Digital Watermarking algorithm of Quick Response Code Based on Discrete wavelet transform (DWT)(Result)

1Shaikh Ajij Amirsab, 2P.K.Vinkare
1Ph.D. Student, 2Lecturer
1Kaliranga University, 2Government Polytechnic

Abstract—The aim of the project work to find out the benefits of using QR Code within companies and give reasonable recommendations on companies QR Code usage. In order to achieve this objective, this research is to explore the application of QR Code to Chat and the characteristics of code. Moreover, examples are used to explore and explain the benefits of using QR Code. There are many popular techniques for this such as Steganography, Digital signature, Fingerprinting, cryptography and Digital watermarking but Digital watermarking is proved best out of them. Digital watermarks are of different types as robust, fragile, semi fragile, visible and invisible. Application is depending upon these watermarks classifications. There are some requirements of digital watermarks as integrity, robustness and complexity.

Keywords—Image watermarking; Human Auditory System (HAS); Human Visual System (HVS); Quantization; Quantization Index Modulation (QIM); Dither Modulation (DM); Mean Quantization; Vector Quantization

1. Introduction

Digital watermark has been presently utilized as a possible solution for intellectual property rights protection. It is a technique for labeling multimedia data, including digital images, text documents, video and audio clips, by hiding secret information in the data. This embedded hidden information is unperceivable so the watermarked data appear identical to the original non-watermarked data. Moreover, this hidden information can neither be removed nor decoded without the required secret keys or algorithms. The current classical algorithm contains spatial domain algorithm and transformed domain algorithm. With the spatial domain algorithm, the embedding and the distilling of watermarking are finished in spatial domain, by emending directly or comparing the gray-level value or colour value. The classical spatial domain algorithms including several ways as follows: the least significant bit (LSB) [1], Patchwork method with streak block map decoding, the method based on district intersecting and so on. Then the main current transformed domain algorithms are spread spectrum, DCT transformation method and DWT transform method.

Any watermarking technique should exhibit at least the following four desirable characteristics:
1) Readability: A watermark should convey as much information as possible so the ownership and copyright can be ambiguously identified.
2) Security: A watermark should be secret and must be undetectable by an unauthorized user in general.
3) Imperceptibility: A watermark should not introduce any perceptible artifacts into the original image.
4) Robustness: A watermark should not be removed after attacks. It should be detected after a variety of distortions, such as JPEG compression and geometric operations.

The embedding and extraction of the watermark is simple than other transform. In this algorithm watermarking, de watermarking of the image is done. The use of internet growing faster day to day and the need to display multimedia contents on the internet become necessary. Intellectual property right; documents are not fast information but property. YouTube, face book, Torrents, pirate bay such other video, audio, image, documents resource websites are now became water and food for youngsters across the globe so it is necessary to protect the rights of authors. so digital protection is necessary and inevitable. Digital watermarking is nothing but the technology in which there is embedding of various information in digital content which we have to protect from illegal copying.

In digital watermarking, a watermark is embedded into a cover image in such a way that the resulting watermarked signal is robust to certain distortion caused by either standard data processing in a friendly environment or malicious attacks in an unfriendly environment. This project presents a digital image watermarking based on two dimensional discrete wavelet transform (DWT), MSE (Mean Squared Error), NC (Normalized correlation factor), PSNR (Peak Signal to Noise Ratio) are computed to measure image quality for each transform.

The basic idea of discrete wavelet transform (DWT) in image process is to multi-differentiated decompose the image into sub-image of different spatial domain and independent frequency district. Then transform the coefficient of sub-image. After the original image has been DWT transformed, it is decomposed into 4 frequency districts which is one low-frequency district(LL) and three high-frequency districts(LH,HL,HH). If the information of low-frequency district is DWT transformed, the sub-level frequency district information will be obtained. A two-dimensional image after three-times DWT decomposed Where, L represents low-pass filter, H represents high-pass filter. An original image can be decomposed of frequency districts of HL1, LH1, HH1. The low-frequency district information also can be decomposed into sub-level frequency district information of LL2, LH2, LH2 and HH2. By doing this the original image can be decomposed for n level wavelet transformation. Most signal information of original image is in this frequency district. The frequency districts of LH, HL and HH respectively represents the level detail, the upright detail and the diagonal detail of the original image.
2. LITRETURE SURVEY

The aim of digital watermarking is hidden information added into content of multimedia. DCT technique issued and when size of image is increase then also increases PSNR without decreasing power of embedded factor[2] (alpha factor) in same format. Digital Watermarking represents an effective method for authentication and ownership right protection. It involves embedding watermark data into original information. Watermark information cannot be stored in file header because anyone with a computer and a digital editing workstation would be able to convert the information to another format and remove the watermark. Thus the watermark always embedded to multimedia a signals. There are a lot of processes performed by unauthorized persons who aim to damage or corrupt the embedded information. These processes are called Attacks.

A new robust watermarking technique for copyright protection based on Discrete Wavelet Transform and Singular Value Decomposition is proposed. The high frequency subband of the wavelet decomposed cover image is modified by modifying its singular values. A secret key is generated from the original watermark with the help of visual cryptography to claim the ownership of the image. The ownership of the image can be claimed by superimposing this secret key on the extracted watermark from the watermarked image. Also, the visual quality of the watermarked image is undistinguished from the original image.

The most popular technique is the least significant bit (LSB) method. In transform domain the watermark is embedded by modifying the frequency coefficients of the transformed image. The common methods in the transform domain are Fourier transform (DFT), discrete cosine transform (DCT), discrete wavelet transform (DWT), etc. The proposed technique is divided in two sections, embedding technique and the extraction technique.

In the spatial domain, differential PCM is used to detect the edge regions of the image so that data can be hidden on those pixels of the image when the differential signal is larger than a certain threshold level. The method is based on the visual masking phenomenon at large intensity transitions in the neighborhood of the pixel.

Watermarks are classified as being visible and invisible. A visible watermark is intended to be seen with the content of the images and at the same time it is embedded into the material in such a way that its unauthorized removal will cause damage to the image. Firstly, the mark must not degrade the image as perceived by human, although the digital image has been modified by the watermark. Secondly, the information embedded in the watermark must be recoverable from the marked image by authorized persons for ownership identification, while at the same time it must not be accessible by unauthorized persons. Thirdly, the embedded watermark must remain secure in the material even if the image is subject to various processing operations such as compression and linear transformation.

In this technique the embedding and extraction of the watermark is simple than other transform. In this algorithm watermarking, de watermarking of the image is done and it also checks the authentication of the watermarked image and de watermarked image. This paper also successfully explains digital image watermarking based on discrete Wavelet transform by analyzing various performance parameters like PSNR, MSE, SNR and NC. There are many types of algorithms for digital image watermarking. Each type of algorithms has its own advantages and disadvantages. No method has perfect solution for digital watermarking. Each type has robustness to some type of attacks but is less efficient to some other types of attacks. Each type of digital watermarking depends on the nature of application and requirements. In this paper we presented a new method of embedding watermark into colour image. The RGB image is converted to YCbCr and watermarked by using discrete wavelet transform (DWT). The luminance component Y of image is considered for embedding watermark. The performance of the proposed method can be evaluated by PSNR, SNR, MSE and NC for RED, BLUE and GREEN. Existing techniques have worked on the gray scale of image, we have taken results for RED, BLUE and GREEN separately[6]. Proposed technique results have shown that technique presented in this paper is very effective for watermarking and de watermarking authentication and also support more security and exact correlation between original watermark and extracted watermark.

2.5 Himanshu M. Parmar “Comparison of DCT and Wavelet based Image Compression Techniques” 2014 IJEDR | Volume 2, Issue 1 [ISSN: 2321-9939] [7]

Image compression approximately no reluctance. Through our approach of watermark embed and extraction in which wavelet as well as DCT domain is exploited, we can conclude that it is robust against the intentional compression attack as our target images are those that can be put on the internet with least possible defines as reducing the amount of data required to represent digital image. Transform coding, on the other hand, first transforms the image from its spatial domain representation to a different type of representation using some well-known transform and then codes the transformed values (coefficients). Image compression is urgently needed for very large medical or satellite images, both for reducing the storage requirements and for improving transmission efficiency [9].
3. SYSTEM MODELING

3.1 Watermark embedding and extracting process using wavelet transform

A digitally invisible watermark is embedded in a QR code image by means of wavelet transform. In the embedding process, a binary image, logo, is transformed into a corresponding watermark and then embedded into a selected sub band. Digital watermark is a pattern of bits inserted into a digital image, audio or video that identifies the copyright and authenticates information. The goal of watermark technique is to embed the secret information seamlessly hidden within into original message, which is robust against attacks. In recent years, some researchers have proposed the adoption of watermark techniques. The watermark can also be inserted in the original spatial domain of the image [18]. In the main disadvantage of spatial domain was that it easy to be hacked and attacked. In the proposed method embedded the copyright image into the original image using (N, N) secret sharing scheme. This method could resist contamination such as JPEG compression, resize and noise addition.

There are many techniques to embed the watermark into frequency domain of the original image. The techniques operating on a frequency domain use transformations such as Discrete Cosine Transform (DCT), Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) we will propose the blind watermarking algorithm by means of two-level discrete wavelet transform (DWT) embedded in a QR code image. Digital watermarking techniques can be classified into two categories with respect to operational domains, which are:

1. Spatial domain watermarking, the embedding process is done by directly modifying the pixel values.
2. Frequency domain watermarking, the embedding process is done by embedding the information in the transform space by modifying for example the frequency coefficients.

Nevertheless, most signal processing paradigms found in recent literature can be well characterized as the frequency domain operation. Moreover, several good perceptual models are developed in the frequency domain, with great successes reported. The process of embedding this watermark was performed on a QR code image on its frequency domain. The QR code image was first decomposed by a two-level two-dimensional wavelet transform. There were two steps in our algorithm: watermark embedding and watermark extraction.

<table>
<thead>
<tr>
<th></th>
<th>LL2</th>
<th>LH2</th>
<th>LH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Watermark Embedding

The step of embedding process are outlined as follows:

I. The watermark image was produced as a bit sequence of watermark S. The data and background values were set to 1 and -1, respectively.

II. A watermark was then embedded in subband LH2 or where N is the total number of pixels in the watermark image.

III. The pseudo-random sequence (P) whose each number can take a value either 1 or -1 was randomly generated with a secret key for embedding and extracting of the watermark[19].

The two-level DWT of MxM image t_i was computed for QR code image.

II. A watermark was then embedded in subband LH2 or where N is the total number of pixels in the watermark image.

III. The pseudo-random sequence (P) whose each number can take a value either 1 or -1 was randomly generated with a secret key for embedding and extracting of the watermark[19].

Step of QR code image

I. The two-level DWT of MxM image t_i was computed for QR code image.

II. A watermark was then embedded in sub band LH2 or HL2 or HH2. According to the rule
4. PERFORMANCE ANALYSIS

4.1. Evaluation of Normalize Correlation and Peak Signal to Noise Ratio

To evaluate the performance of the algorithm, a similar measurement between the original watermark S and the extract watermark S' was computed by using normalize correlation (NC). In addition, the quality of the watermarked video compared to original video was measured based on the Peak Signal to Noise Ratio (PSNR).

4.2 Reading

Extracted watermark with difference magnitude factors. All extracted watermark images contain some visual noise because of the watermark extracting process did not employed the original QR code image. In practices, the transmission of an image can be corrupted by unpredictable noise contaminated in the network communication. We therefore tested the robustness of our algorithm with some attacks such as Salt and Pepper noise, Gaussian noise, JPEG, and cutting.

![Figure 4.1](image_url) a) Original QR code Image (b) Watermark

![Figure 4.2](image_url) O/P Image For Extraction of Watermarking

<table>
<thead>
<tr>
<th>A</th>
<th>PSNR</th>
<th>NC</th>
<th>DECODE QR Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>47.1617</td>
<td>0.9826</td>
<td>✔</td>
</tr>
<tr>
<td>10</td>
<td>44.1514</td>
<td>0.9934</td>
<td>✔</td>
</tr>
<tr>
<td>15</td>
<td>42.3905</td>
<td>0.9961</td>
<td>✔</td>
</tr>
<tr>
<td>20</td>
<td>41.1411</td>
<td>0.9967</td>
<td>✔</td>
</tr>
<tr>
<td>25</td>
<td>40.1720</td>
<td>0.9975</td>
<td>✔</td>
</tr>
<tr>
<td>30</td>
<td>39.3802</td>
<td>0.9980</td>
<td>✔</td>
</tr>
</tbody>
</table>

Table 4.1 PSNR AND NC of QR Code Image
The Experimental results prove that the quality of the watermarked image is better. Furthermore, the extracted watermark can be easily identified.

The embedding process is presented in a LH, HL or HH sub band based on wavelet transform. The experimental results demonstrated that the algorithm can be recovering the watermark with an acceptable visual quality. The objective measures such as PSNR and NC are subject to magnitude factor. The extraction of the data by using wavelet transform is more efficient because we convert pixels in the form of wavelet transform which in the frequency domain. The data, video or audio extracted by using spatial domain contains small amount of noise (Salt and pepper noise, Gaussian noise) while in frequency domain (i.e. Wavelet transform) can be avoided by calculating PSNR (Peak signal to noise ratio) and NC (normalized correction).

The simulation results show that this algorithm is invisible and has good robustness for some common image processing operations. The current classical algorithm contains spatial domain algorithm and transformed domain algorithm. With the spatial domain algorithm, the embedding and the distilling of watermarking are finished in spatial domain, by amending directly or comparing the gray-level value or colour value

5. CONCLUSION

REFERENCES:

