(1)

Enhanced Detection of Double Adjacent Errors in Hamming Codes through Selective Bit Placement

¹Lintu K Babu , ²Hima Sara Jacob

¹M Tech Student, ²Assistant Professor ¹Department of Electronics And Communication ¹Mangalam College Of Engineering, Ettumanoor, Kottayam, Kerala,India

Abstract— This paper explain the Enhanced detection of Double adjacent Errors in Hamming codes. In 1950's Richard Hamming invented the Hamming code. Designed to correct single bit errors. Hamming Codes are used in computing, telecommunication, and other applications. Codes are simple to construct for any word length. It can be easy to Encode and decode.2D Hamming Product Code is used to detect and correct errors. But, this fails to detect adjacent errors. Detecting double adjacent errors using Selective Bit Placement Algorithm. In this paper the algorithm for hamming code is discussed and then implementation of it in verilog is done to get the result. Here code is implemented in verilog in which 4 bit of information data is transmitted. Delay, area and power analyses were carried out using Xilinx ISE-13.2.The results obtained are presented and compared. The enhanced detection is achieved by selective bit placement strategy.

Index Terms- Error correction codes (ECCs), Hamming codes.

I. INTRODUCTION

Hamming codes are a family of linear error-correcting codes, generalize the Hamming code invented by Richard Hamming in 1950. Hamming codes can detect two-bit errors or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance 3[1].

In all cases, the data is encoded when it is written into the memory and decoded when read. The encoding and decoding latency directly affect the memory access time. To minimize this effect ECCs [4] for which decoding is simple are used in most cases. In this paper, a technique to maximize the probability that a Hamming code detect double adjacent errors and that a parity extended Hamming code detects triple adjacent errors is presented. This is achieved by placing the bits of the word such that those adjacent errors provoke a syndrome value that is different from those caused by single errors [2].

II. HAMMING CODES

Hamming codes are designed to correct single bit errors. Family of (n, k) block error-correcting codes with parameters:

Block length: $n = 2^m - 1$

Number of data bits: $k = 2^m - m - 1$

Number of parity check bits: n - k = m

Minimum distance: $d_{min} = 3$

Table I Hamming Codes Parameters

k	n
8	12
16	21
32	38
64	71
128	136
256	265

Table II	Shortened H	amming Codes	Parameters
----------	-------------	--------------	------------

In memory applications, the number of information bits k is commonly a power of two and Hamming codes are shortened to fit that word length as illustrated in Table II. Hamming codes are linear codes and can be generated and decoded using the generator and parity-check matrices, respectively. These matrices have a canonical form, but also equivalent non-systematic code matrices can be obtained by column permutations and other row operation.

 Table III
 Generation Algorithm Code (7,4)

Position	c1	c2	c3	c4	c5	c6	c7
Binary	001	010	011	100	101	110	111
Content	p1	p2	d1	р3	d2	d3	d4
c1(p1)			011		101		111
c2(p2)			011		V	110	111
c4(p3)					101	110	111

Algorithm to generate Hamming code words from information bits is as follows:

- a) Positions are numbered from 1 to n;
- b) Positions are written in their binary form (1, 10, 11, etc.)
- c) Bits in positions 2^r are parity bits for those other positions

Where the binary form of those positions has the bit r + 1 set to one. For instance, in the Hamming code (7,4) with n = 7, k = 4 and m = 3, positions c1, c2 and c4 are parity bits (p1, p2 and p3) and the information bits (d1, d2, d3 and d4) are placed in order in the rest of positions as shown in Table III. Parity bits are calculated as follows:

Tarity bits are calculated as follows.

c1 = c3 + c5 + c7	or	p1 = d1 + d2 + d4
c2 = c3 + c6 + c7	or	p2 = d1 + d3 + d4
c4 = c5 + c6 + c7	or	p3 = d2 + d3 + d4.

To checks code word, the parity bits can be recalculated. Result compared to the original set of parity bits. If they match, then no error was introduced (or it is not detected). Otherwise, an error is detected. The non-matching parity bits can provide the information of the bit that was flipped, and then error can be corrected.

As an example data bit a3a2a1a0 is 1100 and p2p1p0 is 001. Suppose 1100001 becomes 1000001.Recalculate p2p1p0 is 111. Difference (bit-wise XOR) is 110. This difference is called syndrome - indicates the bit in error. It is clear that a2 is in error and the correct data is a3a2a1a0 is 1100.The syndrome can be calculated directly in one step from the bits a3 a2 a1 a0 p2 p1 p0. This is best represented by the following matrix operation where all the additions are mod 2.

$$\begin{bmatrix} a_{3} a_{2} a_{1} a_{0} p_{2} p_{1} p_{0} \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{3} \\ a_{2} \\ a_{1} \\ a_{0} \\ p_{2} \\ p_{1} \\ p_{0} \end{bmatrix} = \begin{bmatrix} s_{2} s_{1} s_{0} \end{bmatrix}$$

Fig 1. Syndrome calculation

If vector is null vector, then the current value of the word is an actual code word. In any other case, an error occurred in the code word. Example - 1100001 becomes 1010001 -a2 and a1 are erroneous - syndrome is 011. This indicates erroneously that bit a0 should be corrected. One way of improving error detection capabilities to adding an extra check bit which is the parity bit of all the other data and parity bits. This is an (8, 4) single error correcting/double error detecting (SEC/DED) Hamming code [3]. For example Single error is 11001001 becomes 10001001. Syndrome is 1110 - indicating that a2 is erroneous. Two errors - 11001001 becomes 10101001.Syndrome is 0011 indicating an uncorrectable error.

III. SELECTIVE BIT PLACEMENT STRATEGY

As pointed out before, there are special combinations of double and triple bit errors that are detected and not miscorrected in the shortened Hamming code and the parity extended version, respectively. The bit positions for those combinations are randomly distributed through the word. The objective is to reorder the bits of the code word to maximize the adjacency of the special combinations.

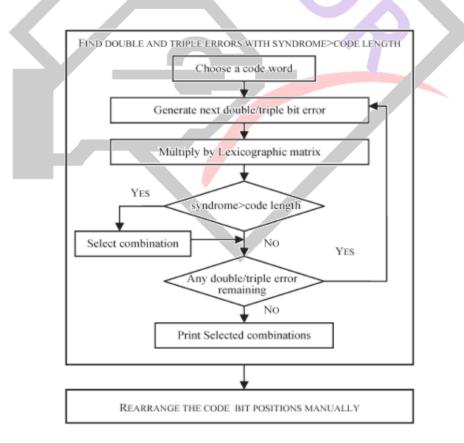


Fig 2. Selective bit placement strategy procedure

To achieve this goal, the following procedure is followed:

- Using a software program, find all double and triple error combinations which produce a syndrome that does not match any of the ones caused by a single error.
- To reorder the word manually to maximize the number of adjacent bits errors.
- To find all the possible combinations of double and triple error bits, the program executing steps:
- Hamming code is selected.
- All 2-error and 3-error combinations code word are generated.
- The error words generate multiplied with the lexicographic check matrix.
- Those bit error combinations producing a syndrome, that higher than the maximum bit position of the code are selected.
- Positions are printed out.

IV. SIMULATION RESULTS

We have written a code in verilog for hamming code. The code is running succefully. In this code we are initializing a data of 4 bit and calculating its parity bit by the above general algorithm. It requires calculating the parity bit by matrix multiplication and modulo-2 addition. The parity bit required for four bit data is three bit. These bits are calculated and the We have done encoding and decoding of the data in the same code. A variable syndrome is used to decode the data and to calculate the parity bit. The syndrome has two useful properties. First if the syndrome is all zeros, the encoded data is error free. But if the syndrome has a nonzero value, then flip the encoded bit that is in the position of the column in [H] that matches the syndrome will result in a valid code word. we will show the input/output ports of hamming encoder and decoder.

		_				•
Name	Value		1 us		2 us	
🕨 🎽 data_1[4:1]	1010	ZZ)	1010]
🕨 🎽 data_2[4:1]	1100	ZZ)	1100			
🕨 🕌 data_3[4:1]	1001	ZZ)	1001			
🕨 🕨 🖬 data_4[4:1]	0100	ZZ)	0100			
🕨 🎽 tx1[12:1]	011001011101	XX)	01100101	1101		
🕨 🎆 tx2[12:1]	110110001010	XX)	11011000	1010		
🕨 🃑 tx3[12:1]	111011110001	XX)	11101111	0001		
▶ 📷 tx4[12:1]	100000100101	XX)	10000010	0101		
🕨 🕨 🕷 code_1[7:0]	10110100	XX)	101101	00		
▶ 🍢 code_2[7:0]	01111000	XX)	011110	00		
▶ 🍢 code_3[7:0]	00110011	XX)	001100	11		
🕨 🎆 code_4[7:0]	10011001	XX)	100110	01		
🕨 🍢 int_data1[4:1	1110	ZZ)	1110			
Int_data2[4:1	0101	ZZ)	0101			
Int_data3[4:1	1000	ZZ)	1000			
		-				

Fig 3. Wave form of hamming encoder

ne	Value	5,50	0 ns	6,000 ns	6,500 ns	7,000 ns
data_dec_in1[12:1]	011001011101	01100	011101	X	01100101	100
data_dec_in2[12:1]	110110001010	110110	001010		11011000	011
data_dec_in3[12:1]	111011110001	11101	110001		11101111	000
data_dec_in4[12:1]	100000100101	100000	100101		10000010	100
org_data1[4:1]	1010				10 1D	
org_data2[4:1]	1100				1100	
org_data3[4:1]	1001				1001	
org_data4[4:1]	0100	0	00	X	0100	
n flag	1					
dec_out1[7:0]	10101101	1010	1101		101011	1
dec_out2[7:0]	01001010	0100	1010		010010	10
dec_out3[7:0]	11110001	111	0001	X	111100	1
👹 dec_out4[7:0]	00010101	000	0101		000101	1

Fig 4. Wave form of hamming decoder

Table IV	Comparison	Table
----------	------------	-------

PARAMETER	CONVENTIONAL		ENHANCED		
	Encoder	Decoder	Encoder	Decoder	
Power(W)	.069	.137	.072	.138	
AREA NO CELLS	185	334	187	328	
DELAY (NS)	12.5	21.31	12.308	22.02	

V. CONCLUSION

In this paper, technique to maximize the probability of detecting errors in hamming codes. The enhanced detection is achieved by selectively placing the bit. Effective method of achieving a large error detection rate. The proposed scheme does not require any additional circuitry. The area, power and speed will be the same as with the traditional method. Delay, area and power analyses were carried out using Xilinx ISE-13.2.The results obtained are presented and compared. The enhanced detection is achieved by selective bit placement strategy.

REFERENCES

- [1] Alfonso Sanchez Macian "Enhanced detection of double and triple adjacent errors in hamming codes through selective bit placement" IEEE Transactions on device and materials, vol 12.
- [2] R.W Hamming "Error detecting and error correcting codes", Bell Syst.Tech J., vol.29, pp.147-160.
- [3] S. Lin and D. J. Costello,"Error Control Coding", 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.
- [4] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor technologies," IEEE Trans.Device Mater. Rel.,vol. 5, no.3, pp.301–316, Sep.2005.