An application of Gauss Elimination technique to magic square

¹Dhanalakshmi. M, ²V.Jyothi, ³K. Anusha, ⁴K.N.V. Suhasini, ⁵P.Anusha

1,2 Assistant Professor, 3,4,5 Student
Department of Mathematics,
Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada, A.P, India,

Abstract: In this paper, we study a 3 by 3 magic square by using the Gauss elimination technique. May be you will change your mind after you look at the application.

INTRODUCTION:

A magic squares of size n is an n by n square matrix whose entries consist of all integers. Between l and n^2 , with the property that the sum of the entries of each column, row ordingonal is the same. The sum of the entries of any row, column or diagonal of a magic Squares of size n is $n(n^2+1)/2$ for example (1+2+...+k=k(k+1)/2).

Let us start with the easy case of a two by two magic square.

a	b
c	d

а	b	С
d	e	f
g	h	i

In order to have a magic square, one would have a linear system of six equations and four unknowns;

а	+	b		5
c	+	d	=	5
а	+	c		5
b	+	d	=	5
а	+	d	I	5
b	+	c	=	5

One can use the Gaussian elimination to solve that system. A simpler way is to notice that the first and the third equation give that b=c; so the last equation becomes 2b=5 which, of course, has no integer solution. So the system has no integer solution. In other words, there are no magic squares of size 2.

Fine, let us try now a magic square of size 3:

In this case, the sum of each row, column or diagonal must be15. This gives the following system of equations:

а	+	b	+	С	=	15
d	+	e	+	f	=	15
g	+	h	+	i	=	15
a	+	d	+	g	Ш	15
b	+	e	+	h	=	15
С	+	f	+	Ĭ	Ш	15
а	+	e	+	i	=	15
С	+	e	+	g	II	15

г1	1	1	0	0	0	0	0	0	15
0	0	0	1	1	1	0	0	0	15 15
0	0	0	0	0	0	1	1	1	15
1	0	0	1	0	0	1	0	0	15
0	1	0	0	1	0	0	1	0	15
0	0	1	0	0	1	0	0	1	15
1	0	0			0		0	1	15
L ₀	0	1	0	1	0	1	0	0	15

Using Gaussian elimination technique would give us the following reduced form of the above System:

[1	0	0	0	0	0	0	0	1	10
0	1	0	0	0	0	0	1	0	10
0	0	1	0	0	0	0	-1	-1	-5
0	0	0	1	0	0	0	-1	-2	-10
0	0	0	0	1	0	0	0	0	5
0	0	0	0	0	1	0	1	2	20
0	0	0	0	0	0	1	1	1	15
0	0	0	0	0	0	0	0	0	0

So we have two free variables h and i. Taking h = 9 and i = 2 would give the following solution:

8	1	6
3	5	7
4	9	2

References:

- [1]. Wikipedia encyclopedia.
- [2]. G.William, linear algebra with application, 7th edition, Jones and Barnetlett publisher, LLC, UK(2011).
- [3]. A text book of B. Sc mathematics volume (III), S. Chand Publications.

