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ABSTRACT: In this dissertation, we interpret a fuzzy differential equation by using seikkala derivative .We investigate 

the problem of finding a numerical approximation of solutions. Adams-fifth order Predictor-Corrector method and 

Milne’s fifth order Predictor –Corrector method are implemented and their error analysis which guarantees pointwise 

convergence is discussed. The methods applicability is illustrated by solving a first order fuzzy differential equation. 

Finally we compare the solutions obtained by Adams-fifth order Predictor-Corrector method and milne’s fifth order 

Predictor-Corrector method.  

INTRODUCTION  

The concept of fuzzy derivative was first introduced by S.L Chang. L.A Zadeh in [6] it was followed  up by  D.Dubois, H.Prade  

in [7].who defined and used the extension principle. The fuzzy differential equation and the initial value problem were regularly 

treated by O.Kaleva in [8] and by S.Seikkala in [5]. The numerical method for solving fuzzy differential equations is introduced 
by O.Kaleva in [8] by the standard Eular method and by authors in [1,2] by Taylor method. In this work we replace the fuzzy 

differential equation by its parametric form and then solve numerically the new system. Which consider the two classic ordinary 

differential equations with initial condition. 

 The structure of this chapter organizes as follows: In section 1.2 some basic definitions and results are brought. Milne’s 

fourth order predictor-corrector methods for solving fuzzy differential equations are proposed. Milne’s fourth order predictor-

corrector method Algorithm is discussed in section 3.3Two examples are presented  in section 2And conclusion in section 3 

1.1.Fuzzy sets: 

 The idea of fuzzy set was introduced by Lotfi Zadeh in 1960s as a means of handling uncertainity that is due to 

imprecision or vagueness rather than to randomness. Fuzzy sets were taken up with interests by engineers, computer scientists and 

operations researchers. While mathematicians have been involved with the development of fuzzy sets from the very beginning, it 

has really been in recent years only that fuzzy sets have started receiving serious consideration from a wider mathematical 
community. Many interesting mathematical problems are coming to the for and the mathematical foundations of the subject are 

firmly established and now it has emerged as an  independent branch of applied Fuzzy sets are considered with respect to a 

nonempty base set 𝑋 of elements of interest. The essential idea is that each element 𝑥 ∈ 𝑋 is assigned a membership grade 

𝑢 𝑥  taking values in  0,1 , with 𝑢 𝑥 = 0 corresponding to non-membership, 0 < 𝑢 𝑥 < 1 to partial membership, and 𝑢 𝑥 =
1 to full membership. According to Zadeh a fuzzy subset of 𝑋 is a nonempty subset  (𝑥,  𝑢 𝑥 ) ∶  𝑥 ∈ 𝑋  of 𝑋 ×  0,1  for some 

function 𝑢: 𝑋 →  0,1 . The function 𝑢 itself used for the fuzzy set. 

1.2. Definitions and Basic properties 

 Let 𝑃𝐾 𝑅𝑛   denote the family of nonempty compact convex substes of 𝑅𝑛 . Addition and   scalar multiplication in  

𝑃𝐾 𝑅𝑛   as usual. Let 𝐴 and 𝐵 be two nonempty bounded subsets of  𝑅𝑛  . The distance between 𝐴 and 𝐵 is defined by the 

Housdroff metric, 

 𝑑 𝐴, 𝐵 = 𝑚𝑎𝑥 𝑠𝑢𝑝
𝑎∈𝐴

𝑖𝑛𝑓
𝑏∈𝐵

  𝑎 − 𝑏 , 𝑠𝑢𝑝
𝑏∈𝐵

𝑖𝑛𝑓
𝑎∈𝐴

  

where .   denote the usual Euclidean norm in 𝑅𝑛 . Then it is clear that   𝑃𝐾 𝑅𝑛  ,𝑑  becomes a complete metric space. 

 We denote the Housdroff semimetric by 𝜌 𝐴, 𝐵 =
𝑠𝑢𝑝
𝑎𝜖𝐴

𝑖𝑛𝑓
𝑏𝜖𝐵

 𝑎 − 𝑏 .It is clear that 𝜌 𝐴, 𝐵 = 0 ⇔ 𝐴 ⊂ 𝐵 and 

𝜌 𝐴, 𝐶 ≤ 𝜌 𝐴, 𝐵 + 𝜌 𝐵, 𝐶 , where 𝐴, 𝐵, 𝐶 are nonempty bounded subsets of 𝑅𝑛  and 𝐵  denote the closure of 𝐵. 

 Also 𝑑 𝐴, 𝐵 = 𝑚𝑎𝑥 𝜌 𝐴, 𝐵 , 𝜌 𝐵, 𝐴   and 𝜌 𝐴, 𝐵 = 0 ⇔ 𝐴 = 𝐵 . 

A fuzzy subset of 𝑅𝑛  is defined in terms of a membership function which assigns. to each point 𝑥𝜖𝑅𝑛 ,a grade of membership in 

fuzzy set. Such a membership function 𝑢: 𝑅𝑛 → 𝐼 =  0,1  
is used to denote the corresponding fuzzy set. 
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 For each 𝛼𝜖 0,1 , the 𝛼-level set [𝑢]𝛼  of a fuzzy set 𝑢 is subset of points 𝑥𝜖𝑅𝑛  with membership grade 𝑢 𝑥  of atleast 

𝛼,that is 

    𝑢 𝛼 =  𝑥𝜖𝑅𝑛 : 𝑢 𝑥 ≥ 𝛼  

The support  𝑢 0of a fuzzy set is then defined as the union of all its level sets, that is, 

   𝑢 0 = ⋃
𝛼𝜖  0,1 

 𝑢 𝛼             . 

An inclusion property follows immediately from the above definitions. 

2.Adams method 

2.1 Convergence and stability 

 To integrate the system given in equation (12) from 𝑡0 a prefixed T> 𝑡0 the interval [𝑡0 , 𝑇]  will be replaced by a set of 

discrete equally spaced gird point 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 = 𝑇 which the exact solution (𝑦 𝑡, 𝛼 , 𝑦(𝑡, 𝛼)).The exact and 

approximate solutions at 𝑡𝑛 , 0 ≤ 𝑛 ≤ 𝑁 are denoted by 𝑦𝑛 𝑡, 𝛼 = 𝑦𝑛  𝑡, 𝛼 , 𝑦
𝑛

(𝑡, 𝛼)), and 𝑦𝑛 (t,𝛼) =

(𝑦𝑛  𝑡, 𝛼 , 𝑦
𝑛

(t,𝛼)),respectively.The grid points which the solution is calculated are 𝑡𝑛 = 𝑡0 + 𝑛ℎ, ℎ =
(𝑇−𝑡0)

𝑁
, 1 ≤ 𝑛 ≤ 𝑁. 

 From (11),the polygon curves 

  𝑦(𝑡, ℎ, 𝛼) =  [𝑡0
 , 𝑦0(𝛼)], [𝑡1,𝑦1(𝛼)], … , [𝑡𝑁,𝑦𝑁(𝛼)]} 

𝓌Are the Adams-Moulton approximates to 𝑦(𝑡, 𝛼) and 𝑦 𝑡, 𝛼 ,respectively,over the interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑁. The following lemmas 

will be applied to show convergence of these approximates,i.e. 

     Limℎ→0 𝑦  𝑡, ℎ, 𝛼 = 𝑦 (t,𝛼), 

     limℎ→0 𝑦  𝑡, ℎ, 𝛼 = 𝑦 𝑡, 𝛼  

 

Theroem 2.3 

   For arbitrary fixed 𝛼 :0≤ 𝛼 ≤ 1, the  Adams Moultan four step approximates of  converges to the exact  solution 𝑦 𝑡, 𝛼 , 𝑦(𝑡, 𝛼) 

for 𝑦, 𝑦 ∈ 𝐶5 𝑡0 , 𝑇 . 

Table 2..4 

𝛼 Adams-5 Exact solution Error in Adams-5 

    

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 
0.10 

2.106668505 

2.174625553 

2.242582602 

2.310539650 

2.378496699 

2.446453748 

2.514410796 

2.582367845 

2.650324893 
2.718281942 

3.024088534 

2.990110011 

2.956131488 

2.922152966 

2.888174443 

2.854195919 

2.820217397 

2.786238990 

2.752260466 
2.718281942 

3.024088534 

2.990110011 

2.956131488 

2.922152966 

2.888174443 

2.854195920 

2.820217398 

2.786238874 

2.752260351 
2.718281528 

8.7741× 10−8 

9.0571× 10−8 

9.3401× 10−8 

9.6231× 10−8 

9.9062× 10−8 

1.0189× 10−7 

1.0472× 10−7 

1.0755× 10−7 

1.1038× 10−7 

1.1321× 10−7 

1.2595× 10−7 

1.2453× 10−7 

1.2312× 10−7 

1.2171× 10−7 

1.2028× 10−7 

1.1887× 10−7 

1.1745× 10−7 

1.1604× 10−7 

1.1462× 10−7 

1.1321× 10−7 

    

3.Milne’s method. 

Definition 3.1. 

    An m-step method for solving the initial-value peoblem is one whose difference equation for finding the approximation 𝑦(𝑡𝑖+1)  

at the mesh point 𝑡𝑖+1 can be represented by the following equation: 

𝑦 𝑡𝑖+1 = 𝑎𝑚−1y(𝑡𝑖) + 𝑎𝑚−2y(𝑡𝑖−1) + ⋯ + 𝑎0y(𝑡𝑖+1−𝑚 )      (3.1) 
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               +ℎ 𝑏𝑚𝑓 𝑡𝑖+1 , 𝑦𝑖+1 + 𝑏𝑚−1𝑓 𝑡𝑖 , 𝑦𝑖 + ⋯+ 𝑏0𝑓 𝑡𝑖+1−𝑚 , 𝑦𝑖+1−𝑚   , 

For 𝑖 = 𝑚 − 1, 𝑚, … , 𝑁 − 1, such that 𝑎 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑁 = 𝑏. 

ℎ =
 𝑏−𝑎 

𝑁
= 𝑡𝑖+1 − 𝑡𝑖 , and 𝑎0 , 𝑎1 , … , 𝑎𝑚−1, 𝑏0, 𝑏1 ,… , 𝑏𝑚  are constants with the starting values 

𝑦0 = 𝛼0 , 𝑦1 = 𝛼1 , 𝑦2 = 𝛼2 , … , 𝑦𝑚−1 = 𝛼𝑚−1.  

When 𝑏𝑚 = 0,  the method is known as explicit,since (3.1) gives 𝑦𝑖+1 explicit in terms of previously determined values.When 

𝑏𝑚 ≠ 0, the method is know as implicit,since  𝑦𝑖+1 occurs on both sides of (3.1) and is specified only implicitly. 

With consideration definition 3.1, the multistep method is 

Milne’s explicit five-step method: 

𝑦0 = 𝛼0 , 𝑦1 = 𝛼1 , 𝑦2 = 𝛼2 , 𝑦3 = 𝛼3 , 𝑦4 = 𝛼4 

𝑦𝑖+1 = 𝑦𝑖−4 +
ℎ

144
 95𝑓 𝑡𝑖−4 , 𝑦𝑖−4 − 50𝑓 𝑡𝑖−3 , 𝑦𝑖−3 + 600𝑓 𝑡𝑖−2 , 𝑦𝑖−2 − 350𝑓 𝑡𝑖−1 , 𝑦𝑖−1 + 425𝑓 𝑡𝑖 , 𝑦𝑖  , 

Where 𝑖 = 4,5, … , 𝑁 − 1. 

Milne’s implicit four-step method: 

𝑦1 = 𝛼1 , 𝑦2 = 𝛼2 , 𝑦3 = 𝛼3 , 𝑦4 = 𝛼4, 

𝑦𝑖+4 = 𝑦𝑖 +
ℎ

90
[29𝑓 𝑡𝑖+1 , 𝑦𝑖+1 + 124𝑓(𝑡𝑖 ,𝑦𝑖) + 24𝑓 𝑡𝑖−1 , 𝑦𝑖−1 + 4𝑓 𝑡𝑖−2 , 𝑦𝑖−2  

−4𝑓(𝑡𝑖−1 , 𝑦𝑖−1)]. 

Where𝑖 = 4,5, … , 𝑁 − 1. 

Definition 3.2. Associated with the difference equation 

𝑦𝑖+1 = 𝑎𝑚−1𝑦𝑖 + 𝑎𝑚−2𝑦𝑖−1 + ⋯ + 𝑎0𝑦𝑖+1−𝑚 + ℎ𝐹(𝑡𝑖 , ℎ, 𝑦𝑖+1 , 𝑦𝑖 ,… , 𝑦𝑖+1−𝑚 ).    (3.2) 

𝑦0 = 𝛼, 𝑦1 = 𝛼1 , … , 𝑦𝑚−1 = 𝛼𝑚−1 , 

Is a polynomial,called the characteristic polynomial of the method given by  

𝑝 ⅄ = ⅄𝑚 − 𝑎𝑚−1⅄
𝑚−1 − 𝑎𝑚−2⅄

𝑚−2 − ⋯− 𝑎1⅄−𝑎0. 

If |⅄|≤ 1 for each 𝑖 = 1,2, … , 𝑚, and all roots with absolute value 1 are simple roots,then the difference method is said to satisfy 

the root condition. 

 

ALGORITHM: 3.3 

Fix 𝑘 ∈ 𝑧+.To approximate the solution  of following fuzzy initial value problem. 

𝑥𝑘
′ =𝑓(𝑡𝑘,𝑖 , 𝑥 𝑡𝑘,𝑖 , ⅄𝑘(𝑥𝑘 )) 

𝑦𝛼 𝑡𝑘,𝑖−1 = 𝛼0,𝑦
𝛼 𝑡𝑘,𝑖 = 𝛼1,𝑦

𝛼 𝑡𝑘,𝑖+1 = 𝛼2,𝑦
𝛼 𝑡𝑘,𝑖+2 = 𝛼3,𝑦

𝛼 𝑡𝑘,𝑖+3 = 𝛼4 

𝑦
𝛼
 𝑡𝑘,𝑖−1 = 𝛼0 , 𝑦

𝛼
 𝑡𝑘,𝑖 = 𝛼1 , 𝑦

𝛼
 𝑡𝑘,𝑖+1 = 𝛼2 , 𝑦

𝛼
 𝑡𝑘,𝑖+2 = 𝛼3 , 𝑦

𝛼
 𝑡𝑘,𝑖+3 = 𝛼4 . 

Positive integer 𝑁𝑘 is chosen. 

Step 1.Letℎ =
𝑡𝑘+1−𝑡𝑘

𝑁𝑘
. 

𝓌𝛼(𝑡𝑘,0)=𝛼0 , 𝓌𝛼(𝑡𝑘,1)=𝛼1 , 𝓌𝛼(𝑡𝑘,2)=𝛼2 , 𝓌𝛼(𝑡𝑘,3)=𝛼3 ,𝓌𝛼(𝑡𝑘,4)=𝛼4 , 

𝓌
𝛼
 𝑡𝑘,0 = 𝛼0 , 𝓌

𝛼
 𝑡𝑘,1 = 𝛼1 , 𝓌

𝛼
 𝑡𝑘,2 = 𝛼2 , 𝓌

𝛼
 𝑡𝑘,3 = 𝛼3 , 𝓌

𝛼
 𝑡𝑘,4 = 𝛼4 , 
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Step 2.Let𝑖 = 1, 

Step 3. Let 

𝓌 0 𝛼 𝑡𝑖+4 = 𝓌𝛼

+
ℎ

144
 95𝑓𝛼 𝑡𝑖−1 , 𝓌 𝑡𝑖−1  − 50𝑓

𝛼
 𝑡𝑖 , 𝓌 𝑡𝑖  + 600𝑓𝛼 𝑡𝑖+1 , 𝓌 𝑡𝑖+1  − 350𝑓

𝛼
 𝑡𝑖+2𝓌 𝑡𝑖+2  

+ 425𝑓𝛼 𝑡𝑖+3 , 𝓌 𝑡𝑖+3   . 

 

𝓌
 0 𝛼

 𝑡𝑖+4 = 𝓌
𝛼
 𝑡𝑖−1 +

ℎ

144
[95𝑓𝛼(𝑡𝑖−1 , 𝓌 𝑡𝑖−1 − 50𝑓

𝛼
 𝑡𝑖 , 𝓌 𝑡𝑖  +      600𝑓

𝛼
 𝑡𝑖+1 , 𝓌 𝑡𝑖+1  − 350𝑓𝛼 𝑡𝑖+2 , 𝓌 𝑡𝑖+2  +

   425𝑓
𝛼

(𝑡𝑖+3 , 𝓌(𝑡𝑖+3))]. 

Step 4.Let 𝑡𝑖+4 = 𝑡0 +  𝑖 + 4 ℎ. 

Step 5. Let 

 
 
 
 

 
 
 𝓌𝛼 𝑡𝑖+3 = 𝑦𝛼 𝑡𝑖+2 +

ℎ

90
[9𝑓𝛼 𝑡𝑖+3 , 𝓌 𝑡𝑖+3  + 124𝑓𝛼 (𝑡𝑖+2 , 𝓌 𝑡𝑖+2 

+24𝑓
𝛼
 𝑡𝑖+1 , 𝓌 𝑡𝑖+1  + 4𝑓𝛼 𝑡𝑖 , 𝓌 𝑡𝑖  − 𝑓

𝛼
(𝑡𝑖−1 , 𝓌 𝑡𝑖−1 )],

𝓌
𝛼
 𝑡𝑖+3 = 𝓌

𝛼
 𝑡𝑖+2 +

ℎ

90
[29𝑓

𝛼
 𝑡𝑖+3 , 𝓌 𝑡𝑖+3  + 124𝑓

𝛼
 𝑡𝑖+2 , 𝓌 𝑡𝑖+2  

+24𝑓𝛼 𝑡𝑖+1 , 𝓌 𝑡𝑖+1  + 4𝑓
𝛼
 𝑡𝑖 , 𝓌 𝑡𝑖  − 𝑓𝛼(𝑡𝑖−1 , 𝓌 𝑡𝑖−1 )].

  

 

Step 6.𝑖 = 𝑖 + 1 

Step 7. If 𝑖 ≤ 𝑁 − 4 go to step 3. 

Step 8. Algorithm will be completed and (𝓌𝛼(𝑡𝑘+1),𝓌
𝛼
 𝑡𝑘+1  approximates real value of (𝑥𝛼 𝑡𝑘+1 , 𝑥

𝛼
 𝑡𝑘+1 . 

Theorem 3.3For arbitrary fixed 𝛼 ∶ 0 ≤ 𝛼 ≤ 1 , the Milne’s expilicit four step approximates of (4.9) converges to the exact 

solution 𝑦(t,𝛼), 𝑦 𝑡, 𝛼 𝑓𝑜𝑟 𝑦,𝑦 ∈ 𝑐5 𝑡0 , 𝑇 . 

Example: 3.4   Consider the fuzzy initial value problem, 

  𝑦 ′ 𝑡 = 𝑦 𝑡 ,        𝑡 ∈ 𝐼 =  0,1 , 

  𝑦 0 =  0.75 + 0.25𝛼, 1.125 − 0.125𝛼 ,      0 < 𝛼 < 1                                       

    𝑦 0,1 =   0.75 + 0.25𝛼 𝑒0.1 ,  1.125 − 0.125𝛼 𝑒0.1 , 

   

𝑦 0,2 =   0.75 + 0.25𝛼 𝑒0.2 ,  1.125 − 0.125𝛼 𝑒0.2 , 

    𝑦 0,3 =   0.75 + 0.25𝛼 𝑒0.3 ,  1.125 − 0.125𝛼 𝑒0.3 , 

    𝑦 0,4 =   0.75 + 0.25𝛼 𝑒0.4 ,  1.125 − 0.125𝛼 𝑒0.4 , 

The exact solution at 𝑡 = 1 is given by 

   𝑌 1; 𝛼 =   0.75 + 0.25𝛼 𝑒, &&&         1.125 − 0.125𝛼 𝑒 ,      0 < 𝛼 < 1. 

by using the Milne’s-fifth order predictor-corrector method the following results are obtained: 

          

 

Table 3.5 
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𝛼 Milne’s-5 Exact solution Error in Milne’s-5 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 
0.7 

0.8 

0.9 

0.10 

0.856507462 

0.881136735 

0.911766007 

0.939395280 

0.967024553 

0.994653826 
1.022283099 

1.049912372 

1.077541645 

1.105170918 

1.229502646 

1.215688010 

1.201873373 

1.188058737 

1.174244100 

1.160429464 
1.146614828 

1.132800191 

1.118985555 

1.103170918 

 

1.229502646 

1.215688010 

1.201873373 

1.188058737 

1.174244100 

1.160429464 
1.146614828 

1.132800191 

1.118985555 

1.103170918 

 

-2.5646e-14 

-2.6423e-14 

-2.7311e-14 

-2.8089e-14 

-2.8977e-14 

-2.9754e-14 
-3.0420e-14 

-3.1530e-14 

-3.2196e-14 

-3.3085e-14 

 

-2.5646e-14 

-2.6423e-14 

-2.7311e-14 

-2.8089e-14 

-2.8977e-14 

-2.9754e-14 
-3.0420e-14 

-3.1530e-14 

-3.2196e-14 

-3.3085e-14 

 

 

CONCLUSION : 

In this chapter the iterative solutions of for finding the numerical solution of fuzzy differential equations are provided. 

Comparison of solutions of  table 2.4 and 3.5 shows that the method proposed here gives better solution of  Milne’s method. 
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