
ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 189

Partial Product Perforation Technique for Efficient

High Speed and Low Power Approximate

Multiplication Circuits
1
S.Divya,

2
Dr.O.Saraniya

1PG Scholar, 2Assistant Professor

Department of Electronics and Communication Engineering

Government College Of Technology, Coimbatore, India

Abstract—Partial product perforation is a technique used for designing approximate multiplication circuits by omitting

the generation of some partial products. Product perforation technique is applied on different multiplier circuits, i.e.,

array multiplier, Wallace tree multiplier, DADDA multiplier and the optimal architecture is exposed. Simulation results

shows that the partial product perforation method reduces, area by 45%, power by 50% and critical delay by 35% than

accurate multiplier. DADDA multiplier results as the best multiplier and it is applied in 10 TAP FIR filter. In addition,

the product perforation method is compared with state-of-the-art approximation circuits, i.e., truncation, voltage

overscaling, and logic approximation, showing that it outperforms them in terms of power dissipation and error. This

technique is scalable, offering better results as multipliers bit width increases. Multiplication process is often used in

digital signal processing system, microprocessors design, communication system, and other application specific integrated

circuits. Multipliers have complex units and play an important role in deciding the overall area, speed and power

consumption of digital design.

Keywords—Partial product perforation, Dadda multiplier, 10 TAP FIR filter.

I. INTRODUCTION

In today‟s digital signal processing multipliers plays a major role and various other applications. Essential design targets

of multiplier include low power consumption,high speed, regularity of layout and hence has less area or even combination of

them in one multiplier are required thereby making them suitable for various VLSI implementations.The straightforward way to

implement a multiplication is given by iterative adder-accumulator for the generated partial products. Which is called a serial

multiplier. However, solution of this is quite slow as the final result is only available after „n‟ clock cycles, where n is the size of

the operands. Serial multipliers are used where area and power are of utmost importance and increased delay can be tolerated. A

faster version of the iterative multiplier must add partial products at once. This could be achieved by unfolding the iterative

multiplier and yielding a combinational circuit consists of several partial product generators together with several adders operates

in parallel which is called Parallel Multiplier .

The product is the result of multiplying the multiplicand and the multiplier. The multiplication operation is performed in

two main steps. First is the partial product generation, which is done by AND-ing each bit of the multiplier with the multiplicand.

Each successive partial product has a relative shift of one bit position to the left of the previous partial product. The second step is

the partial product accumulation, where the partial product is combined using adders and compressors to find the result. Most

multiplication techniques can be classified as Array multipliers and Tree multipliers. A detailed discussion on different types of

multipliers is done in the following sections.

Now a days in modern embedded electronic devices, power consumption is a first-class design concern. A large number

of application domains are inherently tolerant to imprecise calculations, e.g., digital signal processing (DSP), data analytics, and

data-mining [1], approximate computing appear as a promising solution to reduce their power dissipation. Approximate

computing can be applied at both software and hardware levels. Hardware-level approximation mainly targets arithmetic units,

such as multipliers and adders, widely used in portable devices to implement multimedia algorithms, e.g., image and video

processing. The most commonly used techniques for the generation of approximate arithmetic circuits are truncation [4],

[5],simplification of logic complexity (i.e., alteration of the truth table) [7]–[9] and voltage overscaling (VOS) [2], [6]. Extensive

research has been conducted on approximate adders [6], [7], [10], [11], providing significant gains in terms of area and power

while exposing small error. However, research activities on approximate multipliers are limited. Efficient approximate multipliers

introduced in [8], [9], [12], and [13] target the approximation of the partial product accumulation but do not examine

approximations on the partial product generation. Approximate hardware circuits, contrary to software approximations, offer

transistors reduction, leakage power and lower dynamic, lower circuit delay, and opportunity for downsizing. Motivated by the
limited research on approximate multipliers, compared with the extensive research on approximate adders, and explicitly the lack

of approximate techniques targeting the partial product generation, we introduce the partial product perforation method for

creating approximate multipliers. Inspired from [14], we omit the generation of some partial products, thus reducing the number

of partial products that have to be accumulated, we decrease the area, power, and depth of the accumulation tree.

ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 190

Approximate circuits has been considered for error-tolerant applications that can tolerate some loss of accuracy with

improved performance and energy efficiency. Multipliers is a key arithmetic circuits in many such applications such as digital

signal processing. In this paper, a novel approximate multiplier with lower power consumption and a shorter critical path than

traditional multipliers is proposed for high-performance DSP applications.

II. PARTIAL PRODUCT REDUCTION

The heart of an efficient digital multiplier implementation is based on the manner in which the PPA bits are added. Were

conventional carry adders used to implement these add operations, the delay of all the adders would consume a large amount of

time, as each shifted version of the multiplicand would contribute a delay which is proportional to the width of the multiplicand.

Instead, the partial product is reduced using a technique called carry-save addition [31]. This procedure allows successive

additions to be incorporated into one global addition step. Consider a numerical bit vector representation of the following form:

(bn-1,bn-2,...,b1,b0), bi = {0,1}, . If we wish to add two bits from two bit vectors, say a0 and b0, from bit vectors a and b, we can

use the full adder ; it takes in three bits and produces a sum bit, and a carry bit. When adding two vectors together, this block can

be used to add two bits at a given bit position with the carry-in from the previous bit position.

Consider the case where two bit vectors are to be added. At the lowest bit position, two bits are added, and the carry is

propagated to the next bit position. From then on the carry-in and the next two bits at the higher bit position are combined, and a

carry-out is generated. Using this rippling technique, we see that adding two n-bit number takes O (n) sequential bit additions,

resulting in a delay of O (n). If we have to add three bit vectors, A, B, and C, each of size n, we can use this method to add first A
and B, and then to add C to the result of A+B. The number of bit additions is O (2n). We see that if we were to use this technique

in the most simple-minded fashion to add n shifted copies of an n-bit multiplicand, the delay will be O (n2).

III. ARCHITECTURE OFARRAY, WALLACE TREE AND DADDA MULTIPLIER

A. Array Multiplier

Array multipliers can also be implemented by directly mapping the manual multiplication into hardware.

The partial products are accumulated by an array of adder circuits. An n x n array multiplier requires n (n-1) adders and n 2 AND

gates. 8 X 8 accurate array multiplier and approximate array multiplieris shown in the figure. Array multipliers have a large

critical path and is very slow. The main advantage of this multipliers is the regular structure which leads to ease of layout and

design.The composition of an array multiplier is shown in the figure.There is a one to one topological correspondence between

this hardware structure.

The generation of n partial products requires N*M two bit AND gates. Most of the area of the multiplier is devoted to the adding

of n partial products, which requires N-1, M-bit adders. The shifting of the partial products for their proper alignment‟s performed

by simple routing and does not require any logic. The overall structure can be easily being compacted into rectangle, resulting in

very efficient layout.

B. Wallace Tree Multiplier

A fast technique to perform multiplication is Propounded by C.S. Wallace for large operands Wallace tree multiplier

offers faster performance. Unlike an array multiplier the partial product matrix for a tree multiplier is rearranged in a tree-like

format, by reducing both the critical path and the number of adder cells needed.

The Wallace tree multiplier comes under a family of multipliers called column compression multipliers. The underlying

principle used in this family of multipliers is to achieve partial product accumulation by successively reducing the number of

information bits in each column using full adders or half adders. The full adder is known as a (3:2) compressor which has a ability
to add 3 bits from a single column of the partial product matrix and output 2 bits, from the output 2 bits 1 bit is placed the same

column and 1 bit in the next column of the output matrix. The half adder is known as a (2:2) compressor which has a ability to

take 2 bits from a single column of the partial product matrix and output 2 bits, from the output 2 bits 1 bit is placed in the same

column and 1 bit in the next column of the output matrix.

C. DADDA Multiplier

DADDA multiplier is a hardware multiplier designed similar to Wallace multiplier. Unlike Wallace multipliers that perform

reductions as much as possible on each layer, Dadda multipliers do as few reductions as possible. Due to this, Dadda multipliers

have less expensive reduction phase, but the numbers may be a few bit longer, thus requiring slightly bigger adders. This implies

that fewer columns are compressed in the initial stages of the column compression tree, and more columns in the later levels of

the multiplier. In this figure, the plain diagonal line connecting the two dots represents the outputs of the full adder while, the
outputs of the half adder are represented by crossed diagonal lines connecting two dots.4:2 Compressor is a high speed

compressor structures which perform more than three bit addition in parallel reducing number of stages in partial product

reduction tree, minimizing the critical delay.

ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 191

The 4:2 compressor has four inputs and two outputs. The architecture of 4:2 compressor is composed of two serially

connected full adders. The four inputs X1, X2, X3 and X4 and the output Sum are from same column of the partial product. Cin is

the output carry of the preceding module and Cout is the carry output of the current compressor fed as Cin to the next compressor

module.

The compressor is governed by Equation (4.1).

X1+X2+X3+X4+Cin=Sum+2(Carry+Cout) (4.1)

Fig.1 Block diagram of 4:2 compressor

IV. SIMULATION RESULTS

 To summarize the performance measure of different multiplier architectures i.e, array multiplier, wallace tree

multiplier , DADDA multiplier, it is simulated using XILINX ISE Design Suite 14.2. The area, power and delay of different

multiplier architectures were analysed and from the simulation results it is shown that DADDA multiplier outperforms best than
other multipliers.

TABLE 1:AREA, POWER AND DELAY SUMMARIZATION TABLE

ACCURATE MULTIPLIERS

APPROXIMATE MULTIPLIERS

ARRAY WALLACE

TREE

DADDA ARRAY WALLACE

TREE

DADDA

INPUT

SIZE(N)

8

8

8

8

8

8

STAGES(S) 6 4 2 4 3 2

ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 192

AREA

(LUT‟S)

122

OUT
OF

12480

103 OUT

OF 12480

124

OUT
OF

12480

87 OUT

OF
12480

82 OUT

OF 12480

70 OUT

OF
12480

POWER(W) 0.326

0.325
0.463 0.324 0.324 0.323

DELAY(ns)

10.976

11.951

10.747

10.142

11.130

10.194

To calculate area, power and delay Run synthesize-XST followed by this Run implement design once it is simulated

open synthesis report to calculate area and delay, to calculate power click tools and select Xpower Analyzer update signal rate and

update power analysis now total power is given by summary table.

Fig.2 Simulation result ofAccurate dadda areaFig.3 Simulation result ofAccurate dadda delay

Fig.4 Simulation result ofAccurate dadda powerFig.5 Simulation result ofApproximatedadda area

Fig.6 Simulation result ofApproximatedadda delayFig.7Simulation result ofApproximatedadda power

V. EXPERIMENTAL STUDY

In this section, the Partial product perforation technique is applied on different multiplier architectures i.e, array, wallace tree and

dadda multiplier to explore thier power consumption, area and delay. The resultant output of area, power and delay is plotted in a

pareto graph shown in the fig

ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 193

Fig.8 plots of area in LUT’s Fig.9 plots of power in watts Fig.10 plots of delay in ns

Multiplier is one of the DSP and image processing applications etc., Further dadda multiplier is applied on 10Tap fir filter

replacing normal multiplier and comparative study is made between ordinary 10Tap fir filter and modified 10Tap fir filter. The

parameters that are used for comparisons include area, power and delay. The comparison table is given below

TABLE 2:COMPARITIVE TABLE BETWEEN ORDINARY 10TAP AND MODIFIED 10TAP FIR FILTER

NORMAL 10TAP FIR FILTER MODIFIED 10TAP FIR

FILTER(WITH DADDA

MULTIPLIER)

AREA

IN

LUT‟s

POWER

IN

WATT

DELAY

IN

ns

AREA

IN

LUT‟s

POWER

IN

WATT

DELAY

IN

ns

101

OUT OF

126800

0.048

2.284

101

OUT OF

126800

0.049

1.959

From the table we can infer that probably there will be a trade off between area, power and delay but here on replacing normal

multiplier with a dadda multiplier results in very less delay. Thus this modified filters can be used for high speed DSP

applications with less area and power. The following figure shows the simulation results of modified 10Tap fir filter.

 Fig.11 area of modified 10tap fir filter Fig.12 power of modified 10tap fir filter

ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 194

Fig.13 delay of modified 10tap fir filter

VI. CONCULSION AND FUTURE WORK

In this design strategy, the multiplier circuit is redesigned into two different parts.Accurate part, which is implemented using

standard partial multiplier to achieve greater accuracy.Approximate part, which generates small amount of error but this is

acceptable error value to circuit designer/customer because with small sacrifice of accuracy the design provides noticeable

saving in power and high speed operation.such multipliers are widely used in wireless communication and multimedia. It

offers better results as the multiplier‟s bit width increases.Comparing all multipliers DADDA multiplier is best in reducing

the area, power and delay.Multiplication process is often used in digital signal processing systems, microprocessors designs,

communication systems, and other application specific integrated circuits. Here the improved multiplier is applied on 10Tap

fir filter. Further, it can be applied on higher tap fir filters for high speed low power DSP applications.

REFERENCES

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and characterization of inherent application

resilience for approximate computing,” in Proc. 50th ACM/EDAC/IEEE Design Autom. Conf., May/Jun. 2013, pp. 1–9.

[2] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO: Modeling and analysis of circuits for approximate

computing,” in Proc.IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2011, pp. 667–673.

[3] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-thinking parallel software and hardware,” in Proc. 47th

ACM/IEEEDesign Autom. Conf., Jun. 2010, pp. 865–870.

[4] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “IMPACT: Imprecise adders for low-power approximate
computing,” in Proc. Int. Symp. Low Power Electron. Design, Aug. 2011, pp. 409–414.

[5] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate multiplier with configurable partial error

recovery,” in Proc.Conf. Design, Autom. Test Eur., Mar. 2014, Art. no. 95.

[6] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis of approximate compressors for multiplication,”

IEEE Trans.Comput., Vol. 64, No. 4, pp. 984–994, Apr. 2015.

[7] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an underdesigned multiplier architecture,” in

Proc. 24th Annu. Conf.VLSI Design, Jan. 2011, pp. 346–351.

[8] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-efficient approximate multiplication for

digital signal processing and classification applications,” IEEE Trans. Very Large ScaleIntegr. (VLSI) Syst., Vol. 23, No. 6, pp.

1180–1184, Jun. 2015.

[9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for evaluating and synthesizing multimedia and
communications systems,” in Proc. 13th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 1997, pp. 330–335.

[10] G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos, and K. Pekmestzi, “Approximate multiplier architectures through partial

product perforation: Power-area tradeoffs analysis,” in Proc. 25th Great Lakes Symp.VLSI, 2015, pp. 229–232.

[11] D. Soudris, C. Piguet, and C. Goutis, Designing CMOS Circuits forLow Power, ser. European low-power initiative for

electronic systemdesign. Springer, 2002.

[12] R. Zimmermann and W. Fichtner, “Low-power logic styles: Cmos versus pass-transistor logic,” Solid-State Circuits, IEEE

Journal of, vol. 32, no. 7, pp. 1079–1090, Jul 1997.

[13] A. Salz and M. Horowitz, “Irsim: An incremental mos switch-levelsimulator,” in Design Automation, 1989. 26th Conference

on, June 1989, pp. 173–178.

ISSN: 2455-2631 © March 2017 IJSDR | Volume 2, Issue 3

IJSDR1703029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 195

[14] D. Mohapatra, “Approximate computing: Enabling voltage over-scaling in multimedia applications,” Ph.D. dissertation,

Purdue University, 2011.

[15] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghunathan, “Salsa: systematic logic synthesis of

approximate circuits,” in The 49th Annual Design Automation Conference 2012, DAC ’12. ACM, 2012, pp. 796–801.

