3-Types of Products in Ψ-Polar Fuzzy Graph Network

¹G.Priyadharsini, ²V.Amudhamalar

¹PG Scholar, ²Assistant Professor Department of Mathematics ¹Kongu Arts and Science College, Erode, Tamil Nadu, India

Abstract: The scope of this paper to familiarize that the concept strong product, Cartesian product, Cross products in Ψ -Polar fuzzy graph and also we prove that the theorems and examples.

Index Terms: Strong product, Cartesian product, Cross product, Fuzzy graph, W - Polar Fuzzy Graph

I. Introduction

Chenet al, established the concept of m -polar fuzzy set as an expansion of bipolar fuzzy sets in 2014. This concept beyond is that "m -polar information". An Ψ -polar fuzzy graph is a team of G=(M,N), wherever $M:V\to [0,1]^m$ is an m-polar fuzzy set in V and N:V×V→[0,1]^m is an m-polar fuzzy relation on V $\ni p_i \circ N(x,y) \le min\{p_i \circ M(x), p_i \circ M(y)\}, \forall x,y \in V$. An Ψ -polar fuzzy set or a $[0,1]^m$ or m-th power of [0,1] set on X is strictly a mapping A:X $\rightarrow [0,1]^m$. The set $\Psi(x)$ is expressed by the set of all Ψ polar fuzzy sets on X.

2. Ψ – Polar Fuzzy Graph Network

Definition 2.1 :Consider a graph structure $G=(U,E_1,E_2,...,E_n)$ and let M and N_i are Ψ -polar fuzzy set on U and E_i individually, $\exists p_i \circ N(xy) \le min\{p_i \circ M(x), p_i \circ M(y)\} \forall x, y \in U, i \in n, j \in m. \text{If } p_i \circ N(xy) = 0 \ \forall x, y \in U \times U \setminus E_j \ \forall j. \text{Then the graph } G_{(m)} = 0$ $(M, N_1, N_2, ..., N_n)$ is called the Ψ -polar fuzzy graph structure on G. Assume the graph structure $G = (U, E_1, E_2) \ni U =$ $\{c_1, c_2, c_3, c_4\}$, $E_1 = \{c_1, c_2\} \& E_2 = \{c_3c_2, c_2c_4\}.$

If $G_{(m)} = (M, N_1, N_2)$ is a four polar fuzzy graph structure of $G = (U, E_1, E_2, \dots, E_n)$.

Theorem 2.1: Cartesian product of two Ψ-polar fuzzy graph network is an Ψ-polar fuzzy graph network.

Proof: Consider the two graph structure are $G_1 = (U_1, E_{11}, E_{12}, \dots, E_{1n})$ & $G_1 = (U_2, E_{21}, E_{22}, \dots, E_{2n})$ be the Cartesian product is $G = (U_1 \times U_2, E_{11} \times E_{21}, E_{12} \times E_{22}, ..., E_{1n} \times E_{2n})$. Suppose that $G_{(m)}^1 = (M_1, N_{11}, N_{12}, ..., N_{1n})$ be the Ψ -polar fuzzy graph network of G_1 & $G_{(m)}^2 = (M_2, N_{21}, N_{22}, ..., N_{2n})$ be the fuzzy graph network of G_2 . Subsequently Ψ -polar fuzzy graph network of G is $(M_1 \times M_2, N_{11} \times N_{21}, N_{12} \times N_{22}, \dots, N_{1n} \times N_{2n})$. We know that $M_1 \times M_2 \times N_{1i} \times N_{2i}$ are the Ψ -polar fuzzy set of $U_1 \times U_2 \times E_{1i} \times E_{2i}$. Next we have to prove that $N_{1i} \times N_{2i}$ is an Ψ -polar fuzzy relation on $M_1 \times M_2 \forall i$.

Case (i): $x \in U_1$ & $x_2 y_2 \in E_{2i}$. We know that,

$$p_i o(N_{1i} \times N_{2i})((xx_2)(xy_2)) = p_i oM_1(x)^p_i oN_{2i}(x_2y_2) \longrightarrow (1)$$

By the definition $p_i oN(x, y) \le min\{p_i oM(x), p_i oM(y)\}$ (2)

By applying (2) in (1), $p_i o(N_{1i} \times N_{2i})((xx_2)(xy_2)) \le p_i oM_1(x) \land [min\{p_i oM_2(x_2), p_i oM_2(y_2)\}] = min\{p_i oM_1(x) \land p_i oM_2(x_2), p_i oM_2(y_2)\} = min\{p_i oM_1(x) \land p_i oM_2(x_2), p_i oM_2(y_2)\} = min\{p_i oM_1(x) \land p_i oM_2(x_2), p_i oM_2(y_2)\} = min\{p_i oM_1(x) \land p_i oM_2(x_2), p_i oM_2(x_2), p_i oM_2(x_2), p_i oM_2(x_2)\} = min\{p_i oM_1(x) \land p_i oM_2(x_2), p_i oM_2(x_2), p_i oM_2(x_2)\} = min\{p_i oM_1(x) \land p_i oM_2(x_2), p_i oM_2(x_$ $p_i o M_1(x) \wedge p_i o M_2(y_2) \}] \longrightarrow (3)$

By the Cartesian product, $p_i o(M_1 \times M_2)(x_1 x_2) = p_i o M_1(x_1) \wedge p_i o M_2(x_2)$

By $(3), p_i o(N_{1i} \times N_{2i})((xx_2)(xy_2)) = min\{p_i o(M_1 \times M_2)(xx_2), p_i o(M_1 \times M_2)(xy_2)\}$

Case (ii): If $x \in U_2$ & $x, y \in E_{1i}$. We know that, $p_i o(N_{1i} \times N_{2i})((x_1 y)(y_1 y)) = p_i oM_2(y) \land p_i oN_{1i}(x_1 y_1)$

Byapplying(2)in(1), $p_i o(N_{1i} \times N_{2i})((x_1 y)(y_1 y)) \le p_i o(M_2(y) \land [min\{p_i o(M_1(x_1), p_i o(M_1(y_1))\}])$ = $min\{p_ioM_2(y)\land p_ioM_1(x_1),p_ioM_2(y)\land p_ioM_1(y_1)\}\}.$

By applying(3), $p_i o(N_{1i} \times N_{2i})((x_1 y)(y_1 y)) = min\{p_i o(M_1 \times M_2)(x_1 y), p_i o(M_1 \times M_2)(y_1 y)\} \forall j \in m$. In the case (i) and case (ii) takes $\forall i \in n$. Hence $N_{1i} \times N_{2i}$ is an Ψ -polar fuzzy relation on $M_1 \times M_2 \ \forall i \in n$. Hence the proved.

Example:

Theorem 2.2: Cross Product of two Ψ -polar fuzzy graph network is an Ψ -polar fuzzy graph network

Proof: Consider the two graph structure are $G_1 = (U_1, E_{11}, E_{12}, ..., E_{1n}) & G_1 = (U_2, E_{21}, E_{22}, ..., E_{2n})$ be the Cross product is $G = (U_1 * E_{11}, E_{12}, ..., E_{1n})$ $U_2, E_{11} * E_{21}, E_{12} * E_{22}, \dots, E_{1n} * E_{2n}$. Suppose that $G^1_{(m)} = (M_1, N_{11}, N_{12}, \dots, N_{1n})$ be the Ψ -polar fuzzy graph network of G_1 & $G_{(m)}^2 = (M_2, N_{21}, N_{22}, ..., N_{2n})$ be the fuzzy graph network of G_2 . Subsequently Ψ -polar fuzzy graph structure of the G is $(M_1 *$ M_2 , $N_{11}*N_{21}$, $N_{12}*N_{22}$, ..., $N_{1n}*N_{2n}$). M_1*M_2 & $N_{1i}*N_{2i}$ are the Ψ -polar fuzzy set of U_1*U_2 & $E_{1i}*E_{2i}$. Next we have to prove that $N_{1i}*N_{2i}$ is an Ψ -polar fuzzy relation on M_1*M_2 \forall i. Whenever $x_1 y_1 \in E_{1i}$ & $x_2 y_2 \in E_{2i}$, $p_j o(N_{1i}*E_{2i})$ $N_{2i}((x_1x_2)(y_1y_2)) = p_j o N_{1i}(x_1y_1) \wedge p_j o N_{2i}(x_2y_2)$ We know that $p_i o N(x,y) \leq min\{p_i o M(x), p_i o M(y)\}$. The equation (1) becomes,

 $p_{j}o(N_{1i}oN_{2i})((x_{1}x_{2})(y_{1}y_{2})) \leq [\min\{p_{i}oM_{1}(x_{1}), p_{i}oM_{1}(y_{1})\}]^{\wedge} [\min\{p_{i}oM_{2}(x_{2}), p_{i}oM_{2}(y_{2})\}]^{\wedge} [\min\{p_{i}oM_{2}(x_{2}), p_{i}oM_{2}(x_{2}), p_{i}oM_{2}(x_{2})\}]^{\wedge} [\min\{p_{i}oM_{2}(x_{2}), p_{i}oM_{2}(x_{2}), p_{$

 $= min\{p_i o M_1(x_1) \land p_i o M_2(x_2), p_i o M_1(y_1) \land p_i o M_2(y_2)\}$

We know that the definition, the Cross product

$$p_{i}o(M_{1} * M_{2})(x_{1}x_{2}) = p_{i}oM_{1}(x_{1}) \wedge p_{i}oM_{2}(x_{2})$$
 (3)

By, $p_j o(N_{1i} * N_{2i}) ((x_1 x_2)(y_1 y_2)) = min\{p_i o(M_1 * M_2)(x_1 x_2), p_i o(M_1 * M_2)(y_1 y_2)\}$ This is takes $\forall i \in n$. Hence $N_{1i} * N_{2i}$ is an Ψ -polar fuzzy relation on $M_1 * M_2 \forall i \in n$.

Corollary 2.3: Strong product Ψ -polar fuzzy graph network is an Ψ -polar fuzzy graph network.

Conclusion: In this paper we discussed the concept three types Ψ -polar fuzzy graph network is an Ψ -polar fuzzy graph network.

References:

- [1] Chei..J,Li.S,Ma.S,Wang.X(2014) m-polar fuzzy sets:extension of bipolar fuzzy sets.sci World J 2014
- [2] Dinesh .T,Ramakrishna.T.V(2011) On Generalised fuzzy Structure.Appl Math Sci 5(4):173-180

