SKEWNESS AND KURTOSIS ON VERTEX COLOURING OF CERTAIN GRAPHS

F.Sherin, U. Mary

1PG Scholar, 2Associate Professor
Department of Mathematics,
Nirmala College for women,
Coimbatore, Tamilnadu, India

Abstract: In this paper we found minimum vertex colouring sum based on a minimum proper colouring of a given graph G and we compute the statistical measures Mean, Variance, Median, Standard deviation, Skewness and Kurtosis.

Keywords: Graph Colouring; colouring sum of graphs; colouring mean; colouring variance; colouring median; colouring standard deviation; colouring skewness; colouring kurtosis; \(\chi \)-chromatic.

INTRODUCTION

The vertex colouring or simply a colouring of a graph is an assignment of colours or labels to the vertices of a graph subject to certain conditions. In a proper colouring of a graph, its vertices are coloured in such a way that no two adjacent vertices in that graph have the same color.

We extend the concepts of mean, median, variance, standard deviation, skewness and kurtosis to the theory of graph colouring and determine the values of these parameters for a number of standard graphs.

PRELIMINARIES:

- Let \(C = \{c_1, c_2, \ldots, c_k\} \) be a particular type of proper \(k \)-colouring of a given graph \(G \) and \(\theta(c_i) \) denotes the number of times a particular color \(c_i \) is assigned to the vertex of \(G \). Then, the vertex colouring sum of a colouring \(C \) of a given graph \(G \) denoted by \(\omega_c(G) \) is defined to be \([9,10,11,12,13,14,15,16,17]\).

\[
\omega_c(G) = \sum_{i=1}^{k} i \theta(c_i)
\]

- A graph in which one edge connecting every two consecutive vertices and there are no other edges, is called a path \([4][6]\).
- A simple graph in which every vertex must be connected to all other vertices of the graph, is called as a complete graph \([4][6]\).
- A simple graph with \(n \) vertices \((n \geq 3)\) and \(n \) edges is called a cycle graph if the degree of each vertex in the graph is two and it is denoted by \(C_n \) \([4][6]\).
- A wheel graph is obtained from a cycle graph \(C_n - 1 \) by adding a new vertex adjacent to all the vertices of the cycle \([4][6]\).

Colouring Statistical Parameters of Graphs

We can identify the colouring of the vertices of a given graph \(G \) with a random experiment. Let \(C = \{c_1, c_2, c_3, \ldots, c_k\} \) be a proper \(k \)-colouring of \(G \) and let \(X \) be the random variable (r.v) which denotes the number of vertices in \(G \) having a particular colour. Since the sum of all weights of colors of \(G \) is the order of \(G \), the real valued function \(f(i) \) is defined by

\[
f(i) = \begin{cases} \theta(c_i) & ; i = 1,2,\ldots,k \\ \left\lfloor \frac{\theta(c_i)}{V(G)} \right\rfloor & ; i = 1,2,\ldots,k \\ 0 & \end{cases}
\]

is the probability mass function (p.m.f) of the r.v \(X \). If the context is clear, we can also say that \(f(i) \) is the p.m.f of the graph \(G \) with respect to the given colouring \(C \). Hence, analogous to the definitions of the mean, median, variance, standard deviation, skewness and kurtosis of random variables, those statistical parameters of a graph \(G \), with respect to a general colouring of \(G \) can be defined as follows.
Definition 1. Let $C = \{c_1, c_2, ..., c_k\}$ be a certain type of proper k-colouring of a given graph G and $\theta(c_i)$ denotes the number of times a particular color c_i is assigned to vertices of G. Then, the colouring mean of a colouring C of a given graph G, denoted by $\mu_C(G)$ is given by,

$$
\mu_C(G) = \frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)}
$$

Definition 2. The colouring median of a colouring C of a given graph G, denoted by $M_C(G)$ and is defined to be

$$
M_C(G) = \frac{\sum_{i=1}^{k} \theta(c_i)}{2}
$$

Definition 3. The colouring variance of a colouring C of a given graph G, denoted by $\sigma^2_C(G)$ is given by,

$$
\sigma^2_C(G) = \left(\frac{\sum_{i=1}^{k} i^2 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right) - \left(\frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right)^2
$$

Definition 4. The colouring standard deviation of a colouring C of a given graph G, denoted by $\sigma_C(G)$ is given by,

$$
\sigma_C(G) = \sqrt{\frac{\sum_{i=1}^{k} i^2 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} - \left(\frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right)^2}
$$

Definition 5. The colouring skewness of a colouring C of a given graph G, denoted by $\gamma_C(G)$ and is defined to be

$$
\gamma_C(G) = \frac{\text{Mean} - \text{Median}}{\text{Standard Deviation}}
$$

Definition 6. For a positive integer r, the rth moment of the colouring C is denoted by $\mu_{C^r}(G)$ is given by,

$$
\mu_{C^r}(G) = \frac{\sum_{i=1}^{k} i^r \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)}
$$

We have various moments as follows:

1st Moment:

$$
\mu_{C^1}(G) = \frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)}
$$

2nd Moment:

$$
\mu_{C^2}(G) = \frac{\sum_{i=1}^{k} i^2 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} - \left(\frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right)^2
$$

3rd Moment:

$$
\mu_{C^3}(G) = \frac{\sum_{i=1}^{k} i^3 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} - 3 \left[\frac{\sum_{i=1}^{k} i^2 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right] \left[\frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right] + 2 \left[\frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right]^3
$$
4th Moment:

\[\mu_4^c(G) = \frac{\sum_{i=1}^{k} i^4 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} - 4 \left(\frac{\sum_{i=1}^{k} i^3 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right)^2 + 6 \left(\frac{\sum_{i=1}^{k} i^2 \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right)^3 - 3 \left(\frac{\sum_{i=1}^{k} i \theta(c_i)}{\sum_{i=1}^{k} \theta(c_i)} \right)^4 \]

Definition 7. The colouring kurtosis of a colouring \(C \) of a given graph \(G \), denoted by \(\beta_2(G) \) and defined by,

\[\beta_2(G) = \frac{\mu_4^c(G)}{(\mu_2^c(G))^2} \]

\(\chi \)-Chromatic Statistical Parameters of Graphs:

Colouring mean, median, variance, standard deviation, skewness and kurtosis corresponding to a particular type of minimal proper colouring of the vertices of \(G \) are defined as follows:

Definition 8. A colouring mean of a graph \(G \), with respect to a proper vertex colouring \(C \) is said to be a \(\chi \)-chromatic mean of \(G \), if \(C \) is the minimum proper colouring of \(G \) and the colouring sum \(\omega_c(G) \) is also minimum. The \(\chi \)-chromatic mean of a graph \(G \) is denoted by \(\mu^c(G) \).

Definition 9. A colouring median of a graph \(G \), with respect to a proper vertex colouring \(C \) is said to be a \(\chi \)-chromatic median of \(G \). The \(\chi \)-chromatic median of a graph \(G \) is denoted by \(M^c(G) \).

Definition 10. The \(\chi \)-chromatic variance of \(G \), denoted by \(\sigma^2_c(G) \), is a colouring variance of \(G \) with respect to a minimal proper vertex colouring of \(G \) which yields the minimum colouring sum.

Definition 11. The \(\chi \)-chromatic standard deviation of \(G \), denoted by \(\sigma_c(G) \), is a colouring standard deviation of \(G \) with respect to a minimal proper vertex colouring of \(G \) which yields the minimum colouring sum.

Definition 12. The \(\chi \)-chromatic skewness of \(G \), denoted by \(\gamma_c(G) \), is a colouring variance of \(G \) with respect to a minimal proper vertex colouring of \(G \) which yields the minimum colouring sum.

Definition 13. The \(\chi \)-chromatic kurtosis of \(G \), denoted by \(\beta_2(G) \), is a colouring kurtosis of \(G \) with respect to a minimal proper vertex colouring of \(G \) which yields the minimum colouring sum. If \(\beta_2 = 3 \), then it is known as MESOKURTIC Curve, if \(\beta_2 < 3 \), then it is known as PLATYKURTIC Curve and if \(\beta_2 > 3 \), then it is known as LEPTOKURTIC Curve.

Let us now determine the \(\chi \)-chromatic mean, median, variance, standard deviation, skewness and kurtosis of certain standard graph classes. The following result discusses on Complete graph \(K_n \).

Proposition 1. The \(\chi \)-Chromatic mean of a Complete graph \(K_n \) is \(\frac{n+1}{2} \), \(\chi \)-chromatic variance is \(\frac{n^2-1}{12} \), \(\chi \)-chromatic median is \(\frac{n}{2} \), \(\chi \)-chromatic standard deviation \(\sqrt{\frac{n^2-1}{12}} \), \(\chi \)-chromatic skewness \(3 \left(\sqrt{\frac{3}{n^2-1}} \right) \) and \(\chi \)-chromatic kurtosis \(\frac{9n^2-10n^2+7}{5n^2-10n^2-5} \).

Proof. Consider a Complete graph \(K_n \) has different colours as they are adjacent to each other. (i.e) \(\theta(c_i) = 1 \) for the color \(c_i \); \(1 \leq i \leq n \).

\[\mu^c(K_n) = \frac{n+1}{2}, \sigma^2_c(K_n) = \frac{n^2-1}{12}, M^c(K_n) = \frac{n}{2}, \sigma_c(K_n) = \sqrt{\frac{n^2-1}{12}}, \gamma_c(K_n) = 3 \left(\sqrt{\frac{3}{n^2-1}} \right) \]

We can obtain kurtosis by various moments as,

\[\mu_1 = \frac{n+1}{2}, \mu_2 = \frac{(n+1)(2n+1)}{6}, \mu_3 = \frac{n(n+1)^2}{4}, \mu_4 = \frac{(n+1)(2n+1)(3n^2+3n+1)}{30} \]

\[\mu_3 = 0 \quad \mu_4 = \frac{3n^4 - 10n^2 + 7}{240} \]

And the \(\chi \) - chromatic kurtosis of \(\beta_{2\chi}(K_n) = \frac{9n^4 - 10n^2 + 7}{5n^4 - 10n^2 - 5} \)

If \(\beta_{2\chi}(K_n) < 3 \), then it is known as PLATYKURTIC Curve.

THEOREM 1:

Any Proper colouring of a complete graph \(K_n \) has the discrete uniform distribution on \{1, 2, ..., k\} (D(U(k))) that is discrete uniform distribution.

Proof: Let \(X \) be the r.v representing the number of colors in a proper \(k \)-colouring of a complete graph \(K_n \). For any proper \(k \)-colouring \(C \) of the complete graph \(K_n \), \(\theta(c_i) = 1 \) and \(k = n \). Hence, the corresponding p.m.f is \(f(i) = \begin{cases} \frac{1}{n} & ; i = 1, 2, ..., n \\ 0 & ; \text{elsewhere} \end{cases} \)

which is that of the discrete uniform distribution on \{1, 2, ..., k\}. Hence, \(X \) follows DU (k).

Proposition 2: The \(\chi \) – chromatic mean of a path \(P_n \) is

\[\mu_{\chi}(P_n) = \begin{cases} \frac{3}{2} & ; \text{if } n \text{ is even} \\ \frac{3n - 1}{2n} & ; \text{if } n \text{ is odd} \end{cases} \]

the \(\chi \) – chromatic variance of a path \(P_n \) is

\[\sigma^2_{\chi}(P_n) = \begin{cases} \frac{1}{4} & ; \text{if } n \text{ is even} \\ \frac{n^2 - 1}{4n^2} & ; \text{if } n \text{ is odd} \end{cases} \]

the \(\chi \) – chromatic median of a path \(P_n \) is \(\frac{n}{2} \),

the \(\chi \) – chromatic standard deviation of path \(P_n \) is

\[\sigma_{\chi}(P_n) = \begin{cases} \frac{1}{2} & ; \text{if } n \text{ is even} \\ \sqrt{\frac{n^2 - 1}{4n^2}} & ; \text{if } n \text{ is odd} \end{cases} \]

the \(\chi \) –chromatic skewness of \(P_n \) is

\[\gamma_{\chi}(P_n) = \begin{cases} 3(3 - n) & ; \text{if } n \text{ is even} \\ 3(-n^2 + 3n + 1) & ; \text{if } n \text{ is odd} \end{cases} \sqrt{n^2 + 1} \]

the \(\chi \) – chromatic kurtosis of a path \(P_n \) is,

\[\beta_{2\chi}(P_n) = \begin{cases} 1 & ; \text{if } n \text{ is even} \\ \frac{n^4 + 2n^2 - 3}{n^4 - 2n^2 + 1} & ; \text{if } n \text{ is odd} \end{cases} \]

Proof: Consider a path \(P_n \) on \(n \) vertices. Then, we have the following cases.

(1) If \(n \) is even and is 2-colourable then \(P_n \) has exactly \(\frac{n}{2} \) vertices having colour \(c_1 \) and \(c_2 \) each. Then,
the χ-chromatic mean of P_n is $\mu_\chi(P_n) = \frac{3}{2}$, the χ-chromatic variance of P_n is $\sigma^2_\chi(P_n) = \frac{1}{4}$, the χ-chromatic median of P_n is $\frac{n}{2}$.

The χ-chromatic standard deviation of P_n is $\sigma_\chi(P_n) = \frac{1}{2}$, the χ-chromatic skewness of P_n is $\gamma_\chi(P_n) = 3(3 - n)$ we can obtain kurtosis by various moments, $\mu_3 = \frac{3}{2}, \mu_4 = \frac{5}{2}, \mu_3 = \frac{9}{2}, \mu_4 = \frac{17}{2}, \mu_3 = 0, \mu_4 = \frac{1}{16}$, And the χ-chromatic kurtosis of $\beta_{2\chi}(P_n) = 1$ If $\beta_{2\chi}(P_n) < 3$ then it is known as PLATYKURTIC Curve.

(2) If n is odd, Then, the p.m.f of the corresponding r.v:X is given by $f(i) = \begin{cases} \frac{n+1}{2n} & ; i = 1 \\ \frac{n-1}{2n} & ; i = 2 \\ 0; & \text{otherwise} \end{cases}$

The χ-chromatic mean of P_n is $\mu_\chi(P_n) = \frac{3n-1}{2n}$, the χ-chromatic variance of P_n is $\sigma^2_\chi(P_n) = \frac{n^2-1}{4n^2}$, the χ-chromatic median of P_n is $\frac{n}{2}$, the χ-chromatic standard deviation of P_n is $\sigma_\chi(P_n) = \sqrt{\frac{n^2-1}{4n^2}}$, the χ-chromatic skewness of P_n is $\gamma_\chi(P_n) = 3\left(\frac{n^2+3n-1}{\sqrt{n^2-1}}\right)$, we can obtain kurtosis by various moments,

$\mu_1 = \frac{3n-1}{2n}, \mu_2 = \frac{5n-3}{2n}, \mu_3 = \frac{9n-7}{2n}, \mu_4 = \frac{17n-15}{2n}, \mu_3 = \frac{n^2-1}{4n^3}, \mu_4 = \frac{n^4+2n^2-3}{16n^3}$, And the χ-chromatic kurtosis of $\beta_{2\chi}(P_n) = \frac{n^4+2n^2-3}{n^4-2n^2+1}$, If $\beta_{2\chi}(P_n) < 3$, then it is known as PLATYKURTIC Curve.

Proposition 3: The χ-chromatic mean of a cycle C_n is

$$\mu_\chi(C_n) = \begin{cases} \frac{3}{2}; & \text{if } n \text{ is even} \\ \frac{3n+3}{2n}; & \text{if } n \text{ is odd} \end{cases}$$

And the χ-chromatic variance of a cycle C_n is

$$\sigma^2_\chi(C_n) = \begin{cases} \frac{1}{4}; & \text{if } n \text{ is even} \\ \frac{n^2+8n-9}{4n^2}; & \text{if } n \text{ is odd} \end{cases}$$

the χ-chromatic median of a cycle C_n is $\frac{n}{2}$.

the χ-chromatic standard deviation of a cycle C_n is

$$\sigma_\chi(C_n) = \begin{cases} \frac{1}{4}; & \text{if } n \text{ is even} \\ \sqrt{\frac{n^2+8n-9}{4n^2}}; & \text{if } n \text{ is odd} \end{cases}$$

The χ-chromatic skewness of a cycle C_n is
\[\gamma_x(C_n) = \begin{cases} 3(3 - n); & \text{if } n \text{ is even} \\ \frac{3(n^2 + 3n + 3)}{\sqrt{n^2 + 8n - 9}}; & \text{if } n \text{ is odd} \end{cases} \]

The \(\chi \) - chromatic kurtosis of \(C_n \) is,

\[\beta_{2x}(C_n) = \begin{cases} 1; & \text{if } n \text{ is even} \\ \frac{n^4 + 80n^3 - 270n^2 + 432n - 243}{n^4 + 16n^3 + 46n^2 - 144n + 81}; & \text{if } n \text{ is odd} \end{cases} \]

Proof: Consider a cycle \(C_n \) on \(n \) vertices. Then, we have the following cases.

1. If \(n \) is even and is 2-colourable then \(C_n \) has exactly \(\frac{n}{2} \) vertices having colour \(C_1 \) and \(C_2 \) each. Then,

 (i) the \(\chi \) - chromatic mean of cycle \(C_n \) is, \(\mu_x(C_n) = \frac{3}{2} \)

 (ii) the \(\chi \) - chromatic variance of cycle \(C_n \) is, \(\sigma^2_x(C_n) = \frac{1}{4} \)

 (iii) the \(\chi \) - chromatic median of cycle \(C_n \) is \(\frac{n}{2} \)

 (iv) the \(\chi \) - chromatic standard deviation of \(C_n \) is, \(\sigma_x(C_n) = \frac{1}{2} \)

 (v) the \(\chi \) - chromatic skewness of \(C_n \) is, \(\gamma_x(C_n) = 3(3 - n) \)

 We can obtain kurtosis by various moments,

 \[
 \mu_1 = \frac{3}{2}, \mu_2 = \frac{5}{2}, \mu_3 = \frac{9}{2}, \mu_4 = \frac{17}{2}, \mu_5 = 0, \mu_6 = \frac{1}{16},
 \]

 And the \(\chi \) - chromatic kurtosis of \(C_n \) is \(\beta_{2x}(C_n) = 1 \)

 If \(\beta_{2x}(C_n) < 3 \) then it is known as PLATYKURTIC Curve.

2. If \(n \) is odd, then \(C_n \) is 3-colourable. Let \(C = \{ c_1, c_2, c_3 \} \) be the minimal proper colouring of \(C_n \). Then, the p.m.f of the corresponding (r.v.\(X \)) is given by

 \[f(i) = \begin{cases} \frac{n-1}{2n}; & i = 1, 2 \\ \frac{1}{n}; & i = 3 \\ 0; & \text{elsewhere} \end{cases} \]

 (i) the \(\chi \) - chromatic mean of cycle \(C_n \) is \(\mu_x(C_n) = \frac{3n + 3}{2n} \)

 (ii) the \(\chi \) - chromatic variance of cycle \(C_n \) is, \(\sigma^2_x(C_n) = \frac{n^2 + 8n - 9}{4n^2} \)

 (iii) the \(\chi \) - chromatic median of cycle \(C_n \) is \(\frac{n}{2} \)

 (iv) the \(\chi \) - chromatic standard deviation of cycle \(C_n \) is, \(\sigma_x(C_n) = \sqrt{\frac{n^2 + 8n - 9}{4n^2}} \)
(v) the χ - chromatic skewness of cycle \(C_n \) is \(\gamma_{\chi}(C_n) = 3\left(\frac{-n^2+3n+3}{\sqrt{n^2+8n-9}}\right) \)

(vi) we can obtain kurtosis by various moments,

\[\mu_1 = \frac{3n+3}{2n}, \quad \mu_2 = \frac{5n+13}{2n}, \quad \mu_3 = \frac{9n+45}{2n}, \quad \mu_4 = \frac{17n+145}{2n}, \]

\[\mu_3 = \frac{9n^2 - 36n + 27}{4n^3}, \quad \mu_4 = \frac{n^4 + 80n^3 - 270n^2 + 432n - 243}{16n^4}, \]

And the χ - chromatic kurtosis of \(\beta_{\chi}(C_n) = \frac{n^4 + 80n^3 - 270n^2 + 432n - 243}{n^4 + 16n^3 + 46n^2 - 144n + 81}, \)

If \(\beta_{\chi}(C_n) < 3 \) then it is known as PLATYKURTIC Curve.

Proposition 4: The χ - chromatic mean of a wheel graph \((W_n) \) is

\[\mu_{\chi}(W_n) = \begin{cases} \frac{3n + 8}{2n} & \text{if } n \text{ is even} \\ \frac{3n + 3}{2n} & \text{if } n \text{ is odd} \end{cases} \]

And the χ – chromatic variance of a wheel graph \((W_n) \) is

\[\sigma^2_{\chi}(W_n) = \begin{cases} \frac{n^2 + 32n - 64}{4n^2} & \text{if } n \text{ is even} \\ \frac{n^2 + 8n - 9}{4n^2} & \text{if } n \text{ is odd} \end{cases} \]

the χ - chromatic median of a Wheel Graph \((W_n) \) is \(\frac{n}{2} \)

the χ – chromatic standard deviation of a Wheel graph \((W_n) \) is

\[\sigma_{\chi}(W_n) = \begin{cases} \sqrt{\frac{n^2 + 32n - 64}{4n^2}} & \text{if } n \text{ is even} \\ \sqrt{\frac{n^2 + 8n - 9}{4n^2}} & \text{if } n \text{ is odd} \end{cases} \]

the χ - chromatic skewness of a wheel graph \((W_n) \) is

\[\gamma_{\chi}(W_n) = \begin{cases} 3\left(\frac{-n^2 + 3n + 8}{\sqrt{n^2 + 32n - 64}}\right) & \text{if } n \text{ is even} \\ 3\left(\frac{-n^2 + 3n + 3}{\sqrt{n^2 + 8n - 9}}\right) & \text{if } n \text{ is odd} \end{cases} \]

the χ – chromatic kurtosis of a Wheel graph \((W_n) \) is

\[\beta_{\chi}(W_n) = \begin{cases} \frac{n^4 + 704n^3 - 4480n^2 + 12288n + 12288}{n^4 - 64n^2 + 1024} & \text{even} \\ \frac{n^4 + 1456n^3 + 1026n^2 + 432n - 243}{n^4 + 16n^3 + 46n^2 - 144n + 81} & \text{odd} \end{cases} \]

Proof: A wheel graph \(W_n \) is 4-colourable, when \(n \) is even and 3-colourable when \(n \) is odd. Then, we have the following cases.
(1) First assume that n is an even integer. Then, the outer cycle C_{n-1} of W_n is an odd cycle. Hence, $\frac{n-2}{2}$ vertices of C_{n-1} have colour c_1 and c_2, one vertex of C_{n-1} have colour c_3 and the central vertex of W_n has colour c_4. Hence the corresponding p.m.f of the

$$f(i) = \begin{cases} \frac{n-2}{2n}; & i = 1, 2 \\ \frac{1}{n}; & i = 3, 4 \\ 0; & \text{elsewhere} \end{cases}$$

(i) the χ-chromatic mean of (W_n) is $\mu_{\chi}(W_n) = \frac{3n+8}{2n}$

(ii) the χ-chromatic variance of (W_n) is $\sigma^2_{\chi}(W_n) = \frac{n^2 + 32n - 64}{4n^2}$

(iii) the χ-chromatic median of (W_n) is $\frac{n}{2}$

(iv) the χ-chromatic standard deviation of (W_n) is $\sigma_{\chi}(W_n) = \frac{\sqrt{n^2 + 32n + 64}}{4n^2}$

(v) the χ-chromatic skewness of (W_n) is $\gamma_{\chi}(W_n) = 3\left(\frac{-n^2 + 3n + 8}{\sqrt{n^2 + 32n - 64}}\right)$

(vi) we can obtain kurtosis by various moments,

$$\mu_1 = \frac{3n + 8}{2n}, \mu_2 = \frac{5n + 40}{2n}, \mu_3 = \frac{9n + 164}{2n}, \mu_4 = \frac{17n + 640}{2n},$$

$$\mu_3 = 0, \mu_4 = \frac{n^4 + 704n^3 - 4480n^2 + 12288n - 12288}{(2n)^4},$$

And the χ-chromatic kurtosis of $\beta_{\chi}(W_n) = \frac{n^4 + 704n^3 - 4480n^2 + 12288n + 12288}{n^4 - 64n^2 + 1024}$

If $\beta_{\chi}(W_n) < 3$ then it is known as PLATYKURTIC Curve.

(2) Next assume that n is an odd integer. Then, the outer cycle C_{n-1} of W_n is an even cycle. Hence, $\frac{n-1}{2}$ vertices of the outer cycle C_{n-1} have colour c_1, $\frac{n-1}{2}$ vertices of C_{n-1} have colour c_2, and the central vertex of C_{n-1} has colour c_3. Hence, the p.m.f for (W_n) is given by

$$f(i) = \begin{cases} \frac{n-1}{2n}; & i = 1, 2 \\ \frac{1}{n}; & i = 3 \\ 0; & \text{elsewhere} \end{cases}$$

(i) the χ-chromatic mean of (W_n) is $\mu_{\chi}(W_n) = \frac{3n+3}{2n}$

(ii) the χ-chromatic variance of (W_n) is $\sigma^2_{\chi}(W_n) = \frac{n^2 + 8n - 9}{4n^2}$

(iii) the χ-chromatic median of (W_n) is $\frac{n}{2}$
(iv) the χ - chromatic standard deviation of (W_n) is $\sigma_{\chi}(W_n) = \sqrt{\frac{n^2 + 8n - 9}{4n^3}}$

(v) the χ - chromatic skewness of (W_n) is $\gamma_{\chi}(W_n) = 3\left(\frac{-n^2 + 3n + 3}{n^2 + 8n - 9}\right)$

(vi) we can obtain kurtosis by various moments,

$$\mu_1 = \frac{3n + 3}{2n}, \mu_2 = \frac{5n + 13}{2n}, \mu_3 = \frac{9n + 18}{2n}, \mu_4 = \frac{17n + 155}{2n},$$

$$\mu_3 = -\frac{45n^2 - 36n + 27}{4n^3}, \mu_4 = \frac{n^4 + 1456n^3 + 1026n^2 + 432n - 243}{16n^4},$$

χ - chromatic kurtosis of $\beta_{2\chi}(W_n) = \frac{n^4 + 1456n^3 + 1026n^2 + 432n - 243}{n^3 + 16n^3 + 46n^2 - 144n + 81}$.

If $\beta_{2\chi}(W_n) < 3$ then it is known as PLATYKURTIC Curve.

CONCLUSION:

In this paper, we extend the concept of mean, variance, standard deviation, median, skewness, and kurtosis, some important statistical parameters to various graphs based on vertex coloring sum. Based on the vertex coloring sum of graphs, we have investigated these statistical inferences for vertex colourable graphs such as complete graphs, path, cycle, and wheel. This concept can be extended to several other operations on graphs such as edge coloring, cartesian product, total coloring graphs, john coloring, lexicographic product, corona product, sum and product of graphs etc.

BIBLIOGRAPHY:

