IDEMPOTENT & COMPLEMENT LAW IN INTUITIONISTIC FUZZY SETS

1S.K.Mala, 2P.Devie Abirami

1Assistant Professor, 2Research Scholar
KG College of Arts and Science, Coimbatore

Abstract: In this paper, various operations in Intuitionistic Fuzzy Sets are discussed. Some theorems are proved for establishing the properties of intuitionistic fuzzy operators with respect to different intuitionistic fuzzy sets.

Keywords: Intuitionistic Fuzzy Set (IFS), Intuitionistic Fuzzy set Operators.

1. INTRODUCTION
L.A. Zadeh [5] introduced the notion of a Fuzzy sub set μ of a Set X as a function from X to [0,1]. After the introduction of Fuzzy sets by L.A.Zadeh [5], the Fuzzy concept has been introduced in almost all branches of Mathematics. Then the concept of Intuitionistic Fuzzy Set (IFS) was introduced by Atanassov [1] as a generalization of the notation of a Fuzzy set.

2. PRELIMINARIES

Definition 2.1 - Crisp Sets:
Either the element belongs to the set or it does not is known as Crisp set.

Definition 2.2 - Fuzzy set:
A fuzzy set is built from a reference set called universe of discourse. Assume that U = {x1, x2,....., xn} is the universe of discourse, then a fuzzy set A in U (A ⊂ U) is defined as a set of ordered pairs

{(x_i, μ_A(x_i))}

Where x_i ∈ U, μ : U → [0,1] is the membership function of A and, μ_A(x) ∈ [0,1] is the degree of membership of x in A.

Definition 2.3 - Intuitionistic Fuzzy Set:
An Intuitionistic Fuzzy Set A in a non empty set X is an object having the form

A= { (x, μ_A(x), ν_A(x)) | x∈X } where the functions μ_A : X→ [0,1] and ν_A : X→ [0,1] denote the degrees of membership and non membership of the element x∈X to A respectively and satisfy 0≤μ_A(x) + ν_A(x) ≤ 1 for all x∈X. The family of all intuitionistic fuzzy sets in X denoted by IFS (X).

Definition 2.4 - Intuitionistic Fuzzy Set Operations:
For every two IFSs A and B we define the following relations and operations:

A ⊂ B iff (∀x ∈ E)(μ_A(x) ≤ μ_B(x) & ν_A(x) ≥ ν_B(x))
A ⊃ B iff (B ⊃ A)
A=B iff (∀x ∈ E)(μ_A(x) = μ_B(x) & ν_A(x) = ν_B(x))

\[A = \{ (x, ν_A(x), μ_A(x)) / x ∈ E \} \]
\[\bar{A} = \{ (x, min(μ_A(x), μ_B(x)), max(ν_A(x), ν_B(x))) / x ∈ E \} \]
\[A ∩ B = \{ (x, min(μ_A(x), μ_B(x)), max(ν_A(x), ν_B(x))) / x ∈ E \} \]
\[A ∪ B = \{ (x, max(μ_A(x), μ_B(x)), min(ν_A(x), ν_B(x))) / x ∈ E \} \]
\[A + B = \left\{ (x, \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_A(x), \nu_A(x)\nu_A(x)) \middle| x \in E \right\} \]

\[A \cdot B = \left\{ (x, \mu_A(x)\mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x)\nu_B(x)) \middle| x \in E \right\} \]

\[A \odot B = \left\{ \left(x, \frac{\mu_A(x) + \mu_B(x)}{2}, \frac{\nu_A(x) + \nu_B(x)}{2} \right) \middle| x \in E \right\} \]

\[A \Delta B = \left\{ \left(x, \sqrt{\mu_A(x)\mu_B(x)}, \sqrt{\nu_A(x)\nu_B(x)} \right) \middle| x \in E \right\} \]

\[A \odot \bar{B} = \left\{ \left(x, 2, \frac{\mu_A(x)\mu_B(x)}{\mu_A(x) + \mu_B(x)}, 2, \frac{\nu_A(x)\nu_B(x)}{\nu_A(x) + \nu_B(x)} \right) \middle| x \in E \right\} \]

3. IDEMPOTENT & COMPLEMENT LAW IN INTUITIONISTIC FUZZY SETS

THEOREM 3.1:

Prove that \(A \cap A = A \)

PROOF:

\[A \cap A = \left\{ (x, \min(\mu_A(x), \mu_A(x)), \max(\nu_A(x), \nu_A(x))) \middle| x \in E \right\} \]

\[= \left\{ (x, \mu_A(x), \nu_A(x)) \middle| x \in E \right\} \]

\[= A \]

Hence it completes the proof.

THEOREM 3.2:

Prove that \(A \odot A = A \)

PROOF:

\[A \odot A = \left\{ \left(x, \frac{\mu_A(x) + \mu_A(x)}{2}, \frac{\nu_A(x) + \nu_A(x)}{2} \right) \middle| x \in E \right\} \]

\[= \left\{ (x, \mu_A(x), \nu_A(x)) \middle| x \in E \right\} \]

\[= A \]

Hence it completes the proof.

THEOREM 3.3:

Prove that \(A \Delta A = A \)

PROOF:

\[A \Delta A = \left\{ (x, \sqrt{\mu_A(x)\mu_A(x)}, \sqrt{\nu_A(x)\nu_A(x)}) \middle| x \in E \right\} \]

\[= \left\{ (x, \mu_A(x), \nu_A(x)) \middle| x \in E \right\} \]

\[= A \]
Hence it completes the proof.

THEOREM 3.4:

Prove that $A \cap A = A$

PROOF:

$A \cap A = \{ \{ x, \mu_A(x), \mu_A(x) \} / x \in E \} = A$

Hence it completes the proof.

THEOREM 3.5:

Prove that $A \cap B = A \cup B$

PROOF:

$A = \{ \{ x, \nu_A(x), \mu_A(x) \} / x \in E \}

B = \{ \{ x, \nu_B(x), \mu_B(x) \} / x \in E \}$

$A \cap B = \{ \{ x, \min(\nu_A(x), \nu_B(x)), \max(\mu_A(x), \mu_B(x)) \} / x \in E \} = A \cup B$

Hence it completes the proof.

THEOREM 3.6:

Prove that $A \cup B = A \cap B$

PROOF:

$A = \{ \{ x, \nu_A(x), \mu_A(x) \} / x \in E \}

B = \{ \{ x, \nu_B(x), \mu_B(x) \} / x \in E \}$

$A \cup B = \{ \{ x, \max(\nu_A(x), \nu_B(x)), \min(\mu_A(x), \mu_B(x)) \} / x \in E \} = A \cap B$
Hence it completes the proof

THEOREM 3.7:

Prove that \(A + B = A \cdot B \)

PROOF:

L.H.S:
\[
\overline{A} = \left\{ (x, \nu_A(x), \mu_A(x)) \mid x \in E \right\}
\]

\[
\overline{B} = \left\{ (x, \nu_B(x), \mu_B(x)) \mid x \in E \right\}
\]

\[
\overline{A} + \overline{B} = \left\{ (x, \nu_A(x) + \nu_B(x), \mu_A(x) \cdot \mu_B(x)) \mid x \in E \right\}
\]

\[
\overline{A} + \overline{B} = \left\{ (x, \nu_A(x) + \nu_B(x) - \nu_A(x) \cdot \nu_B(x), \mu_A(x) \cdot \mu_B(x)) \mid x \in E \right\}
\]

\[
\overline{A} + \overline{B} = \left\{ (x, \mu_A(x) \cdot \mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x) \cdot \nu_B(x)) \mid x \in E \right\}
\]

Hence it completes the proof.

THEOREM 3.8:

Prove that \(A \circ B = A \circ B \)

PROOF:

L.H.S:
\[
\overline{A} = \left\{ (x, \nu_A(x), \mu_A(x)) \mid x \in E \right\}
\]

\[
\overline{B} = \left\{ (x, \nu_B(x), \mu_B(x)) \mid x \in E \right\}
\]

\[
\overline{A} \circ \overline{B} = \left\{ (x, \nu_A(x) + \nu_B(x), \mu_A(x) \cdot \mu_B(x)) \mid x \in E \right\}
\]

\[
\overline{A} \circ \overline{B} = \left\{ (x, \frac{\nu_A(x) + \nu_B(x)}{2}, \frac{\mu_A(x) + \mu_B(x)}{2}) \mid x \in E \right\}
\]

Hence it completes the proof.

Conclusion

We have defined different operations of Intuitionistic Fuzzy Sets. Using these, we have proved different relations between these operators in the intuitionistic fuzzy sets.
REFERENCES

