
ISSN: 2455-2631 © October 2016 IJSDR | Volume 1, Issue 10

IJSDR1610018 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 110

AN EFFICIENT AND AUTOMATIC BUG TRIAGE

FOR MINING SOFTWARE REPOSITTORIES

1
Salma Shaik,

2
M.Sreeram Murty,

3
J.V Krishna

1
Research Scholar,

2,3
Associate Professor

Department of Computer Science and Engineering

Sree Vahini Institute of Science and Technology

Tiruvuru, Andhra Pradesh, India

ABSTRACT: Bugs are very essential aspects in a software company. The process of fixing bugs is called as a bug triage.

Bug triage is an unavoidable step in a software company. In bug triage a correct developer is given to a new bug for fixing

it. To manually perform the bug triage is very costly and even time consuming. So text classification techniques are used

which uses automatic bug triage. There is a problem of large data i.e. the data should be reduced and the quality of the

data should be increased. To perform this instance selection and feature selection are used simultaneously. For this we

should know the order for applying instance selection and feature selection, and to know the order we extract the

attributes from the bug data sets. For the experiments we are using two open source projects such as eclipse and Mozilla.

And our result shows that the data is reduced with high quality bug data sets.

Keywords: Mining Bug repositories, bug data reduction, attribute extraction, instance and feature selection.

I.INTRODUCTION

In current software expansion, software repositories are

large databases for storing the output of software

development. Repositories consist of source code, emails,

bugs and specification. To manually perform the bug triage

is very costly and even time consuming. bug triage.

Software projects in a company consist of bug repositories

which consist of bug data and it helps developers to handle

bug. Updates according to the status of bug fixing. There are

two challenges associated to bug data that may influence the

effectual use of bug repositories they are huge scale and the

low quality of data. Two typical characteristics of low-

quality bugs are noise and redundancy. Both of these

characteristics affect the bug triage process. So in this paper

the two major issues are the large data and low quality. This

two issue need to be solved to facilitate the bug handling

process. In our work, we combine existing techniques of

instance selection and feature selection to simultaneously

reduce the bug dimension and the word dimension which

improves the quality of the bug data.

A software bug is an fault or failure in a computer program

that proves to generate an incorrect or ambiguous result, or

to behave in unexpected ways. There are many feasible

ways to find bugs in a software. Various Dynamic

techniques, such as testing and assertions, depends on the

runtime behavior of a program. The most efficient and nice

static technique for terminating bugs is a formal evidence of

correctness. Bug Patterns are error-free coding trails that

arise from the use of erroneous design patterns,

misunderstanding of language semantics, or simple and

common mistakes. As developers, we many times believe

that any bugs in our code must be subtle, unique and require

sophisticated tools to uncover. All of the bug pattern

detectors are done using BCEL ,which is an open source

byte code analysis and instrumentation library. The

detectors are executed using the Visitor design pattern;

every detector checks every class of the analyzed library or

the application. Data mining (the analysis step of the

Knowledge Discovery in Databases process, an

interdisciplinary subfield of computer science, is the

computational process of finding patterns in huge data sets

which includes methods at the intersection of machine

intelligence and machine learning, statistics, and database

systems. The Mining Software Repositories (MSR) analyzes

the rich data in software repositories, such as version,

mailing list archives, bug tracking systems, control

repositories, issue tracking systems etc. to uncover eye

catching and function-able information about the software

systems, projects and software engineering. By using

various data mining techniques, mining software

repositories can provide a solution to these problems. A bug

repository provides a data based platform to support many

types of tasks on bugs, e.g., fault prediction bug localization

and reopened bug analysis. In this paper, bug reports in a

bug repository are called bug data. bug triage is very time

taking method . it includes handling software bugs , which

assigns a right developer to a new bug coming In the

experiments, we evaluate the data reduction techniques for

bug triage on the bug reports of two large open source

projects, such as Eclipse. Experimental output shows that by

using the instance selection technique to the data set can

reduce bug reports but the accuracy of bug triage may be

decreased; applying the feature selection technique can

reduce words in the bug data and the accuracy can be

increased. The bug report consists of matter info concerning

the bug and updates associated with standing of bug fixing.

Once a bug report is made, a personality’s triager assigns

this bug to a developer; World Health Organization can try

and fix this bug. This developer is recorded in associate

item assigned-to. The assigned to will amendment to a

different developer if the antecedently assigned developer

cannot fix this bug. the method of assigning an accurate

developer for fixing the bug is termed bug triage. Bug

sorting is one among the foremost time intense step in

handling of bugs in software package comes. Manual bug

sorting by a personality's triage is time intense and erring

since the quantity of daily bugs is massive and lack of

information in developers regarding all bugs. Because of all

http://www.ijsdr.org/

ISSN: 2455-2631 © October 2016 IJSDR | Volume 1, Issue 10

IJSDR1610018 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 111

these things, bug sorting ends up in costly time loss, high

price and low accuracy. The information keep in bug reports

has 2 main challenges. First of all the massive scale

information and second low quality of knowledge as a result

of sizable amount of daily reported bugs, the number of bug

reports is scaling up within the repository. Noisy and

redundant bug’s square measures degrading the standard of

bug reports. In this paper an efficient bug sorting system is

projected which scale will back the bug information to save

lots of the labor price of developers. It conjointly aims to

create a top quality set of bug data by removing the

redundant and non-informative bug reports.

II. RELATED WORK

In this section, we review existing work on modeling bug

data, bug triage, and the quality of bug data with defect

prediction. To investigate the relationships in bug data,

Sandusky et al. form a bug report network to examine the

dependency among bug reports. Besides studying

relationships among bug reports, Hong et al. build a

developer social network to examine the collaboration

among developers based on the bug data in Mozilla project.

This developer social network is helpful to understand the

developer community and the project evolution. By

mapping bug priorities to developers, Xuan et al. identify

the developer prioritization in open source bug repositories.

The developer prioritization can distinguish developers and

assist tasks in software maintenance. In our work, we

address the problem of data reduction for bug triage. To our

knowledge, no existing work has investigated the bug data

sets for bug triage. In a related problem, defect prediction,

some work has focused on the data quality of software

defects. In contrast to multiple-class classification in bug

triage, defect prediction is a binary class classification

problem, which aims to predict whether a software artifact

(e.g., a source code , a class, or a module) contains faults

according to the extracted features of the artifact. In

software engineering, defect prediction is a kind of work on

software metrics. To improve the data quality, Khoshgoftaar

et al. and Gao et al. examine the techniques on feature

selection to handle imbalanced defect data. Shivaji et al.

proposes a framework to examine multiple feature selection

algorithms and remove noise features in classification based

defect prediction. Besides feature selection in defect

prediction, Kim et al. present how to measure the noise

resistance in defect prediction and how to detect noise data.

Moreover, Bishnu and Bhattacherjee process the defect data

with quad tree based k-means clustering to assist defect

prediction. In this paper, in contrast to the above work, we

address the problem of data reduction for bug triage. Our

work can be viewed as an extension of software metrics. In

our work, we predict a value for a set of software artifacts

while existing work in software metrics predict a value for

an individual software artifact.

3. Proposed System The diagram in figure 2 illustrated the

system architecture of the proposed system. The input to the

system is in the form of bug data set. The bug data set

consists all the details of software bugs. Each bug has bug

report and the details of the developer who have worked on

that respective bug. The bug report is mainly divided in two

parts, summary and description. The proposed system gives

predicted results in form of output. Basically, there are two

types of users in the proposed system. First is the developer

and second is the tester. Developer will get software bugs

assigned to him. Developer can work on only one software

bug at a time. Tester can add new bugs to the system. As

shown in figure 2, the proposed system makes use of bug

data reduction. In the proposed system, to save the labor

cost of developers, the data reduction for bug triage is made.

Bug data reduction is applied in phase of data preparation of

bug triage. Data reduction mainly has two goals. Firstly,

reducing the data scale and secondly, improving the

accuracy of bug triage. Techniques of instance selection and

feature selection are used for data reduction. Instance

selection and feature selection are widely used techniques in

data processing. For a given data set in a certain application,

instance selection is to obtain a subset of relevant instances

(i.e., bug reports in bug data) while feature selection aims to

obtain a subset of relevant features (i.e., words in bug data).

In the proposed system, the combination of instance

selection and feature selection is used.

Figure 1: System Architecture

III. SYSTEM ARCHITECTURE

3.1Bug Triage

The aim of bug triage is to assign a developer for bug

fixing. Once a developer is assigned to a new bug report he

will fix the bug or try to rectify it. In bug report consist of

two key items the summary and description about the

information of bug which is recorded in natural languages.

The summary denotes a general statement for identifying a

bug and description denotes the details for reproducing the

bug. Fig 1.Shows that before training a classifier with a bug

data set. It consists of phase of data reduction.

http://www.ijsdr.org/

ISSN: 2455-2631 © October 2016 IJSDR | Volume 1, Issue 10

IJSDR1610018 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 112

Figure -2: Architecture of Bug Triage

3.2 Data Reduction

The data reduction is used for reduce the scale and improve

the quality of data in bug repositories. For data reduction

applied as a phase in data preparation of bug triage. By

using instance selection and feature selection reduce data, so

that get high quality data. For data processing the instance

selection and feature selection are widely used. For given

data sets instance selection is to obtain a subset of relevant

instances that is bug report in bug data and feature selection

means to obtain a subset of relevant features that is words in

bug data. Instance selection is a technique to reduce the

number of instances by removing noisy and redundant

instances. An instance selection algorithm can provide a

reduced data set by removing non-representative instances

.Choose four instance selection algorithms such as Iterative

Case Filter (ICF), Learning Vectors Quantization (LVQ),

Decrement Reduction Optimization Procedure (DROP) and

Patterns by Ordered Projections (POP). Feature selection is

a pre-processing technique for selecting a reduced set of

features for large-scale data sets. The reduced set is

considered as the representative features of the original

feature set. Since bug triage is converted into text

classification, focus on the feature selection algorithms in

text data. Choose four well-performed algorithms in text

data and software data such as Information Gain (IG), x2

statistic (CH), Symmetrical Uncertainty attribute evaluation

(SU), and Relief-F Attribute selection (RF). Based on

feature selection, words in bug reports are sorted according

to their feature values and a given number of words with

large values are selected as representative features [1][2].

IV. MINING SOFTWARE REPOSITORIES

To understand constantly evolving software systems is a

very daunting task. History of software systems are

maintained in software repositories. Evolution of software

systems are documented by artifacts called Software

repositories. They often contain data from years of

development of a software project [2]. Examples of

software repositories are: Runtime Repositories:

Repositories that contain development logs about

application usage on deployment sites and useful

information of its execution are one of many examples of

runtime repositories. Historical Repositories: Bug

repositories, source code repositories and archived

communication logs are some examples of historical

repositories. Code Repositories: Examples of code

repositories are Google code and codeforge.net that store

source code of various open source projects [3]. A process

of software repository analysis which discovers significant

and interesting information hidden in these repositories is

known as MSR. It processes and analyses the huge software

engineering data to detect interesting patterns in this data. It

is an open field as in what can be mined and what can be

learned from practice. All kinds of software repositories can

be mined.

4.1 Software Evolution and Trend Analysis

Analyzing and characterizing how a software system

changes over time, or the software evolution [506] of a

system, has been of interest to researchers for many years.

Both how and why a software system changes can help

yield insights into the processes used by a specific software

system as well as software development as a whole. To this

end, LDA has been applied to several versions of the source

code of a system to identify the trends in the topics over

time [525, 834, 835]. Trends in source code histories can be

measured by changes in the probability of seeing a topic at

specific version. When documents pertaining to a particular

topic are first added to the system, for example, the topics

will experience a spike in overall probability. Researchers

have evaluated the effectiveness of such an approach, and

found that spikes or drops in a topic’s popularity indeed

coincided with developer activity mentioned in the release

notes and other system documentation, providing evidence

that LDA provides a good summary of the software history

[832]. LDA has also been applied to the commit log

messages in order to see which topics are being worked on

by developers at any given time [401, 402]. LDA is applied

to all the commit logs in a 30 day period, and then

successive periods are linked together using a topic

similarity score (i.e., two topics are linked if they share 8

out of their top 10 terms). LDA has also been used to

analyze the Common Vulnerabilities and Exposures (CVE)

database, which archives vulnerability reports from many

different sources [641]. Here, the goal is to find the trends

of each vulnerability, in order to see which are increasing

and which are decreasing. Research has found that using

LDA achieves just as good results as manual analysis on the

same dataset. Finally, LDA has recently been used to

analyze the topics and trends present in Stack Overflow10, a

popular question and answer forum [75]. Doing so allows

researchers to quantify how the popularity of certain topics

and technologies (e.g.: Git vs. SVN; C++ vs. Java; iPhone

vs. Android) is changing over time, bringing new insights

for vendors, tool developers, open source projects,

practitioners, and other researchers.

4.2 Bug Database Management

As bug databases grow in size, both in terms of the number

of bug reports and the number of users and developers,

better tools and techniques are needed to help manage their

http://www.ijsdr.org/

ISSN: 2455-2631 © October 2016 IJSDR | Volume 1, Issue 10

IJSDR1610018 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 113

work flow and content. For example, a semi-automatic bug

triaging system would be quite useful for determining which

developer should address a given bug report. Researchers

have proposed such a technique, based on building an LSI

index on the the titles and summaries of the bug reports [7,

41]. After the index is built, various classifiers are used to

map each bug report to a developer, trained on previous bug

reports and related developers. Research reports that in the

best case, this technique can achieve 45% classification

accuracy. Other research has tried to determine how easy to

read and how focused a bug report is, in an effort to

measure the overall quality of a bug database. Here,

researchers measured the cohesion of the content of a bug

report, by applying LSI to the entire set of bug reports and

then calculating a similarity measure on each comment

within a single bug report [253, 524]. The researchers

compared their metrics to human-generated analysis of the

comments and find a high correlation, indicating that their

automated method can be used instead of costly human

judgements. Many techniques exist to help find duplicate

bug reports, and hence reduce the efforts of developers

wading through new bug reports. For example, Runeson et

al. [737] use VSM to detect duplicates, calling any highly-

similar bug reports into question. Developer can then

browse the list to determine if any reports are actually

duplicates. The authors preprocess the bug reports with

many NLP techniques, including synonym expansion and

spell correction. Subsequent research also incorporates

execution information when calculating the similarity

between two bug reports [907]. Other research takes a

different approach and trains a discriminative model, using

Support Vector Machines, to determine the probability of

two bug reports being duplicates of each other [801].

Results are mixed. Finally, recent work has proposed ways

to automatically summarize bug reports, based on extracting

key technical terms and phrases [540, 709]. Bug summaries

are argued to save developers time, although no user studies

have been performed.

4.3 Organizing and Searching Software Repositories

To deal with the size and complexity of large-scale software

repositories, several IR-based tools have been proposed, in

particular tools for organizing and searching such

repositories. MUDABlue is an LSI-based tool for

organizing large collections of open-source software

systems into related groups, called software categories

[454]. MUDABlue applies LSI to the identifier names found

in each software system and computes the pair wise

similarity between whole systems. Studies show that

MUDABlue can achieve recall and precision scores above

80%, relative to manually created tags of the systems, which

are too costly to scale to the size of typical software

repositories. LACT, an LDA-based tool similar to

MUDABlue, has recently been shown to be comparable to

MUDABlue in precision and recall [844]. Sourcerer is an

LDA-based, internet-scale repository crawler for analyzing

and searching a large set of software systems. Sourcerer

applies LDA and the AuthorTopic model to extract the

concepts in source code and the developer contributions in

source code, respectively. Sourcerer is shown to be useful

for analyzing systems and searching for desired

functionality in other systems [528, 529]. S 3 is an LSI-

based technique for searching, selecting, and synthesizing

existing systems [694]. The technique is intended for

developers wishing to find code snippets from an online

repository matching their current development needs. The

technique builds a dictionary of available API calls and

related keywords, based on online documentation. Then,

developers can search this dictionary to find related code

snippets. LSI is used in conjunction with Apache Lucene to

provide the search capability.

V.CONCLUSION

Bug triage is a chip step of computer code maintaining. The

projected system aims to form reduced and high-quality bug

knowledge in computer code development and maintenance.

Processing techniques like instance choice and have choice

are used for data reduction. The projected system is used for

any open supply comes that generate immense bug

knowledge. Various software corporations engaged on

comes like banking, food chain management will use the

applying of the projected system. The advantage of

proposed system is, it combines feature selection with

instance selection to decrease the level of bug data sets as

well as improve the data quality. The next advantage is, it

provide priority according to severity of bug and security so

that no another developer can access it.

REFERENCES

[1] Baysal, O., Holmes, R., & Godfrey, M. W. (2012, June),

“Revisiting bug triage and resolution practice” In User

Evaluation for Software Engineering Researchers (USER),

2012 (pp. 29-30) IEEE.

[2] Jeong, G., Kim, S., & Zimmermann, T. (2009, August),

“Improving bug triage with bug tossing graphs” in

Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering (pp.

111-120). ACM.

[3] Park, Jin-woo, Mu-Woong Lee, Jinhan Kim, Seung-won

Hwang, and Sunghun Kim, "CosTriage: A Cost-Aware

Triage Algorithm for Bug Reporting Systems." In AAAI.

2011.. [4] Kevic, Katja, Sven Christian Muller, Thomas

Fritz, and Harald C. Gall. "Collaborative bug triaging using

textual similarities and change set analysis", In Cooperative

and Human Aspects of Software Engineering (CHASE),

2013 6th International Workshop on, pp. 17-24. IEEE,

2013..

[5] Xuan, Jifeng, He Jiang, Zhilei Ren, Jun Yan, and

Zhongxuan Luo "Automatic Bug Triage using

SemiSupervised Text Classification" in SEKE, pp. 209-214,

2010..

[6] Alenezi, Mamdouh, Kenneth Magel, and Shadi

Banitaan. "Efficient bug triaging using text mining." Journal

of Software 8.9 (2013): 2185-2190.

[7] Zou, Weiqin, Yan Hu, Jifeng Xuan, and He Jiang.

"Towards training set reduction for bug triage." In

Computer Software and Applications Conference

(COMPSAC), 2011 IEEE 35th Annual, pp. 576-581. IEEE,

2011.

[8] S Hu, Hao, Hongyu Zhang, Jifeng Xuan, and Weigang

Sun. "Effective bug triage based on historical bug-fix

information." In Software Reliability Engineering (ISSRE),

2014 IEEE 25th International Symposium on, pp. 122-132

IEEE, 2014.

[9] Yifan fu · xingquan zhu · bin li‖ a survey on instance

selection for active learning‖ 17 march 2012 © springer-

verlag london limited 2012

http://www.ijsdr.org/

ISSN: 2455-2631 © October 2016 IJSDR | Volume 1, Issue 10

IJSDR1610018 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 114

[10] Chengnian sun‖ towards more accurate retrieval of

duplicate bug reports‖ http://www.bugzilla.org/

[11] Yoav freund ―experiments with a new boosting

algorithm‖ machine learning: proceedings of the thirteenth

international conference, 1996

 [12] Shay artzi, adam kie _zun ―finding bugs in web

applications using dynamic test generation and explicit-state

model checking‖ ieee transactions on software engineering,

vol. 36, no. 4, july/august 2010

 [13] Silvia breu ―information needs in bug reports:

improving cooperation .

Authors Profile

SK.Salma M.TECH CSE

Sree Vahini Institute of Science and

Technology Tiruvuru Andhra

Pradesh.

M. Sreerama Murty

Assoc.Professor SreeVahini Institute of

Science

and Technology Tiruvuru A.P.

"M.TECH(CSE)M.TECH(CNIS),(Ph.D

)"

Email id :-sreeramsssit@gmail.com

J.V Krishna

Assoc Professor M.TECH of CSE

SreeVahini Institute of Science and

Technology Tiruvuru Andhra Pradesh.

 Emailid: hodcsesvist234@gmail.com

http://www.ijsdr.org/
http://www.bugzilla.org/
mailto:sreeramsssit@gmail.com

