A STUDY ON L-FUZZY VECTOR SUBSPACES
AND ITS FUZZY DIMENSION

R. Geetha
Assistant Professor
Department of Mathematics,
KG College of Arts and Science, Coimbatore-641035, Tamil Nadu, India.

ABSTRACT: This paper gives the definition of L-fuzzy vector subspace and defining its dimension by an L-fuzzy natural number. It is proved that for a finite dimensional L-fuzzy vector subspace, the intersection of two L-fuzzy vector subspace is also a L-fuzzy vector subspace and also the inequality \(\dim(\mathbb{E}_1 + \mathbb{E}_2) + \dim(\mathbb{E}_1 \cap \mathbb{E}_2) = \dim\mathbb{E}_1 + \dim\mathbb{E}_2 \) holds without any restricted conditions.

INTRODUCTION

Fuzzy vector space was introduced by Katsaras and Liu. The dimension of a fuzzy vector space is defined as a n-tuple by Lowen. The study of fuzzy vector spaces started as early as 1977. A fuzzy subset of a non-empty set \(S \) is a function from \(S \) into \([0,1]\). Let \(A \) denote a fuzzy subspace of \(V \) over a fuzzy subfield \(K \) of \(F \) and let \(X \) denote a fuzzy subset of \(V \) such that \(X \subseteq A \). Let \(\langle X \rangle \) denote the intersection of all fuzzy subspaces of \(V \) over \(K \) that contain \(X \) and are contained in \(A \).

PRELIMINARIES

Consider the set \(X \) and completely distributive lattice \(L \). Let the power set of \(X \) be \(2^X \) and the set of all \(L \)-fuzzy sets on \(X \) be \(L^X \) respectively. For any \(A \subseteq X \), the cardinality of \(A \) be denoted by \(|A|\). An element \(L \) is called a prime element if \(a \geq b \wedge c \) implies \(a \geq b \) or \(a \geq c \) and an element \(L \) is called co-prime if \(a \leq b \vee c \) implies \(a \leq b \) or \(a \leq c \).

The set of non-unit prime elements in \(L \) is denoted by \(P(L) \) and the set of non-zero co-prime elements in \(L \) is denoted by \(J(L) \). The binary relation \(< \) is defined by for all \(a, b \in L \), \(a < b \) if and only if for every subset \(D \subseteq L \) with \(a \leq d \), the relation \(b \leq \sup D \) is possible only when \(d \in D \) with \(a \leq d \). The greatest minimal family of \(b \) is denoted by \(\beta(b) = \{ a \in L : a < b \} \) and \(\beta^*(b) = \beta(b) \cap J(L) \). Moreover for \(b \in L \) we define \(\alpha(b) = \{ a \in L : a < b \} \) and \(\alpha^*(b) = \alpha(b) \cap P(L) \). In a completely distributive lattice \(L \), there exist \(\alpha(b) \) and \(\beta(b) \) for each \(b \in L \) and \(b = \lor \beta(b) = \land \alpha(b) \).

Let \(\mathbb{N}(L) \) denotes the \(L \)-fuzzy natural number and the relation of \(\alpha \)-cut sets are defined as follows

For any \(\lambda, \mu \in \mathbb{N}(L) \), \(a \in L \),

(i) \((\lambda + \mu)(a) \subseteq \lambda(a) + \mu(a) \subseteq (\lambda + \mu)[a] \);

(ii) \((\lambda + \mu)^\alpha(a) \subseteq \lambda^\alpha(a) + \mu^\alpha(a) \subseteq (\lambda + \mu)^\alpha[a] \);

(iii) For any \(\lambda, \mu \in \mathbb{N}(L) \) and \(a \in P(L) \) implies \((\lambda + \mu)^\alpha = \lambda^\alpha(a) + \mu^\alpha(a) \).

1. L-FUZZY VECTOR SUBSPACES

DEFINITION 1.1

L-FUZZY VECTOR SUBSPACE

L-Fuzzy Vector Subspace (LFVS) is a pair \(\overline{E} = (E, \mu) \) where \(E \) is a vector space on field \(F \), \(\mu : E \rightarrow L \) is a map with the property that for any \(x, y \in E \) and \(k, l \in F \) such that \(\mu(kx + ly) \geq \mu(x) \mu(y) \).

When \(L = [0,1] \) then L-Fuzzy Vector Subspace becomes fuzzy vector subspace. Let \(\overline{E} = (E, \mu) \) be a member of LFVS then

\[
\overline{E}^{(\alpha)} = \{ x \in E : \mu(x) \geq a \} , \quad \overline{E}^{(\beta)} = \{ x \in E : \mu(x) \leq a \} ,
\]

\[
\overline{E}^{(\alpha)} = \{ x \in E : \mu(x) \leq a \} , \quad \overline{E}^{(\beta)} = \{ x \in E : \mu(x) \geq a \} .
\]
THEOREM: 1.1

Let E be a vector space, $\mu \in L^E$ and $\tilde{E} = (E, \mu)$ then the following statements are equivalent.

(i) \tilde{E} is an L-fuzzy vector subspace. (ii) For all $a \in L$, $\tilde{E}_{[a]}$ is a vector space.

(iii) For all $a \in J(L)$, $\tilde{E}_{[a]}$ is a vector space. (iv) For all $a \in L$, $\tilde{E}^{[a]}$ is a vector space.

(v) For all $a \in P(L)$, $\tilde{E}^{[a]}$ is a vector space. (vi) For all $a \in P(L)$, $\tilde{E}^{[a]}$ is a vector space.

PROOF:

It is enough if we prove $1 \iff 4$ and $1 \iff 6$

(i) Assume that \tilde{E} is an L-fuzzy vector subspace

Suppose that $x, y \in \tilde{E}_{[a]}$ then $a \not\in \alpha(\mu(x))$ and $a \not\in \alpha(\mu(y))$

i.e. $a \not\in \alpha(\mu(x)) \cup \alpha(\mu(y)) = \alpha(\mu(x) \Lambda \mu(y))$

then $\alpha(\mu(x) \Lambda \mu(y)) \supseteq \alpha(\mu(kx+ly))$

We have $a \not\in \alpha(\mu(kx+ly))$

Hence $kx+ly \in \tilde{E}_{[a]}$

Therefore $\tilde{E}_{[a]}$ is a vector space.

(ii) Suppose that $x, y \in \tilde{E}^{[a]}$ then $\mu(x) \not\leq a$ and $\mu(y) \not\leq a$

Since $a \in P(L)$ then $\mu(x) \Lambda \mu(y) \not\leq a$ (Since $\tilde{E} = (E, \mu)$ is an LFVS)

That is $\mu(kx+ly) \not\leq a$

Implies $kx+ly \in \tilde{E}^{[a]}$

Therefore $\tilde{E}^{[a]}$ is a vector space.

Assume $x, y \in E$ and $k, l \in F$ then

$kx+ly \in \tilde{E}^{[a]}$ if and only if $x \in \tilde{E}^{[a]}$ and $y \in \tilde{E}^{[a]}$ (Since $\tilde{E}^{[a]}$ is a vector space)

We have $\mu(kx+ly) = \Lambda a \in P(L) \ (a \Lambda \tilde{E}^{[a]})(kx+ly)$
\[= \bigwedge_{a \in P(L)} (a \vee \bar{E}^{(a)} (x) \wedge \bar{E}^{(a)} (y))) \]

\[= \left(\bigwedge_{a \in P(L)} (a \vee \bar{E}^{(a)} (x)) \right) \wedge \left(\bigwedge_{a \in P(L)} (a \vee \bar{E}^{(a)} (y)) \right) \]

\[= \mu(x) \wedge \mu(y) \]

Therefore \(\bar{E} \) is an L-fuzzy vector subspace. Therefore \(1 \Leftrightarrow 6 \)

Hence the Theorem.

THEOREM 1.2

Let \(V \) be a vector space, \(\mu: E \rightarrow L \) is a map and for all \(a,b \in L, \beta (a \Lambda b) = \beta(a) \cap \beta(b) \) then the following statements are equivalent:

1. \(\bar{E} \) is an L-fuzzy vector subspace.
2. For all \(a \in L, \bar{E}^{(a)} \) is a vector space.

PROOF:

Assume \(\bar{E} \) is an L-fuzzy vector subspace.

Suppose that \(x,y \in \bar{E}^{(a)} \) then \(a \in \beta(\mu(x)) \) and \(a \in \beta(\mu(y)) \)

i.e \(a \in \beta(\mu(x)) \cap \beta(\mu(y)) \)

Since for all \(a,b \in L, \beta(a \Lambda b) = \beta(a) \cap \beta(b) \) and \(\bar{E} \) is an L-fuzzy vector subspace

i.e \(a \in \beta(\mu(x)) \cap \beta(\mu(y)) \subseteq \beta(\mu(ax+by)) \)

\[\Rightarrow ax+by \in \bar{E}^{(a)} \]

Therefore \(\bar{E}^{(a)} \) is a vector space.

Next assume that for all \(a \in L, \bar{E}^{(a)} \) is a vector space.

Let \(x,y \in E \) and \(k,l \in F \) then \(kx+ly \in \bar{E}^{(a)} \) if and only if \(x \in \bar{E}^{(a)} \) and \(y \in \bar{E}^{(a)} \) (Since \(\bar{E}^{(a)} \) is a vector space)

We have \(\mu (kx+ly) = \bigvee_{a \in L} (a \Lambda \bar{E}^{(a)} (x+y)) \)

\[= \bigvee_{a \in L} (a \Lambda (\bar{E}^{(a)} (x) \Lambda \bar{E}^{(a)} (y))) \]

\[= (\bigvee_{a \in L} (a \Lambda (\bar{E}^{(a)} (x))) \Lambda (\bigvee_{a \in L} (a \Lambda (\bar{E}^{(a)} (y)))) \]

\[= \mu(x) \wedge \mu(y) \]

Therefore \(\bar{E} \) is an L-fuzzy vector subspace.

Therefore the above two statements are equivalent.

DEFINITION 1.2

Let \(\bar{E}_1 = (E, \mu_1) \) and \(\bar{E}_2 = (E, \mu_2) \) be two fuzzy vector subspaces on \(E \). The intersection of \(\bar{E}_1 \) and \(\bar{E}_2 \) is defined as \(\bar{E}_1 \cap \bar{E}_2 = (E, \mu_1 \Lambda \mu_2) \) and the sum of \(\bar{E}_1 \) and \(\bar{E}_2 \) is defined as \(\bar{E}_1 + \bar{E}_2 = (E, \mu_1 + \mu_2) \)

Where \(\mu_1 + \mu_2 \) is defined as for all \(x \in E \), \((\mu_1 + \mu_2)(x) = \bigvee (\mu_1(x_1) \Lambda \mu_2(x_2)) \)
DEFINITION 1.3

Let \(E_1 = (E, \mu_1) \) and \(E_2 = (E, \mu_2) \) be two members on LFVS and \(E = E_1 \oplus E_2 \) be the direct sum of \(E_1 \) and \(E_2 \) defined as \(E_i \oplus E_2 = (E, \mu_i \oplus \mu_2) \) where \(\mu_i \oplus \mu_2 \) is defined as for all \(x \in E \), \(x = x_1 \oplus x_2 \), \(x_i \in E_i \), \(i = 1, 2 \).

\[
(\mu_1 \oplus \mu_2)(x) = (\mu_1 \oplus \mu_2)(x_1 \oplus x_2) = \mu_1(x_1) \land \mu_2(x_2).
\]

THEOREM 1.3

Let \(E_1 = (E, \mu_1) \) and \(E_2 = (E, \mu_2) \) be two members on LFVS on \(E \) we have

(i) \(E_1 \cap E_2 \) is a member of LFVS on \(E \).

(ii) \(E_1 + E_2 \) is a member of LFVS on \(E \).

PROOF:

Given \(E_1 \) and \(E_2 \) be two members on LFVS then \(\mu_1(\alpha x + \beta y) \geq \mu_1(\alpha x) \land \mu_1(\beta y) \) and \(\mu_2(\alpha x + \beta y) \geq \mu_2(\alpha x) \land \mu_2(\beta y) \).

To prove \(E_1 \cap E_2 \) is a member of LFVS on \(E \)

\[
E_1 \cap E_2 = (E, \mu_1 \land \mu_2) \quad \text{(By definition 3.2)}
\]

Consider \((E, \mu_1 \land \mu_2) = \mu_1(\alpha x + \beta y) \land \mu_2(\alpha x + \beta y) \geq (\mu_1(\alpha x) \land \mu_1(\beta y) \land \mu_2(\alpha x) \land \mu_2(\beta y)). \)

Therefore \(E_1 \cap E_2 \) is a member of LFVS on \(E \).

Similarly we can prove \(E_1 + E_2 \) is a member of LFVS on \(E \).

THEOREM 1.4

Let \(E_1 = (E, \mu_1) \) and \(E_2 = (E, \mu_2) \) be two members on LFVS on \(E \). Suppose that for any \(a, b \in L \), we have \(\beta(a \land b) = \beta(a) \cap \beta(b) \) then

(1) \((E_1 \cap E_2)(\alpha) = (E_1)(\alpha) \cap (E_2)(\alpha) \)

(2) \((E_1 + E_2)(\alpha) = (E_1)(\alpha) \cup (E_2)(\alpha) \).

2. FUZZY DIMENSION OF L-FUZZY VECTOR SUBSPACES

DEFINITION 2.1

Let \(\mathbb{N}(L) \) be the family of L-fuzzy natural number. The map \(\dim : \text{LFVS} \rightarrow \mathbb{N}(L) \) is defined by \(\dim E(n) = \lor \{a \in L : \dim E(a) \geq n\} \) is called the L-fuzzy dimensional function of the L-fuzzy vector subspace \(E \), it is an fuzzy natural number.

Also \(\dim E(n) = \lor \{a \in L : \dim E(a) \geq n\} \).

THEOREM 2.1

Let \(E_1 = (E, \mu_1) \) and \(E_2 = (E, \mu_2) \) be two L-fuzzy vector subspaces then the following equalities holds

\(\dim(E_1 + E_2) + \dim(E_1 \cap E_2) = \dim E_1 + \dim E_2 \)
PROOF:

Given E_1 and E_2 be two L-fuzzy vector subspaces then the sum of E_1 and E_2 be denoted by $E_1 + E_2$

$$(\dim(E_1 + E_2) + \dim (E_1 \cap E_2))^{(a)} = (\dim(E_1 + E_2))^{(a)} + (\dim(E_1 \cap E_2))^{(a)}$$

$$= \dim(E_1 + E_2)^{(a)} + \dim (E_1 \cap E_2)^{(a)}$$

$$= \dim(E_1)^{(a)} + \dim (E_2)^{(a)} + \dim (E_1 \cap E_2)^{(a)}$$

$$= \dim(E_1)^{(a)} + \dim (E_2)^{(a)}$$

Therefore $\dim(E_1 + E_2) + \dim (E_1 \cap E_2) = \dim E_1 + \dim E_2$

Hence the theorem.

CONCLUSION

In this paper L-fuzzy vector subspace is defined and showed that its dimension is an L-fuzzy natural number. Based on the definitions some properties of crisp vector space s are hold in finite dimensional vector spaces. In particular the equality $\dim(E_1 + E_2) + \dim (E_1 \cap E_2) = \dim E_1 + \dim E_2$ holds without any restricted conditions.

REFERENCE