et al. 2008 [32]). Recently, the parameter )(tw  has been calculated with 

some reasoning which reduced to some simple parameterization of the dependences by some authors (Huterer and Turner 2001 

[8]; Barker, B.M. (1978)[1]; Weller and Albrecht 2002 [38]; Linden and Virey 2008 [13]; Krauss et al. 2007 [10]; Usmani et al. 

2008 [37]; Chen et al. 2009 [6]). The simplest dark energy candidate is the vacuum energy )1( w , which is mathematically 

equivalent to the cosmological constant )( . The other conventional alternatives, which can be described by minimally coupled 

scalar fields, are quintessence )1( w , phantom energy )1( w  and quintom (that can across from phantom region to 

quintessence region as evolved) and have time dependent EoS parameter. Due to lack observational evidence in making a 

distinction between constant and variable w , usually the equation of state parameter is considered as a constant (Kujat et al.2002 

[11]; Bartelmann et al.2005 [2]) with phase wise value −1, 0,+1/3 and +1 for vacuum fluid, dust fluid, radiation and stiff 

dominated universe, respectively. But in general, w  is a function of time or redshift (Jimenez 2003 [9]; Das et al. 2005 [7]).  

For instance, quintessence models involving scalar fields give rise to time dependent EoS parameter w (Turner and white 1997 

[36]; Caldwell et al.1998 [5]; Steinhardt et al. 1999 [34]). Ray et al. (2010) [28], Yadav and Yadav (2010) [39], Kumar (2010) 

[12] and Pradhan et al. (2011) [16] are some of the authors who have investigated dark energy models in general relativity with 

variable EoS parameter in different contexts. 

Bianchi type space-times play a vital role in understanding and description of the early stages of evolution of the universe.  In 

particular, the study of Bianchi type - II, VIII & IX universes are important because familiar solutions like FRW universe with 

positive curvature, the de Sitter universe, the Taub- Nut solutions etc correspond of Bianchi type-II, VIII & IX space- times. Rao 

et al (2008a, 2008b, 2008c) [23]-[25], have studied Bianchi type - II, VIII & IX various cosmological models in different theories 

of gravitation. Rao et al. (2012) have studied Bianchi type- I dark energy model in Saez – Ballester (1986) [30] scalar tensor 

theory of gravitation. Naidu et al. (2012) [14] have obtained LRS Bianchi type – II dark energy model in a scalar tensor theory of 

gravitation. Rao and Sreedevi Kumari (2012) [20] have discussed a cosmological model with negative constant deceleration 

parameter in a general scalar tensor theory of gravitation. Recently Rao et al. (2012) [18] have discussed LRS Bianchi type-I dark 

energy cosmological model in Brans-Dicke (1961) [4] theory of gravitation.  

 

2. METRIC AND FIELD EQUATIONS: 

 

We consider a spatially homogeneous Bianchi type-II metric of the form 

   22222222 )()(  dhdSdfdRdtds               (3) 

where   ,,  are the Eulerian angles, 1)( f  and   )(h
 

R and S  are functions of t only. 

The energy momentum tensor of the fluid can be written in diagonal form as  
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We can parameterize the components of the Energy Momentum tensor as follows: 
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where   is the energy density of the fluid and xp , yp and zp are the pressures and xw , yw  and zw
 
are  the directional 

EoS parameters along the yx ,  and z  axes respectively. 


p
tw )(

 
is the deviation free EoS parameter of the fluid. We 

have parameterized the deviation from isotropy by setting wwz   
and then introducing skewness parameter 

 
which is the 

deviation from w  along both x and y  axes.  

The non vanishing components of Einstein tensor are given by 
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3. BIANCHI TYPE -II DARK ENERGY COSMOLOGICAL MODEL 

 

Now with the help of (10) & (11), the field equations (1) for the metric (3) can be written as 
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Here the over head dot denotes differentiation with respect to ‘t’. 

 

The field equations (12) to (16) are only four independent equations with six unknowns  &,,,, wSR  which are 

functions of ‘t’. Two additional constraints are required to obtain explicit solutions of these field equations. We solve the above 

set of highly non-linear equations with the help of special law of variations of Hubble’s parameter proposed by Bermann 

(1983)[3] which yields constant deceleration parameter of the models of the universe. We consider the constant deceleration 

parameter of the model defined by  

constant
2
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3

1

2 ))(( fSRa 
 
is the overall scale factor. Here the constant is taken as negative so that it represents an 

accelerating model of the universe. 

From (17), we get 
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where 01 c and 2c
 
are constants of integration. This equation implies that the condition of expansion is 01  q .  To 

get the deterministic solution, it has been assumed that the expansion  in the model is proportional to the shear scalar . This 

condition leads to  

  
nRS          (19) 

where n  is an arbitrary constant. 

From (18) & (19), we get 
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From equations (15), (20) & (21), we get 
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where 3c and 4c  are constants of integration.  

From equations (16) & (20)-(22), we get the energy density  as 
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From equations (13) & (20)-(22), we get the EoS parameter w  as 
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From equations (12) & (20)-(22), we get the skewness parameter   as  
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The metric (3), in this case can be written as 
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Thus the equation (26) together with (23), (24) & (25) constitutes a Bianchi type-II dark energy cosmological model with variable 

EoS parameter in a scalar tensor theory of gravitation proposed by Saez and Ballester (1986)[30].  

 

4. Physical and geometrical properties:  

 

The spatial volume for the models is 
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The expression for expansion scalar   calculated for the flow vector 
iu  is given by 
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and the shear   is given by 
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The components of Hubble Parameter 21 & HH  are given by 
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Therefore the generalized mean Hubble parameter (H) is 
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The average anisotropy parameter are defined by 
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where )3,2,1(,  iHHH ii . 

5. Conclusions: 

 

In this chapter we have presented spatially homogeneous and anisotropic Bianchi type – II dark energy cosmological model with 

variable EoS parameter in a scalar tensor theory of gravitation proposed by Saez and Ballester (1986)[30]. The power law 

solution represents a non-singular model where the spatial scale factors and volume vanish at  

1

2

c

c
t


 . We observe that the 
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model (3.2.15) has no initial singularity at 

1

2

c

c
t


  and the spatial volume is increasing as time t increases, i.e. the present 

model (3.2.15) is expanding. The Hubble parameter is zero as t  approaches to infinity. The scalar expansion   and the shear 

scalar 
2  tend to infinity at 0t  while they become zero as t . Since the mean anisotropy parameter 0mA the 

model is anisotropic for 1n . If 1n , 0mA and hence the model will become isotropic. Also, since 01  q , the 

model represents an accelerating universe. Therefore, it follows that our dark energy model in Saez – Ballester (1986)[30] theory 

is consistent with the recent observations of Type – Ia Supernovae[29] ,Perl mutter et al. (1999)[17]; Riess, et al. (1998). Finally 

we can conclude that our model is accelerating, more general and represent not only the early stages of evolution but also the 

present stage of the universe. 
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