An application of Gauss Elimination technique to magic square

${ }^{1}$ Dhanalakshmi. M, ${ }^{2}$ V.Jyothi, ${ }^{3}$ K. Anusha, ${ }^{4}$ K.N.V. Suhasini, ${ }^{5}$ P.Anusha
${ }^{1,2}$ Assistant Professor, ${ }^{3,4,5}$ Student
Department of Mathematics,
Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada, A.P, India,

Abstract: In this paper, we study a 3 by 3 magic square by using the Gauss elimination technique. May be you will change your mind after you look at the application.

INTRODUCTION:

A magic squares of size n is an n by n square matrix whose entries consist of all integers. Between l and n^{2}, with the property that the sum of the entries of each column, row ordiagonal is the same. The sum of the entries of any row, column or diagonal of a magic Squares of size n is $n\left(n^{2}+1\right) / 2$ for example $(1+2+\ldots+\mathrm{k}=\mathrm{k}(\mathrm{k}+1) / 2)$.

Let us start with the easy case of a two by two magic square.

a	b
c	d

In order to have a magic square, one would have a linear system of six equations and four unknowns;

a	+	b	$=$	5
c	+	d		
a	+	c	$=$	5
b	+	d		5
a	+	d		
b	+	c	$=$	5
a				

One can use the Gaussian elimination to solve that system. A simpler way is to notice that the first and the third equation give that $b=c$; so the last equation becomes $2 b=5$ which, of course, has no integer solution. So the system has no integer solution. In other words, there are no magic squares of size 2 .

Fine, let us try now a magic square of size 3:
In this case, the sum of each row, column or diagonal must be15. This gives the following system of equations:

a	+	b	+	c	$=$	15
d	+	e	+	f	$=$	15
g	+	h	+	i	=	15
a	+	d	+	g	$=$	15
b	+	e		h	=	15
c	+	f			$=$	15
a	+		+		=	15
c	+	e	+			15

$\left[\begin{array}{llllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 15 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 15 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 15 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 15 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 15 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 15 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 15 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 15\end{array}\right]$

Using Gaussian elimination technique would give us the following reduced form of the above System:

$$
\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 10 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 10 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -5 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -2 & -10 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 20 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 15 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So we have two free variables h and i. Taking $h=9$ and $i=2$ would give the following solution:

8	1	6
3	5	7
4	9	2

References:

[1]. Wikipedia encyclopedia.
[2]. G.William, linear algebra with application, $7^{\text {th }}$ edition, Jones and Barnetlett publisher, LLC, UK(2011).
[3]. A text book of B. Sc mathematics volume (III), S. Chand Publications.

