
ISSN: 2455-2631                                                               © April 2017 IJSDR | Volume 2, Issue 4 

 

IJSDR1704092 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 480 

 

THE GENERALIZED HYERS –ULAM –RASSIAS 

STABILITY OF QUADRATIC FUNCTIONAL 

EQUATIONS WITH TWO VARIABLES 
 

PARIMALA.P.M 

 

ASSISTANT PROFESSOR 

KG COLLEGE OF ARTS AND SCIENCE, COIMBATORE 

 

ABSTRACT: In this paper,we consider  functional 

equations involving a two variables examine some of 

these equations in greater detail and we study 

applications of  cauchy’s equation.using the  generalized 

hyers-ulam-rassias stability of quaradic functional 

equations finding the solution of two variables(quaradic 

functional equations) 

1.INTRODUCTION 
We achieve the general solution and the 

generalized Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias 

stabilities for quadratic functional equations 

𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 

=  
𝑏 𝑎 + 𝑏 

2
 𝑓 𝑥 + 𝑦 

+  
𝑏 𝑎 + 𝑏 

2
 𝑓 𝑥 − 𝑦 + 

               + 2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓(𝑥) +
 𝑏2 − 𝑎𝑏 𝑓 𝑦                      (1) 

where 𝑎, 𝑏 are nonzero fixed integers with 𝑏 ≠ ±𝑎, −3𝑎, 
and 

𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 = 2𝑎2𝑓 𝑥 + 2𝑏2𝑓(𝑦)                                       

                                                                                 (2) 

for fixed integers 𝑎, 𝑏 with 𝑎, 𝑏 ≠ 0 and 𝑎 ± 𝑏 ≠ 0. 
In 1940, Ulam[19] proposed the stability problem 

for functional equations in the following question regarding 

to the stability of group homomorphism. 

Let (𝐺1,.) be a group and let (𝐺2, ∗)   be a metric 

group with the metric 𝑑 (., . ). Given  ∈> 0, there exist a 

𝛿 > 0, such that if a mapping 𝑕: 𝐺1 → 𝐺2 satisfies  the 

inequality             

𝑑(𝑕(𝑥. 𝑦), 𝑕(𝑥) ∗ 𝑕(𝑦)) < 𝛿, 
for all 𝑥, 𝑦 ∈ 𝐺1 , then there exists a homomorphism 

𝐻:𝐺1 → 𝐺2with  

𝑑(𝑕(𝑥),𝐻(𝑥)) <∈, for all 𝑥 ∈ 𝐺1 

In other words, under the conditions does a 

homomorphism exist near an approximately homomorphism 

generally, the concept of stability for a functional equation 

comes up when we the functional equation is replaced by an 

inequality which acts as a perturbation of that equation. 

Hyers [7] answered to the question affirmatively  in 1941  

so if 𝑓: 𝐸 → 𝐸 such that  
 𝑓 𝑥 + 𝑦 − 𝑓 𝑥 − 𝑓(𝑦) ≤ 𝛿,  for all 𝑥, 𝑦 ∈ 𝐸,  (3) 

and for some 𝛿 > 0 where E,E are Banach spaces; then  

there exists a unique additive mapping 𝑇: 𝐸 →  𝐸 such that 
 𝑓 𝑥 − 𝑇(𝑥) ≤ 𝛿, for all 𝑥 ∈ 𝐸.  (4) 

However, if 𝑓(𝑡𝑥) is a continuous mapping at 

𝑡 ∈ ℝ for each  fixed 𝑥 ∈ 𝐸then T is linear. In 1950, Hyers’s 

theorem was generalized by Aoki for additive mappings and 

independently, in 1978, by Rassias [15] for linear mappings 

considering the Cauchy difference  controlled  by sum of 

powers  of norms. This stability phenomenon is called the 

Hyers-Ulam-Rassias stability.  

On the other hand, Rassias [15,16] considered the 

Cauchy difference controlled by a product of different 

powers of norm. However, there was a singular case; for 

this singularity a counterexample was given by Gavruta. 

This stability phenomenon is called the Ulam-Gavruta-

Rassias stability. In addition, J.M. Rassias considered the 
mixed product–sum of powers of norms control function. 

This stability is called JM Rassias mixed product-sum 

stability. 

The functional equation 

𝑓 𝑥 + 𝑦 + 𝑓 𝑥 − 𝑦 = 2𝑓 𝑥 + 2𝑓 𝑦 ,  (5) 

is  related to symmetric biadditive function and is called a 

quadratic functional equation naturally, and every solution 

of the  quadratic  equation (3.1.3) is said to be a quadratic 

function. It is well known that a function 𝑓 between two real 

vector spaces is quadratic if and only if there exists a unique 

symmetric biadditive function 𝐵 such that    𝑓(𝑥) = 𝐵(𝑥, 𝑥) 

for all 𝑥 where  

𝐵 𝑥, 𝑦 =
1

4
 𝑓 𝑥 + 𝑦 − 𝑓 𝑥 − 𝑦   

(see [17]). Skof proved Hyers-Ulam-Rassias stability 

problem for quadratic functional equation for a class of 

functions 𝑓: 𝐴 − 𝐵, where A is normed space and B is a 
Banach space, (see [17]. Cholewa [3] noticed that Skof’s 

theorem is still true if relevant domain  A alters to an 

abelian group. In 1992, Czerqik proved the Hyers-Ulam-

Rassias stability of (1.3), Grabiec [6] generalized the result 

mentioned above. 

Throughout this chapter, assume that 𝑎, 𝑏 are fixed 

integers with 𝑎, 𝑏 ≠ 0, we introduce the following  

functional equations, which are different from  

𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 =
𝑏 𝑎+𝑏 

2
𝑓 𝑥 + 𝑦 +

𝑏 𝑎+𝑏 

2
𝑓 𝑥 − 𝑦 +  2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓 𝑥 +

 𝑏2 − 𝑎𝑏 𝑓 𝑦 ,               (6) 

where 𝑏 ≠ ±𝑎, −3𝑎, and (1.3)  

𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 = 2𝑎2𝑓 𝑥 + 2𝑏2𝑓 𝑦 ,  (7)  

where 𝑏 ≠ ±𝑎. 

1.1 Banach Space 
 A Banach space  isa vector space X over the field  

R of real numbers,  which is equipped with a norm and 

which is complete with every Cauchy sequence, {𝑥𝑛 } in X, 

there exists an element 𝑥 in X such that  

lim
𝑛→∞

𝑋𝑛 = 𝑥, 

(or equivalently)  
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lim
𝑛→∞

 𝑥𝑛 − 𝑥 𝑥 = 0. 

 The vector  space structure allows one to relate the 

behaviour of Cauchy sequences to that of converging series 

of vectors. A normed space X  is a banach space. If and only 

if each absolutely convergent series  X converges.  

  𝑉𝑛 𝑥 < ∞   =>

∞

𝑛=1

 𝑉𝑛

∞

𝑛=1

 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑖𝑛  𝑋. 

 Completeness of a normed space preserved if the 

given norm is replaced by an equivalent  one.  

 All norms on a finite – dimensional vector space 

are equivalent. Every finite – dimensional normed space 

over R or C is a banach space.  

1.2. Solution of (1.5), (1.6) 

 Let X and Y be real vector spaces. We here present 

the general solution of (1.5), (1.6). 

Theorem 1.2.1 

 A function 𝑓: 𝑋 → 𝑌 satisfies the functional 

equation (1.3) if and only if 𝑓: 𝑋 → 𝑌 satisfies the functional 
equation (1.5). Therefore, every solution of functional 

equation (1.5) is also a quadratic function.   

Proof. 

 Let 𝑓 satisfy the functional equation (1.3). Putting 

𝑥 = 𝑦 = 0 in (1.3), we get 𝑓(0) = 0. Set 𝑥 = 0 in (1.3) to 

get 𝑓(−𝑦) = 𝑓(𝑦). Letting 𝑦 = 𝑥 𝑎𝑛𝑑 𝑦 = 2𝑥 in (1.3), 

respectively, we obtain that 𝑓(2𝑥) = 4𝑓(𝑥) and 𝑓(3𝑥) =
9𝑓(𝑥) for all 𝑥 ∈ 𝑋. By induction, we lead to 𝑓(𝑘𝑥) =
𝑘 2𝑓(𝑥) for all positive integers 𝑘. Replacing 𝑥 and 𝑦 by 

2𝑥 + 𝑦 and 2𝑥 − 𝑦 in (1.3), respectively, gives 

𝑓 2𝑥 + 𝑦 + 𝑓 2𝑥 − 𝑦 = 8𝑓 𝑥 + 2𝑓 𝑦  for all 𝑥, 𝑦 ∈ 𝑋.   (2.1) 

Using (1.3) and (1.2), we lead to 

𝑓 2𝑥 + 𝑦 + 𝑓 2𝑥 − 𝑦 = 2𝑓 𝑥 + 𝑦 + 2𝑓 𝑥 − 𝑦 +
4𝑓 𝑥 − 2𝑓(𝑦) (1.2.2)  

for all 𝑥, 𝑦 ∈ 𝑋. Suppose that 𝑘 ≠ 0 is a fixed  integer by 

using (1.2.2), we get 𝑘𝑓 +𝑦 + 𝑘𝑓 −𝑦 − 2𝑘𝑓 𝑥 −
2𝑘𝑓 𝑦 = 0for all 𝑥, 𝑦 𝜖 𝑋. (1.2.3)  

get Using (1.2.2) and (1.2.3) we obtain 

 𝑓 2𝑥 + 𝑦 + 𝑓 2𝑥 − 𝑦 =  2 + 𝑘 𝑓 𝑥 + 𝑦 +
 2 + 𝑘 𝑓 𝑥 − 𝑦  +2 2 − 𝑘 𝑓 𝑥 − 2 1 + 𝑘 𝑓(𝑦) (1.2.4)  

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑥 and y by 3𝑥 + 𝑦 and 3𝑥 − 𝑦 in 

(1.3), respectively, then using (1.3) and (2.3), we have 

 𝑓 3𝑥 + 𝑦 + 𝑓 3𝑥 − 𝑦 =  3 + 𝑘 𝑓 𝑥 + 𝑦 +
 3 + 𝑘 𝑓 𝑥 − 𝑦 + 2 6 − 𝑘 𝑓 𝑥 − 2 2 + 𝑘 𝑓(𝑦) for all 

𝑥, 𝑦 ∈ 𝑋.   (1.2.5)  

By using the above method, by  

𝑓 𝑎𝑥 + 𝑦 + 𝑓 𝑎𝑥 − 𝑦 
=  𝑎 + 𝑘 𝑓 𝑥 + 𝑦 +  𝑎 + 𝑘 𝑓 𝑥 − 𝑦  

                      +2 𝑎2 − 𝑎 − 𝑘 𝑓 𝑥 − 2 𝑎1 𝑓(𝑦) 

for all 𝑥, 𝑦 ∈ 𝑋                                   (1.2.6) 

induction, we infer that and each positive integer 𝑎 ≥ 1. 

for a negative integer 𝑎 ≤ −1, replacing 𝑎 by – 𝑎 one can 

easily prove the validity of (2.6). Therefore (1.2.3) implies 

(1.2.6) for any integer 𝑎 ≠ 0. First,   

𝑓 𝑏𝑥 + 𝑦 + 𝑓 𝑏𝑥 − 𝑦 =  𝑏 + 𝑘 𝑓 𝑥 + 𝑦 +
 𝑏 + 𝑘 𝑓(𝑥 − 𝑦) + 2 𝑏2 − 𝑏 − 𝑘 𝑓 𝑥 − 2 𝑏 + 𝑘 −
1 𝑓(𝑦)                              (1.2.7)  
it is noted that (1.2.6) also implies the following equation 

for all integers  𝑏 ≠ 0. Setting 𝑦 = 0 in (1.2.7) gives 

𝑓(𝑏𝑥) = 𝑏2𝑓(𝑥). Substituting 𝑦 with by into (1.2.7), one 
gets 
 𝑏 + 𝑘 𝑓 𝑥 + 𝑏𝑦 +  𝑏 + 𝑘 𝑓 𝑥 − 𝑏𝑦 

= 𝑏2𝑓 𝑥 + 𝑦 + 𝑏2𝑓(𝑥 − 𝑦) 

 −2 𝑏2 − 𝑏 − 𝑘 𝑓 𝑥 + 2𝑏2 𝑏 + 𝑘 − 1 𝑓(𝑦)for  

all 𝑥, 𝑦 ∈ 𝑋 (1.2.8) 

Replacing 𝑦 by in (1.2.6).  We observe that 

𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 
=  𝑎 + 𝑘 𝑓 𝑥 + 𝑏𝑦 
+  𝑎 + 𝑘 𝑓 𝑥 − 𝑏𝑦  

 +2 𝑎2 − 𝑎 − 𝑘 𝑓 𝑥 − 2 𝑎 + 𝑘 − 1 𝑓(𝑏𝑦)for all 

𝑥, 𝑦 ∈ 𝑋                                                                  (1.2.9) 

 Hence, according to (1.2.8) and (1.2.9), we get  

 𝑏 + 𝑘 𝑓 𝑎𝑥 + 𝑏𝑦 +  𝑏 + 𝑘 𝑓 𝑎𝑥 − 𝑏𝑦 = 𝑏2 𝑎 +
𝑘 𝑓 𝑥 + 𝑦 + 𝑏2 𝑎 + 𝑘 𝑓 𝑥 − 𝑦 + 2 𝑎2 𝑏 + 𝑘 −

𝑏2 𝑎 + 𝑘  𝑓 𝑥 − 2𝑏2 𝑎 − 𝑏 𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑋.    (2.10)  

 In particular, if we substitute 𝑘 = 𝑏 in (1.2.10) and  

dividing  it by 2𝑏, we conclude  that 𝑓 satisfies  (1.2.5) 

 Let f satisfy the functional equation (1.2.5), for  

nonzero  fixed  integers 𝑎, 𝑏 with 𝑏 ≠ ±𝑎,−3𝑎. Putting 

𝑥 = 𝑦 = 0 in  (1.2.5), we get  

  (2𝑎2 − 𝑏𝑎 + 𝑏2 − 2)𝑓(0) = 0,    (2.11) 
 So

  2𝑎 −
𝑏+ 16−7𝑏2

2
  𝑎 −

𝑏− 16−7𝑏2

4
 𝑓 0 = 0,  (2.12)  

but since  𝑎, 𝑏 ≠ 0 and 𝑏 ≠ ±𝑎,−3𝑎, 
therefore 𝑓 0 = 0. Setting  𝑦 = 0 in (1.5) gives 𝑓 𝑎𝑥 =
𝑎2𝑓(𝑥) for all 𝑥 ∈ 𝑋. Letting 𝑦 = −𝑦 in (1.5), we get 

𝑓 𝑎𝑥 − 𝑏𝑦 + 𝑓 𝑎𝑥 + 𝑏𝑦 

=
𝑏 𝑎 + 𝑏 

2
𝑓 𝑥 − 𝑦 +

𝑏 𝑎 + 𝑏 

2
𝑓(𝑥

+ 𝑦) 

         +(2𝑎2 − 𝑎𝑏 − 𝑏2)𝑓(𝑥) + (𝑏2 −

𝑎𝑏)𝑓(−𝑦) for all  𝑥, 𝑦 ∈ 𝑋.  (2.13)  
  

 If  we compare (1.5) with (2.13), then  since 

𝑎, 𝑏 ≠ 0 and  𝑏 ≠ ±𝑎,−3𝑎, we conclude that 𝑓 −𝑦 =
𝑓(𝑦) for all 𝑦 ∈ 𝑋. Letting 𝑥 = 0 in  (1.5) and using  the 

evenness of 𝑓 give 𝑓 𝑏𝑦 = 𝑏2𝑓(𝑦) for all 𝑦 ∈ 𝑋. 
Therefore for all x∈ 𝑋, we get 𝑓 𝑎𝑏𝑥 = 𝑎2𝑏2𝑓 𝑥 . 
Replacing  𝑥 and 𝑦 by 𝑏𝑥 and 𝑎𝑦 in (1.5), respectively, we 

have  

𝑎2𝑏2𝑓 𝑥 + 𝑦 + 𝑎2𝑏2𝑓 𝑥 − 𝑦 

=
𝑏 𝑎 + 𝑏 

2
𝑓 𝑏𝑥 + 𝑎𝑦 

+
𝑏 𝑎 + 𝑏 

2
𝑓 𝑏𝑥 − 𝑎𝑦  

  +𝑏2 2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓 𝑥 +

𝑎2 𝑏2 − 𝑎𝑏 𝑓(𝑦)                                           

(1.2.14) 

for all  𝑥, 𝑦 ∈ 𝑋. On the other hand, if we interchange 𝑥 with 

𝑦 in 

𝑓 𝑎𝑦 + 𝑏𝑥 + 𝑓 𝑎𝑦 − 𝑏𝑥 

=
𝑏 𝑎 + 𝑏 

2
𝑓 𝑦 + 𝑥 +

𝑏 𝑎 + 𝑏 

2
𝑓(−𝑥) 

         + 2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓 𝑦 +  𝑏2 − 𝑎𝑏 𝑓(𝑥)  

for all  𝑥, 𝑦 ∈ 𝑋.     (1.2.15) 

(1.2.5), we obtain but since 𝑓 is even, it follows  

𝑓 𝑏𝑥 + 𝑎𝑦 + 𝑓 𝑏𝑥 − 𝑎𝑦 

=
𝑏 𝑎 + 𝑏 

2
𝑓 𝑥 + 𝑦 +

𝑏 𝑎 + 𝑏 

2
𝑓(−𝑦) 

 + 𝑏2 − 𝑎𝑏 𝑓 𝑥 +  2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓(𝑦)    for 

all 𝑥, 𝑦 ∈ 𝑋.    (1.2.16)  
Hence, according to (1.2.14) and from (1.2.15) that   
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    𝑎2𝑏2𝑓 𝑥 + 𝑦 + 𝑎2𝑏2𝑓 𝑥 − 𝑦 

=
𝑏 𝑎 + 𝑏 

2
[
𝑏 𝑎 + 𝑏 

2
(𝑓 𝑥 + 𝑦 

+ 𝑓 𝑥 − 𝑦 ) 

  + 𝑏2 − 𝑎𝑏 𝑓 𝑥 +  2𝑎2 − 𝑎𝑏 − 𝑓(𝑦)]    

  +𝑏2 2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓 𝑥 +
𝑎2 𝑏2 − 𝑎𝑏 𝑓(𝑦)                                 (1.2.17) 

for all 𝑥, 𝑦 ∈ 𝑋. So from (1.2.17) 

𝑏2

4
(4𝑎2 −  𝑎 + 𝑏)2  𝑓 𝑥 + 𝑦 + 𝑓 𝑥 − 𝑦  

=
𝑏2

2
 3𝑎2 − 2𝑎𝑏 − 𝑏2 𝑓(𝑥) 

 +
𝑏2

2
 3𝑎2 − 2𝑎𝑏 − 𝑏2 𝑓(𝑦)      (2.18) 

we have (2.16), we obtain that for all 𝑥, 𝑦 ∈ 𝑋. But since 

𝑎, 𝑏 ≠ 0 and 𝑏 ≠ ±𝑎, −3𝑎, we conclude that      

 𝑓 𝑥 + 𝑦 + 𝑓 𝑥 − 𝑦 = 2𝑓 𝑥 + 2𝑓 𝑦 for all  

𝑥, 𝑦 ∈ 𝑋.               (1.2.19) 

Therefore, 𝑓 satisfies (1.2.3) 

Theorem 1.2.2 

 A function 𝑓: 𝑋 → 𝑌 satisfies the functional 

equation (1.1.3) if and only if 𝑓: 𝑋 → 𝑌 satisfies the 

functional equation (1..1.6). Therefore, every  solution of 
functional equation(1.1.6) is also a quadratic function.  

Proof.If  𝑓 satisfies the functional equation (1.2.3), then 𝑓 

satisfies the functional equation (1.2.5). Now  combining 

(1.1.3) with (1.1.5), we have 

𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 

=
𝑏 𝑎 + 𝑏 

2
 2𝑓 𝑥 + 2𝑓 𝑦  

+  2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓 𝑥  

 + 𝑏2 − 𝑎𝑏 𝑓(𝑦)  for all 𝑥, 𝑦 ∈ 𝑋.     (2.20) 

 So from (1.2.20), we conclude  that 𝑓 satisfies 

(1.1.6). Let 𝑓 satisfy the functional equation (1.1.6) for fixed 

integers 𝑎, 𝑏 with 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑎 ± 𝑏 ≠ 0. Putting 

𝑥 = 𝑦 = 0 in (1.6), we get  2 𝑎2 + 𝑏2 − 2 𝑓 0 = 0, and 

since𝑎 ≠ 0, 𝑏 ≠ 0, therefore 𝑓 0 = 0. Setting 𝑦 = 0 in 

(1.1.6) gives 𝑓 𝑎𝑥 = 𝑎2𝑓(𝑥) for all  𝑥 ∈ 𝑋. Letting 

𝑦 ≔ −𝑦 in (1.1.6), we have  

𝑓 𝑎𝑥 − 𝑏𝑦 + 𝑓 𝑎𝑥 + 𝑏𝑦 = 2𝑎2𝑓 𝑥 + 2𝑏2𝑓 −𝑦  for all 

𝑥, 𝑦 ∈ 𝑋.        (1.2.21) 

 If we  compare (1.2.6) with (1.2.21), then since 

𝑎, 𝑏 ≠ 0 and  𝑎 ± 𝑏 ≠ 0, we obtain that 𝑓(−𝑦) = 𝑓(𝑦) for 

all  𝑦 ∈ 𝑋. Letting 𝑥 = 0 in (1.2.6) and using the evenness 

of 𝑓 gives 𝑓(𝑏𝑦)  = 𝑏2𝑓(𝑦) for all 𝑦 ∈ 𝑋. Therefore for 

𝑥 ∈ 𝑋, we get 𝑓 𝑎𝑏𝑥 = 𝑎2𝑏2𝑓 𝑥 . Replacing 𝑥 and 𝑦 by 

𝑏𝑥  and 𝑎𝑦 in (1.6), respectively, we have  

𝑓 𝑎𝑏𝑥 − 𝑎𝑏𝑦 + 𝑓 𝑎𝑏𝑥 + 𝑎𝑏𝑦 = 2𝑎2𝑓 𝑏𝑥 +
2𝑏2𝑓(𝑎𝑦)for all 𝑥, 𝑦 ∈ 𝑋. (2.22) 

Now, by using 𝑓 𝑎𝑥 = 𝑎2𝑓 𝑥 , 𝑓 𝑏𝑥 = 𝑏2𝑓(𝑥)and 

𝑓 𝑎𝑏𝑥 = 𝑎2𝑏2𝑓 𝑥 , it follows from (2.22) that  

 𝑓 𝑥 + 𝑦 + 𝑓 𝑥 − 𝑦 = 2𝑓 𝑥 + 2𝑓(𝑦) for all 

𝑥, 𝑦 ∈ 𝑋.           (1.2.23) 

Which completes the proof of the theorem.  

Corollary 2.3 (Proposition 2.1). A function 𝑓: 𝑋 → 𝑌 
satisfies the following functional equation: 

 𝑓 𝑎𝑥 + 𝑦 + 𝑓 𝑎𝑥 − 𝑦 = 2𝑎2𝑓 𝑥 + 2𝑓(𝑦)for 

all 𝑥, 𝑦 ∈ 𝑋.  (1.2.24) 

If and only if 𝑓: 𝑋 → 𝑌 satisfies the functional equation (1.3) 

for all 𝑥, 𝑦 ∈ 𝑋. 

Proof. Assume that b=1 in functional equation (1.1.6) and 

apply Theorem (.2.2).  

3.3. Stability  

 We now investigate the generalized Hyers-Ulam-

Rassias and Ulam-Gavruta-Rassias stabilities problem for 

functional  equations (1.5), (1.6). From this point 𝑛, let 𝑋 be 

a real vector and let 𝑌 be a Banach space. Before taking up 
the main subject, we define he difference operator  

∆𝑓 𝑥, 𝑦 = 𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 

−
𝑏 𝑎 + 𝑏 

2
𝑓 𝑥 + 𝑦 

−
𝑏 𝑎 + 𝑏 

2
𝑓 𝑥 − 𝑦  

 − 2𝑎2 − 𝑎𝑏 − 𝑏2 𝑓 𝑥 −  𝑏2 − 𝑎𝑏 𝑓(𝑦)>∆𝑓 : 𝑋 ×

𝑋 → 𝑌 by (3.1) 

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎, 𝑏 fixed integers such that 𝑎, 𝑏 ≠ 0 

and 𝑎 ± 𝑏 ≠ 0  where 𝑓: 𝑋 → 𝑌 is a given function.  

𝜑  𝑥 =  
1

𝑎2𝑖𝑗
𝜑 𝑎𝑖𝑗 𝑥, 0 < ∞

∞

𝑖=
1−𝑗

2

 

lim
𝑛→∞

1

𝑎2𝑛𝑗
𝜑(𝑎𝑛𝑗 𝑥, 𝑎𝑛𝑗 𝑦)

= 0                                                                       (3.2)     
Theorem 3.3.1 

 Let 𝑗 ∈ {−1,1} be fixed, and let 𝜑:𝑋 × 𝑋 → [0,∞) 

be a function such that        

for all 𝑥, 𝑦 ∈ 𝑋. Suppose that 𝑓:𝑋 → 𝑌 be a function 

satisfies    

   ∆𝑓 𝑥, 𝑦  ≤ 𝜑 𝑥, 𝑦 for all 𝑥, 𝑦 ∈ 𝑋.    (3.4)  

Furthermore, assume that 𝑓 0 = 0 in (3.3.4) for the case 

j=1. Then there exists a unique quadratic function  𝑄:𝑋 → 𝑌 

such that  

  𝑓 𝑥 − 𝑄(𝑥) ≤
1

2𝑎1+𝑗 𝜑 (
𝑥

𝑎(1−𝑗)/2),     for all 𝑥 ∈ 𝑋.  (3.5)  

Proof. For 𝑗 = 1, putting 𝑦 = 0 in (3.4), we have  
 2𝑓 𝑎𝑥 − 2𝑎2𝑓(𝑥) ≤ 𝜑(𝑥, 0) for all 𝑥 ∈ 𝑋.     (3.6) 

 So  𝑓 𝑥 −
1

𝑎2 𝑓(𝑎𝑥) ≤
1

2𝑎2 𝜑(𝑥, 0) for all 𝑥 ∈ 𝑋. 

  (3.7) 

Replacing 𝑥 by 𝑎𝑥 in (3.3.7) and dividing  by 𝑎2 and 
summing the resulting inequality with (3.7), we get  

  𝑓 𝑥 −
1

𝑎4 𝑓(𝑎2𝑥)  ≤
1

2𝑎2
 𝜑 𝑥, 0 +

𝜑 𝑎𝑥 ,0 

𝑎2
  for 

all 𝑥 ∈ 𝑋.  (3.8) 

Hence  

 
1

𝑎2𝑘
𝑓 𝑎𝑘𝑥 −

1

𝑎2𝑚
𝑓(𝑎𝑚𝑥) ≤

1

2𝑎2
 

1

𝑎2𝑖
𝜑 𝑎𝑖𝑥, 0 

𝑚−1

𝑖=𝑘

 

nonnegative integers 𝑚 and 𝑘 with 𝑚 > 𝑘 and for all 𝑥 ∈ 𝑋. 

It follows from (3.2) and (3.9) that the sequence 

{(1/𝑎2𝑛 )𝑓(𝑎𝑛𝑥)} is a Cauchy sequence for all 𝑥 ∈ 𝑋. Since 

Y is complete, the sequence {(1/𝑎2)𝑓(𝑎𝑛𝑥)} converges. So 

one can define the function 𝑄:𝑋 → 𝑌 by  

             𝑄 𝑥 = lim
𝑛→∞

1

𝑎2𝑛
𝑓 𝑎𝑛𝑥 for afor all 𝑥

∈ 𝑋                                                    (3.10) 

for all  𝑥 ∈ 𝑋. By (3.3.3) for j=1 and (3.3.4)      

 ∆𝑄(𝑥, 𝑦) = lim
𝑛→∞

1

𝑎2𝑛
 ∆𝑓(𝑎𝑛𝑥, 𝑎𝑛𝑦) 

≤ lim
𝑛→∞

1

𝑎2𝑛
𝜑 𝑎𝑛𝑥, 𝑎𝑛𝑦 = 0        (3.11) 

for all 𝑥, 𝑦 ∈ 𝑋. So ∆𝑄 𝑥, 𝑦 = 0. By Theorem (2.1), the 

function 𝑄:𝑋 → 𝑌 is quadratic. Moreover, letting 𝑘 = 0 and 

passing the limit 𝑚 → ∞ in (3.9), we get the inequality (3.5) 

for  𝑗 = 1.  

 

(3.9) 
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Now, let 𝑄:𝑋 → 𝑌 be another quadratic function satisfying 

(.1.5) and (3.5).  

Then we have  

 𝑄 𝑥 − 𝑄(𝑥) =
1

𝑎2𝑛
 𝑄 𝑎𝑛𝑥 − 𝑄 𝑎𝑛𝑥   

  ≤
1

𝑎2𝑛 ( 𝑄 𝑎𝑛𝑥 − 𝑓 𝑎𝑛𝑥  +

 𝑄 𝑎𝑛𝑥 − 𝑓 𝑎𝑛𝑥  )(3.12)  

  ≤
1

𝑎2𝑎2𝑛
𝜑  𝑎𝑛𝑥, 0 ,   

which tends to zero as 𝑛 → ∞ for all 𝑥 ∈ 𝑋. So we can 

conclude that  𝑄 𝑥 = 𝑄(𝑥) for all 𝑥 ∈ 𝑋. This proves the 

uniqueness of Q.  

Also, for 𝑗 = −1, it follows from (3.3.6) that 

  𝑓 𝑥 − 𝑎2𝑓(
𝑥

𝑎
) ≤

1

2
𝜑(

𝑥

𝑎
, 0) for all 𝑥 ∈ 𝑋.    (3.13)  

Hence  

 𝑎2𝑘(𝑓  
𝑥

𝑎𝑘
 − 𝑎2𝑚𝑓(

𝑥

𝑎𝑚
) 

≤
1

2
 𝑎2𝑖𝜑  

𝑥

𝑎𝑖+1 
, 0 

𝑚−1

𝑖=𝑘

 3.3.14  

for all nonnegative integers 𝑚 and 𝑘 with  𝑚 > 𝑘 and for all 

𝑥 ∈ 𝑋.It follows from (3.3.14) that the sequence {𝑎2𝑛𝑓(𝑥/
𝑎𝑛 )} is  a Cauchy sequence for all 𝑥 ∈ 𝑋. Since Y is 

complete, the sequence {𝑎2𝑛𝑓(𝑥/𝑎𝑛 )} converges. So one 

can define the function 𝑄:𝑋 → 𝑌 by     

     𝑄 𝑥 = lim
𝑛→∞

𝑎2𝑛𝑓(
𝑥

𝑎𝑛
)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

∈ 𝑋.                                                  (3.15) 

By (3.3) for j=-1 and (3.4),  

 ∆𝑄(𝑥, 𝑦) = lim
𝑛→∞

𝑎2𝑛  ∆𝑓(
𝑥

𝑎𝑛
,
𝑦

𝑎𝑛
) ≤ lim

𝑛→∞
𝑎2𝑛𝜑(

𝑥

𝑎𝑛
𝑦

𝑎𝑛
)

= 0,           (3.16)  
for all 𝑥, 𝑦 ∈ 𝑋. So ∆𝑄 𝑥, 𝑦 = 0. By Theorem (2.1), the 

function 𝑄:𝑋 → 𝑌 is quadratic. Moreover, letting 𝑘 = 0 and 

passing the limit 𝑚 → ∞ in (3.14), we get the inequality 

(3.5) for 𝑗 = −1. The rest of the proof is Similar to the 
proof of previous section.  

 From Theorem (3.1), we obtain the following 

corollaries concerning the  JM Rassias mixed product –sum 

stability of the Functional equation (1.5).  

Corollary 3.3.2 

 Let 𝜀, 𝑝, 𝑞 ≥ 0 and 𝑟, 𝑠 > 0 be real numbers such 

that 𝑝, 𝑞 < 2 and 𝑟 + 𝑠 ≠ 2. Suppose that a function 

𝑓: 𝑋 → 𝑌 satisfies  

  ∆𝑓(𝑥, 𝑦) ≤ 𝜀  𝑥 𝑝 +  𝑦 𝑞 +  𝑥 𝑟 𝑦 𝑠 for all 

𝑥, 𝑦 ∈ 𝑋. (3.17)  

Then there exists a unique quadratic function 𝑄:𝑋 → 𝑌 such 

that  

  𝑓 𝑥 − 𝑄(𝑥) ≤
𝜀

2(𝑎2−𝑎𝑝 )
 𝑥 𝑝  for all 𝑥 ∈ 𝑋.   (3.18) 

Proof. In Theorem (3.1), put 𝑗 = 1 and 𝜑 𝑥, 𝑦 =
𝜀  𝑥 𝑝 +  𝑦 𝑞 +  𝑥 𝑟 𝑦 𝑠 . 
Corollary 3.3 

 Let 𝜀, 𝑝, 𝑞 ≥ 0 and 𝑟, 𝑠 > 0 be real numbers such 

that 𝑝, 𝑞 > 2 and 𝑟 + 𝑠 ≠ 2. Suppose that a function 

𝑓: 𝑋 → 𝑌 with 𝑓 0 = 0  satisfies (3.17) for all 𝑥, 𝑦 ∈ 𝑋. 
Then there exists a unique quadratic function 𝑄:𝑋 → 𝑌 such 

that    

  𝑓 𝑥 − 𝑄(𝑥) ≤
𝜀

2 𝑎𝑝−𝑎2 
 𝑥 𝑝for all 𝑥 ∈ 𝑋.   (3.19) 

Proof. In Theorem (3.1), put 𝑗 = −1 and 𝜑 𝑥, 𝑦 =
𝜀  𝑥 𝑝 +  𝑦 𝑞 +  𝑥 𝑟 𝑦 𝑠 . 

𝜑  𝑥 =  
1

𝑎2𝑖𝑗
𝜑 𝑎𝑖𝑗 𝑥, 0 

∞

𝑖=1−𝑗 )/2

< ∞                                                    (3.20) 

Theorem 3.4 

Let 𝑗𝜖{−1,1} be fixed, and let 𝜑:𝑋 × 𝑋 → [0,∞) be a 

function such that          

lim
𝑛→∞

1

𝑎2𝑛𝑗
𝜑(𝑎𝑛𝑗 𝑥, 𝑎𝑛𝑗 𝑦) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦

∈ 𝑋. 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡𝑕𝑎𝑡 𝑓: 𝑋 → 𝑌 

be a function satisfies 
 𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑓 𝑎𝑥 − 𝑏𝑦 − 2𝑎2𝑓 𝑥 − 2𝑏2(𝑓(𝑦) ≤
𝜑 𝑥, 𝑦  (3.21) 

forall𝑥, 𝑦 ∈ 𝑋. 
Furthermore, assume that 𝑓(0) = 0 in (3.21) for the case 

𝑗 = 1. Then there exists a unique quadratic function 

𝑄:𝑋 → 𝑌 such that  

  𝑓 𝑥 − 𝑄(𝑥) ≤
1

2𝑎1+𝑗 𝜑 (
𝑥

𝑎1−𝑗/2),for all  𝑥 ∈ 𝑋.   (3.22) 

Proof. The proof is similar to the proof of Theorem (3.1). 

CONCLUSION: 
                Finaly we conclude that  we obtain the general 

solution and the generalized hyers-ulam rassias stability for 

a quaradic  functional equations. 
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