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Abstract— Today need better tools for C, such as source 

browsers, bug finders, and automated refactorings. The 

problem is that large C systems such as Linux are 

software product lines, containing thousands of 

configuration variables controlling every aspect of the 

software from architecture features to file systems and 

drivers. The challenge of such configurability is how do 

software tools accurately analyze all configurations of the 

source without the exponential explosion of trying them 

all separately. C tools need to process two languages: C 

itself and the preprocessor. The latter improves 

expressivity through file includes, macros, and static 

conditionals. But it operates only on tokens, making it 

hard to even parse both languages. SuperC is a complete, 

performant solution to parsing all of C. First, a 

configuration-preserving preprocessor resolves includes 

and macros yet leaves static conditionals intact, thus 

preserving a program’s variability. Detecting linker 

errors across all compilation units in the Linux kernel 

demonstrates each part of the Cilantro framework and is 

evaluated on the Linux source code. 
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1.      INTRODUCTION 

First, Kmax determines the complete set of 

compilation units and their presence conditions, then 

SuperC’s capacity for implementing semantic analysis is 

used to detect errors within those compilation units. Abaleal. 

showed that bugs are caused by Linux’s variability and lack 

automated tool support; they found already-patched bugs by 

looking through the Linux kernel mailing list [4]. 

 

2. CROSS-CONFIGURATION BUG     

     FINDERS 

There are five challenges to implementing a cross-

configuration bug finders for all variations of a C project like 

Linux. 

 (1) The tool needs to find the feature model that defines 

constraints on feature selection, because not all 

configurations are valid builds of the software product line. 

Kmax extracts Linux’s feature model from the Kconfig files 

using the Kconfig parser bundled with the Linux build 

system.  

(2) The tool needs to find all compilation units comprising 

the source code, in order to perform 

project-wide analyses. 

 (3) The tool needs to find the presence conditions of the 

compilation units, because the build system chooses 

compilations units according to feature selections. Kmax also 

handles these two challenges by extracting all compilation 

units and their variability information. 

 (4) The tool needs to first parse the compilation units across 

all configurations, which SuperC does.  

(5) Finally, the tools needs to perform cross-configuration 

static analysis.  

Build a linker error bug finder. This requires not 

SuperC’s semantic actions, but also Kmax’s ability to extract 

variability from the build system. Linker errors happen when 

one compilation unit calls a function that has no definition. 

C’s separate compilation is used for modularity, and a 

compilation unit roughly defines a set of related functions. 

Compilation units that use these functions include a header 

that declares the imported functions, but the definition of the 

function is not available until link time. Even if the function 

definition exists in some compilation unit, a linker error is 

still possible if there is a configuration in which that 

compilation unit is excluded by the build system. 

Such errors are typically only discovered when 

building the errant configuration in which the error appears, 

making it difficult to check for such errors. With Kmax’s 

ability to clean the presence conditions 

of compilation units. 

1. Data structures for implementing semantic analysis across 

all configurations with Super C’s crossconfiguration parsing 

framework, 

2. Implementations of a project-wide linker error bug finder, 

and 

3. An evaluation of the linker error finder on the complete 

Linux kernel. 

 

3.  SEMANTIC ANALYSIS  
Semantic actions are functions that run when the 

parser recognizes a specific grammar construct. As with the 

bison parser generator, SuperC supports actions written 

directly in the grammar specification file. Semantic actions 

are often used to build an AST during parsing. SuperC 

supports declarative AST generation, so writing such 

semantic actions is unnecessary. However, semantic actions 

can also be used for bug finding. 

 

1 #ifdef CONFIG_CRYPTO_BLKCIPHER 

2 void *crypto_alloc_ablkcipher() 

3 { 

4 return (void*)0; 

5 } 
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6 #endif 

7 #ifdef CONFIG_CRYPTO_TEST 

8 static void test_cipher() 

9 { 

10 crypto_alloc_ablkcipher(); 

11 } 

 12 #endif 

Figure 3.1: An example of a variability bug from the 

variability bug database by Abalet al. 

  

On line 2, the function crypto_alloc_ablkcipher is 

defined only if the CONFIG_CRYPTO_BLKCIPHER 

feature variable is defined. Line 10 makes a call to 

crypto_alloc_ablkcipher inside the function test_cipher. But 

text_cipher, defined on line 8, is only defined when 

CONFIG_CRYPTO_TEST is enabled. With two boolean 

features, there are four possible configurations of this code 

block, and all of these configurations compiles correctly 

except one. When CRYPTO_CRYPTO_TEST is enabled but 

CONFIG_CRYPTO_BLKCIPHER is not, there is an 

unidentified symbol error; line 10 calls 

crypto_alloc_ablkcipher, which is not defined in this 

configuration.  

Then, checking for a bug in some configuration is 

checking whether the boolean expression is there some 

combinations of features that leads to the bug, i.e., 

satisfiability. 

 

1 #ifdef A 

2 duped int x; 

3 #else 

4 int x; 

5 #endif 

 

6 int main() { 

7 int y; 

8 x *y; 

9 } 

Figure 3.2: An example of the same C identifier declared 

as a typedef name in one configuration, but a variable in 

another. 

 

Since SuperC’s parser already tracks configurations, 

performing bug checking during parsing is ideal. Each 

subparser maintains the current presence condition it’s 

parsing, and semantic actions in the grammar are executed by 

the subparsers as usual; actions are written in-line in 

grammar productions and are executed after the grammar 

construct is recognized. Each subparser maintains its own 

parsing context, allowing it not only to parse constructs from 

a different configurations but to record configuration-specific 

semantic information, such as symbol definitions. Subparsers 

are temporary, being created and destroyed by forking and 

merging as new configuration are encountered. Being 

managed by the subparser, the parsing context must follow 

suit, and SuperC provides an interface for implementing 

cross-configuration a parsing context. It has hooks to fork 

and and merge corresponding to subparser forking and 

merging. To store semantic information for bug finders, the 

parsing context is used to manage a conditional symbol table. 

As in SuperC and Kmax, this a conditional symbol table 

maps identifiers to each possible value across all 

configurations. 

To illustrate how cross-configuration semantic 

analysis works in practice, illustrate the implementation of 

typedefs, because SuperC’s C parse already performs some 

semantic analysis to support them. This context-sensitive 

aspect of the C language requires maintaining a table of 

typedef names and ref-erencing it, to reclassify identifier 

tokens as typedef names during parsing. Implementing this 

behavior using semantic actions. Typedef declarations take a 

C identifier and convert it to a typename, making C a 

context-sensitive language, which cannot be recognized by 

context-free parser generators without extra support. 

Typedefs are context-sensitive, because the same string can 

be recognized with a different grammar construct depending 

on whether an identifier has been declared a typedef name 

earlier in the program. 

Figure 3.2 illustrates this context-sensitivity. Line 2 defines x 

as a typedef name if A is true, otherwise it is a variable. The 

statement on line 8 is either a multiplication expression, 

when both x and y are C identifiers, or it is a pointer 

declaration when x is a typedef name. Implementing typedefs 

for a single configuration is simple: the parsing context 

maintains a symbol table of typedef declarations, mapping C 

identifiers to a boolean flag. A semantic action embedded 

with the declaration grammar construct looks for the typedef 

keyword and maps the declared identifier to true in the 

symbol table. When reading tokens from the lexer, the parser 

consults this symbol table and reclassifies identifiers to 

typedef names tokens as necessary. Like variables, typedef 

declarations may appear in any lexical scope, so the parsing 

context maintains scope. Our implementation of the context 

uses a stack of symbol tables to represent scope, which 

makes sharing context between forked subparsers as it does 

with the LR state stack. As a further optimization, even 

forked subparsers point to the same symbol table, possible 

because the subparsers’ presence conditions are always 

mutually exclusive; any updates to the symbol table are 

independent. The only time subparsers point to different 

symbol tables is when they enter a new scope or leave the 

scope after forking. 

SuperC’s parsing context interface support arbitrary 

implementations of cross-configuration semantic 

information, with hooks called by the parser upon forking 

and merging. The interface contains the following methods: 

1. forkContext creates a new context and is called when 

SuperC forks a subparser. 

2. mayMerge determines whether two contexts allow 

merging, if not, SuperC will delay merging subparsers until 

their contexts allow, for instance by delaying a merge until 

the subparsers return to the same lexical scope. 

3. mergeContexts combines two contexts, merging their 

state, and is called when SuperC merges two subparsers. 

4. reclassify takes a token and changes or adds the token and 

is used to implement typedef names. 

Illustrate how semantic state is processed and stored 

while parsing the typedef example Figure 3.2. On line 1, 

SuperC forks two subparsers, one to enter the #ifdef branch 

under the A presence condition and one to enter the #else 

under the mutually-exclusive :A presence condition. Initially, 

the parsing context contains an empty table. After parsing 

their respective branches, each subparser encounters the 

same semantic action for declarations. By default, the x 

keyword is mapped to false. The first subparser, seeing the 
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typedef keyword, updates the entry for x in the symbol table. 

The subparser computes the new 

entry by disjoining its own presence condition, Csubparser 

with the original presence condition in the table, Coriginal, 

i.e., 

Cnew      Coriginal V Csubparser 

The new condition for x in the table becomes ┴ V 

A. This means that x is a typedef whenever the expression A 

is true. The second subparser sees that that x is declared as a 

variable and removes this configuration from the entry by 

conjoining the negation of its presence condition, i.e., 

Cnew     Coriginal ^ ¬subparser 

Since the #else branch’s presence condition is :A, 

the new condition becomes (┴ V A) ^ ¬(¬A), which when 

simplified, is still A. After the static conditional, the 

subparsers merge, leaving a single parser on line 6. Parsing 

continues until line 8, which uses the x identifier. The parser 

consults the symbol table to find that the identifier is a 

typedef in only some configurations, and forks two 

subparsers, one for the typedef presence condition and one  

for the non-typedef presence condition. The same principles 

used to support typedef names apply to cross-configuration 

bug finders, albeit with more semantic information and extra 

semantic actions. For example, to support detection of 

undefined symbol uses, the bug finder deduces whether there 

exists some combination of features where the undefined 

symbol gets used. It models the bug by taking the presence 

condition Cdef under which the symbol is defined and the 

presence condition Cuse for a use of the symbol and 

constructs the following expression: 

Cuse ^ ¬Cdef 

If the above expression is satisfiable, then there is 

some configuration where the bug exists. Further constraints 

to the set of configurations may be conjoined to the 

expression, for example, the Kconfig feature model. 

 

1 #ifdef CONFIG_TRACING 

2 void trace_dump_stack(int skip) { 

3 // do something 

4 return; 

5 } 

6 #else 

7 static inline void trace_dump_stack(void) { } 

8 #endif 

9 

10 int main(int argc, char** argv) { 

11 trace_dump_stack(0); // ERROR 

12 return 0; 

13 } 

Figure 3.3: An example of an error caused by the wrong 

number of arguments to a function that only appears on 

one configurations found by Abal et al [3].  

 

The undefined symbol finder updates the parsing 

context in the same way that the typedef implementation 

does, except that the symbol table stores the conditions in 

which the symbol is defined. To use this information, a new 

semantic action for C expressions, where functions and 

variables get used, constructs the model for the bug’s 

presence condition and uses a SAT solver to determine 

whether the bug appears in any configuration. 

To store more semantic information for more 

sophisticated bug finders, a conditional symbol table is 

useful. The conditional symbol table is useful for all 

variability-aware tools, including Kmax and SuperC 

themselves. A conditional symbol table maps keys to a list of 

values, where each value is tagged with a presence condition. 

Figure 3.3, also from Abal etal, is a function that has a 

different number of arguments depending on the 

configuration. To create a finder for this bug, a conditional 

symbol table stores an entry for each possible number of 

arguments and its presence condition. After parsing the 

mutually exclusive function definitions on lines 1–8, the 

symbol table maps the trace_dump_stack function to two 

entries, one entry records one argument under the 

CONFIG_TRACING presence condition and other entry 

records zero arguments for ¬ CONFIG_TRACING. A 

semantic action function calls checks for this bug. It takes the 

presence condition at the call site on line 11, which passes 

one argument to trace_dump_stack. The finder collects the 

presence conditions for all symbol entries other than the 

entry recording one argument, and conjoins it with the 

presence condition at the call site to deduce whether any 

configurations have a bug. Figure 3.3 does have a bug when 

CONFIG_TRACING is not enabled. 

 

4. CONCLUSION: 

SuperC and Kmax are components of all variability-

aware software tools. It introduces the fork-merge parsing 

context, which enables a cross-configuration parser to 

maintain state while sub parsers fork and merge. Symbol 

tables for semantic analysis, as with other configuration-

preserving tools, are conditional symbol tables that maintain 

state for all configurations simultaneously. With only SuperC 

and these data structures, cross-configuration bug finders are 

possible by modeling the conditions of bugs with a boolean 

expression and using a SAT solver to discover the erroneous 

configurations.  
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