
ISSN: 2455-2631 © June 2016 IJSDR | Volume 1, Issue 6

IJSDR1606005 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 25

Introduction to BUG Finder for C Language

Ms.Warsha M.Choudhari Mrs. Rinku S. Astankar

Professor, Information Technology Professor, Computer Science & Engineering

Datta Meghe Institute of Engineering, ITM College of Engineering, Nagpur, India

 Technology & Research, Wardha, India

 Ms. Mausami Sawarkar Ms. Shalini Kharkate

Professor, computer Science & Engineering Professor,Computer Science & Engineering

 J.L.Chaturvedi college of Engineering, Nagpur Govt.Polytechnic, Bramhapuri

Abstract— Today need better tools for C, such as source

browsers, bug finders, and automated refactorings. The

problem is that large C systems such as Linux are

software product lines, containing thousands of

configuration variables controlling every aspect of the

software from architecture features to file systems and

drivers. The challenge of such configurability is how do

software tools accurately analyze all configurations of the

source without the exponential explosion of trying them

all separately. C tools need to process two languages: C

itself and the preprocessor. The latter improves

expressivity through file includes, macros, and static

conditionals. But it operates only on tokens, making it

hard to even parse both languages. SuperC is a complete,

performant solution to parsing all of C. First, a

configuration-preserving preprocessor resolves includes

and macros yet leaves static conditionals intact, thus

preserving a program’s variability. Detecting linker

errors across all compilation units in the Linux kernel

demonstrates each part of the Cilantro framework and is

evaluated on the Linux source code.

Keywords: Cilantro framework, SuperC

1. INTRODUCTION

First, Kmax determines the complete set of

compilation units and their presence conditions, then

SuperC’s capacity for implementing semantic analysis is

used to detect errors within those compilation units. Abaleal.

showed that bugs are caused by Linux’s variability and lack

automated tool support; they found already-patched bugs by

looking through the Linux kernel mailing list [4].

2. CROSS-CONFIGURATION BUG

 FINDERS

There are five challenges to implementing a cross-

configuration bug finders for all variations of a C project like

Linux.

 (1) The tool needs to find the feature model that defines

constraints on feature selection, because not all

configurations are valid builds of the software product line.

Kmax extracts Linux’s feature model from the Kconfig files

using the Kconfig parser bundled with the Linux build

system.

(2) The tool needs to find all compilation units comprising

the source code, in order to perform

project-wide analyses.

 (3) The tool needs to find the presence conditions of the

compilation units, because the build system chooses

compilations units according to feature selections. Kmax also

handles these two challenges by extracting all compilation

units and their variability information.

 (4) The tool needs to first parse the compilation units across

all configurations, which SuperC does.

(5) Finally, the tools needs to perform cross-configuration

static analysis.

Build a linker error bug finder. This requires not

SuperC’s semantic actions, but also Kmax’s ability to extract

variability from the build system. Linker errors happen when

one compilation unit calls a function that has no definition.

C’s separate compilation is used for modularity, and a

compilation unit roughly defines a set of related functions.

Compilation units that use these functions include a header

that declares the imported functions, but the definition of the

function is not available until link time. Even if the function

definition exists in some compilation unit, a linker error is

still possible if there is a configuration in which that

compilation unit is excluded by the build system.

Such errors are typically only discovered when

building the errant configuration in which the error appears,

making it difficult to check for such errors. With Kmax’s

ability to clean the presence conditions

of compilation units.

1. Data structures for implementing semantic analysis across

all configurations with Super C’s crossconfiguration parsing

framework,

2. Implementations of a project-wide linker error bug finder,

and

3. An evaluation of the linker error finder on the complete

Linux kernel.

3. SEMANTIC ANALYSIS
Semantic actions are functions that run when the

parser recognizes a specific grammar construct. As with the

bison parser generator, SuperC supports actions written

directly in the grammar specification file. Semantic actions

are often used to build an AST during parsing. SuperC

supports declarative AST generation, so writing such

semantic actions is unnecessary. However, semantic actions

can also be used for bug finding.

1 #ifdef CONFIG_CRYPTO_BLKCIPHER

2 void *crypto_alloc_ablkcipher()

3 {

4 return (void*)0;

5 }

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2016 IJSDR | Volume 1, Issue 6

IJSDR1606005 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 26

6 #endif

7 #ifdef CONFIG_CRYPTO_TEST

8 static void test_cipher()

9 {

10 crypto_alloc_ablkcipher();

11 }

 12 #endif

Figure 3.1: An example of a variability bug from the

variability bug database by Abalet al.

On line 2, the function crypto_alloc_ablkcipher is

defined only if the CONFIG_CRYPTO_BLKCIPHER

feature variable is defined. Line 10 makes a call to

crypto_alloc_ablkcipher inside the function test_cipher. But

text_cipher, defined on line 8, is only defined when

CONFIG_CRYPTO_TEST is enabled. With two boolean

features, there are four possible configurations of this code

block, and all of these configurations compiles correctly

except one. When CRYPTO_CRYPTO_TEST is enabled but

CONFIG_CRYPTO_BLKCIPHER is not, there is an

unidentified symbol error; line 10 calls

crypto_alloc_ablkcipher, which is not defined in this

configuration.

Then, checking for a bug in some configuration is

checking whether the boolean expression is there some

combinations of features that leads to the bug, i.e.,

satisfiability.

1 #ifdef A

2 duped int x;

3 #else

4 int x;

5 #endif

6 int main() {

7 int y;

8 x *y;

9 }

Figure 3.2: An example of the same C identifier declared

as a typedef name in one configuration, but a variable in

another.

Since SuperC’s parser already tracks configurations,

performing bug checking during parsing is ideal. Each

subparser maintains the current presence condition it’s

parsing, and semantic actions in the grammar are executed by

the subparsers as usual; actions are written in-line in

grammar productions and are executed after the grammar

construct is recognized. Each subparser maintains its own

parsing context, allowing it not only to parse constructs from

a different configurations but to record configuration-specific

semantic information, such as symbol definitions. Subparsers

are temporary, being created and destroyed by forking and

merging as new configuration are encountered. Being

managed by the subparser, the parsing context must follow

suit, and SuperC provides an interface for implementing

cross-configuration a parsing context. It has hooks to fork

and and merge corresponding to subparser forking and

merging. To store semantic information for bug finders, the

parsing context is used to manage a conditional symbol table.

As in SuperC and Kmax, this a conditional symbol table

maps identifiers to each possible value across all

configurations.

To illustrate how cross-configuration semantic

analysis works in practice, illustrate the implementation of

typedefs, because SuperC’s C parse already performs some

semantic analysis to support them. This context-sensitive

aspect of the C language requires maintaining a table of

typedef names and ref-erencing it, to reclassify identifier

tokens as typedef names during parsing. Implementing this

behavior using semantic actions. Typedef declarations take a

C identifier and convert it to a typename, making C a

context-sensitive language, which cannot be recognized by

context-free parser generators without extra support.

Typedefs are context-sensitive, because the same string can

be recognized with a different grammar construct depending

on whether an identifier has been declared a typedef name

earlier in the program.

Figure 3.2 illustrates this context-sensitivity. Line 2 defines x

as a typedef name if A is true, otherwise it is a variable. The

statement on line 8 is either a multiplication expression,

when both x and y are C identifiers, or it is a pointer

declaration when x is a typedef name. Implementing typedefs

for a single configuration is simple: the parsing context

maintains a symbol table of typedef declarations, mapping C

identifiers to a boolean flag. A semantic action embedded

with the declaration grammar construct looks for the typedef

keyword and maps the declared identifier to true in the

symbol table. When reading tokens from the lexer, the parser

consults this symbol table and reclassifies identifiers to

typedef names tokens as necessary. Like variables, typedef

declarations may appear in any lexical scope, so the parsing

context maintains scope. Our implementation of the context

uses a stack of symbol tables to represent scope, which

makes sharing context between forked subparsers as it does

with the LR state stack. As a further optimization, even

forked subparsers point to the same symbol table, possible

because the subparsers’ presence conditions are always

mutually exclusive; any updates to the symbol table are

independent. The only time subparsers point to different

symbol tables is when they enter a new scope or leave the

scope after forking.

SuperC’s parsing context interface support arbitrary

implementations of cross-configuration semantic

information, with hooks called by the parser upon forking

and merging. The interface contains the following methods:

1. forkContext creates a new context and is called when

SuperC forks a subparser.

2. mayMerge determines whether two contexts allow

merging, if not, SuperC will delay merging subparsers until

their contexts allow, for instance by delaying a merge until

the subparsers return to the same lexical scope.

3. mergeContexts combines two contexts, merging their

state, and is called when SuperC merges two subparsers.

4. reclassify takes a token and changes or adds the token and

is used to implement typedef names.

Illustrate how semantic state is processed and stored

while parsing the typedef example Figure 3.2. On line 1,

SuperC forks two subparsers, one to enter the #ifdef branch

under the A presence condition and one to enter the #else

under the mutually-exclusive :A presence condition. Initially,

the parsing context contains an empty table. After parsing

their respective branches, each subparser encounters the

same semantic action for declarations. By default, the x

keyword is mapped to false. The first subparser, seeing the

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2016 IJSDR | Volume 1, Issue 6

IJSDR1606005 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 27

typedef keyword, updates the entry for x in the symbol table.

The subparser computes the new

entry by disjoining its own presence condition, Csubparser

with the original presence condition in the table, Coriginal,

i.e.,

Cnew Coriginal V Csubparser

The new condition for x in the table becomes ┴ V

A. This means that x is a typedef whenever the expression A

is true. The second subparser sees that that x is declared as a

variable and removes this configuration from the entry by

conjoining the negation of its presence condition, i.e.,

Cnew Coriginal ^ ¬subparser

Since the #else branch’s presence condition is :A,

the new condition becomes (┴ V A) ^ ¬(¬A), which when

simplified, is still A. After the static conditional, the

subparsers merge, leaving a single parser on line 6. Parsing

continues until line 8, which uses the x identifier. The parser

consults the symbol table to find that the identifier is a

typedef in only some configurations, and forks two

subparsers, one for the typedef presence condition and one

for the non-typedef presence condition. The same principles

used to support typedef names apply to cross-configuration

bug finders, albeit with more semantic information and extra

semantic actions. For example, to support detection of

undefined symbol uses, the bug finder deduces whether there

exists some combination of features where the undefined

symbol gets used. It models the bug by taking the presence

condition Cdef under which the symbol is defined and the

presence condition Cuse for a use of the symbol and

constructs the following expression:

Cuse ^ ¬Cdef

If the above expression is satisfiable, then there is

some configuration where the bug exists. Further constraints

to the set of configurations may be conjoined to the

expression, for example, the Kconfig feature model.

1 #ifdef CONFIG_TRACING

2 void trace_dump_stack(int skip) {

3 // do something

4 return;

5 }

6 #else

7 static inline void trace_dump_stack(void) { }

8 #endif

9

10 int main(int argc, char** argv) {

11 trace_dump_stack(0); // ERROR

12 return 0;

13 }

Figure 3.3: An example of an error caused by the wrong

number of arguments to a function that only appears on

one configurations found by Abal et al [3].

The undefined symbol finder updates the parsing

context in the same way that the typedef implementation

does, except that the symbol table stores the conditions in

which the symbol is defined. To use this information, a new

semantic action for C expressions, where functions and

variables get used, constructs the model for the bug’s

presence condition and uses a SAT solver to determine

whether the bug appears in any configuration.

To store more semantic information for more

sophisticated bug finders, a conditional symbol table is

useful. The conditional symbol table is useful for all

variability-aware tools, including Kmax and SuperC

themselves. A conditional symbol table maps keys to a list of

values, where each value is tagged with a presence condition.

Figure 3.3, also from Abal etal, is a function that has a

different number of arguments depending on the

configuration. To create a finder for this bug, a conditional

symbol table stores an entry for each possible number of

arguments and its presence condition. After parsing the

mutually exclusive function definitions on lines 1–8, the

symbol table maps the trace_dump_stack function to two

entries, one entry records one argument under the

CONFIG_TRACING presence condition and other entry

records zero arguments for ¬ CONFIG_TRACING. A

semantic action function calls checks for this bug. It takes the

presence condition at the call site on line 11, which passes

one argument to trace_dump_stack. The finder collects the

presence conditions for all symbol entries other than the

entry recording one argument, and conjoins it with the

presence condition at the call site to deduce whether any

configurations have a bug. Figure 3.3 does have a bug when

CONFIG_TRACING is not enabled.

4. CONCLUSION:

SuperC and Kmax are components of all variability-

aware software tools. It introduces the fork-merge parsing

context, which enables a cross-configuration parser to

maintain state while sub parsers fork and merge. Symbol

tables for semantic analysis, as with other configuration-

preserving tools, are conditional symbol tables that maintain

state for all configurations simultaneously. With only SuperC

and these data structures, cross-configuration bug finders are

possible by modeling the conditions of bugs with a boolean

expression and using a SAT solver to discover the erroneous

configurations.

REFERENCES

[1] N. Andersen, K. Czarnecki, S. She, and A. W˛asowski.

E_cient synthesis of feature models. In Proceedings of the

16th International Software Product Line Conference -

Volume 1, SPLC ’12, pp. 106–115, New York, NY, USA,

2012. ACM.

[2] T. Berger, S. She, K. Czarnecki, and A. Wasowski.

Feature-to-code mapping in two large product lines. Tech.

report, University of Leipzig (Germany), University

ofWaterloo (Canada), IT University of Copenhagen

(Denmark), 2010.

[3] T. Berger, S. She, R. Lotufo, A. W˛asowski, and K.

Czarnecki. Variability modeling in the real: A perspective

from the operating systems domain. In Proceedings of the

IEEE/ACM International Conference on Automated

Software Engineering, ASE ’10, pp. 73–82, New York, NY,

USA, 2010. ACM.

[4] A. Bessey et al. A few billion lines of code later: Using

static analysis to find bugs in the real world. CACM,

53(2):66–75, Feb. 2010.

[5] R. Bowdidge. Performance trade-o_s implementing

refactoring support for Objective-C. In Proceedings of the

3rd WRT, Oct. 2009.

http://www.ijsdr.org/

