Bipolar-valued fuzzy BZMV algebra

1EMIMANIMCY.M, 2Dr. A. FRANCINA SHALINI
1PG SCHOLAR, 2ASSISTANT PROFESSOR
DEPARTMENT OF MATHEMATICS,
NIRMALA COLLEGE FOR WOMEN,
COIMBATORE,TAMILNADU

Abstract: Brower-Zadeh MV – algebra is the result of a natural pasting between Brower – Zadeh algebras and MV – algebras. In this study the Bipolar – valued fuzzy values are introduced to Brower-Zadeh MV – algebras and the Strong s, t cuts are also defined.

Index Terms - BZMV- algebra, BZMV $\alpha\delta$- algebra, Bipolar – valued fuzzy, strong cut

Introduction:

MV algebra have been introduced by C, CHANG [2]in order to provide an adequate semantic characterisation for Lukasiewicz many valued logics. (i.e)complete with respect to the evaluations of propositional variables in the real unit interval[0,1].

Recall in fact that the prototypical example of an MV-algebra is the standard one [0,1]MV = < [0, 1], \oplus, \neg, 0 > where for all x,y \in [0,1],

\[
\mu(x \oplus y) = \min \{1, x + y\},
\]

\[
\mu(x \neg y) = \neg(\mu(\neg x \oplus \neg y) \oplus x),
\]

\[
x \neg = x
\]

\[
x \neg \neg x = \neg x = 1 - x.
\]

In 1965, Zadeh introduced the notion of a fuzzy subset of a set. Since then it has become a vigorous area of research in different domains. There have been a number of generalizations of this fundamental concepts such as intuitionistic fuzzy sets, interval-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0,1] to [-1,1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0,1] indicates that elements somewhat satisfy the property, and the membership degree [-1,0) indicates that elements somewhat satisfy the implicit counter-property. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar to each other. However, they are different from each other. Thus the bipolar-valued fuzzy set concepts are applied to the BZMV ALGEBRAS and some of the properties are verified.

Preliminaries:

[2] Definition 1.1 :

A Brower Zadeh MV algebra (shortly BZMV algebra) is a structure $A = < A, \oplus, \neg, \sim, 0 >$, where A is a non empty set of elements,0 is a constant element of A, \neg and \sim are unary operations on A, \oplus is a binary operation on A. The following axioms hold:

* $(x \oplus y) \oplus z = (y \oplus z) \oplus x \oplus x \oplus 0 = x$

* $\neg(\neg x) = x$

* $\neg(\neg x \oplus y) \oplus y = \neg(x \oplus \neg y) \oplus x$

* $x \sim \sim x = 0$

* $x \neg \neg x = \neg x$

* $\neg(\neg x \oplus y) \oplus y = \neg(\sim x \oplus \sim y) \oplus \sim y$

[17] Definition 1.2:

A de- Morgan Brower Zadeh MV algebra (shortly BZMV dM algebra) is a structure $A = < A, \oplus, \neg, \sim, 0 >$ that satisfies the axioms

* $(x \oplus y) \oplus z = (y \oplus z) \oplus x$

* $x \oplus 0 = x$

* $\neg(\neg x) = x$

* $\neg(\neg x \oplus y) \oplus y = \neg(x \oplus \neg y) \oplus x$

* $\neg x \sim \sim x = 0$

* $x \sim \sim x = \sim x$

* $\neg(\neg x \oplus y) \oplus y = \neg(\sim x \oplus \sim y) \oplus \sim y$

and also the following condition:

* $\neg(\neg x \oplus \neg y) \oplus \neg y = \neg(\sim x \oplus \sim \sim y) \oplus \sim \sim y$

Bipolar – valued fuzzy BZMV algebra:

Definition 2.1:[29]

Let G be a non empty set. A Bipolar-valued fuzzy set in G is an object having the form

$B = \{ (x, \mu^+(x), \mu^-(x)) ; x \in G \}$ where $\mu^+: G \rightarrow [0, 1]$ and $\mu^-: G \rightarrow [-1; 0]$ are mapping.

Note: In this paper we use the symbol $B = (\mu^+, \mu^-)$ for the Bipolar-valued fuzzy set

$B = \{ (x, \mu^+(x), \mu^-(x)) ; x \in G \}$
Definition 2.2:
A Bipolar-valued fuzzy set \(B = (\mu^+, \mu^-) \) is called a "Bipolar-valued fuzzy BZMV -algebra" (BFBZMV) of \(M \), if for every \(x, y \) in \(M \) it satisfies:
i) \(\mu^+(x) \leq \mu^+(\neg x) \)
ii) \(\mu^- (x) \geq \mu^- (\neg x) \)
iii) \(\inf \mu^+ (x) \geq \min \{\mu^+ (x), \mu^+ (y)\} \)
iv) \(\sup \mu^- (x) \leq \max \{\mu^- (x), \mu^- (y)\} \)

Definition 2.3:
Let \(M \) be a nonempty set endowed with an operation \(\oplus \), an unary operation \(\sim \) and \(\neg \) and a constant 0 satisfying the following axioms,
for all \(x, y, z \in M \):
• \((x \oplus y) \oplus z = (y \oplus z) \oplus x \)
• \(x \oplus 0 = x \)
• \(\neg(\neg x) = x \)
• \(\neg(\neg x \oplus y) \oplus y = \neg(x \oplus \neg y) \oplus x \)
• \(x \oplus \sim x = \neg x \)
• \(x \oplus \sim \sim x = \sim x \)
• \(\neg \sim [\neg(\neg x \oplus y) \oplus y] = \neg(\sim x \oplus \sim y) \oplus \sim y \)

For every subsets \(A \) and \(B \) of \(M \) we define the operators as follows:
\[
a \oplus b = \begin{cases} a + b, & \text{if } a + b < 1 \text{ and also if } a, b \in \mu^+ \\ 1, & \text{otherwise} \end{cases}
\]
\[
\neg a = \begin{cases} -a, & \text{if } a \in \mu^+ \\ -1, & \text{if } a \in \mu^- \\ 1, & \text{if } a = 0 \text{ and also } a \in \mu^+ \\
0, & \text{otherwise} \end{cases}
\]
\[
\sim a = \begin{cases} -1, & \text{if } a = 0 \text{ and also } a \in \mu^- \\ 0, & \text{otherwise} \end{cases}
\]

EXAMPLE 2.1:
Let \(M = \{0, a, 1\} \) and define \(\oplus, \neg, \sim \) by the following tables:
\[
a \oplus b = \begin{cases} a + b, & \text{if } a + b < 1 \text{ and also if } a, b \in \mu^+ \\ 1, & \text{otherwise} \end{cases}
\]
\[
\neg a = \begin{cases} 1, & \text{if } a \in \mu^+ \\ -1, & \text{if } a \in \mu^- \\ 0, & \text{otherwise} \end{cases}
\]
\[
\sim a = \begin{cases} 0, & \text{if } a = 0 \text{ and also } a \in \mu^+ \\ 1, & \text{otherwise} \end{cases}
\]

Now define \(\mu^+ \) and \(\mu^- \) as follows:
\[
\mu^+(x) = \begin{cases} 0.7, & \text{if } x \in \mu^+ \\ 0.2, & \text{otherwise} \end{cases}
\]

\[
\mu^-(x) = \begin{cases} 0.7, & \text{if } x \in \mu^- \\ 0, & \text{otherwise} \end{cases}
\]
If \(a \in \mu^- \)

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>a</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu^-(x))</td>
<td>-1</td>
<td>-0.3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Then \(M = \{(0,a,1), \sim, 0 \} \) is a Bipolar valued fuzzy BZMV algebra (BFBZMV) of \(M \).

Proposition 2.1:
Let \(\mu^+; \mu^- \) be a BZMV algebra of \(M \).
Then \(B = (\mu^+; \mu^-) \) is a Bipolar-valued fuzzy BZMV algebra of \(M \). Conversely, if \(B = (\mu^+; \mu^-) \) is a Bipolar-valued fuzzy BZMV algebra of \(M \), then \((\mu^+; \mu^-) \) are BZMV algebra of \(M \).

Proof:
Let \(x, y \in M \), we know that,
\[
\min\{-\mu(x), -\mu(y)\} = -\max\{\mu(x), \mu(y)\} = \min[\mu_B^+(x), \mu_B^-(y)]
\]
and also,
\[
sup_{x \in \mu(y)}(\mu_B^+(x)) = \max\{sup_{x \in \mu(y)}(\mu_B^+(x)), sup_{x \in \mu(y)}(\mu_B^-(y))\} \leq \max\{\max[\mu_B^+(x), \mu_B^-(y)], \max[\mu_B^-(x), \mu_B^+(y)]\} = \max\{\mu_B^+(x), \mu_B^-(x)\}
\]
Hence Proved.

Definition 2.4 :
Let \(A = \langle A, \oplus, \neg, \sim, 0 \rangle \) be BZMV algebra and \(S \subseteq A \) be a non empty set containing "0". If \(S \) is a sub-structure BZMV algebra of \(A \) with respect to "\(\oplus \)" and "\(\sim \)" then we say that \(S \) is a MV algebra of \(A \).

Lemma 2.1:
Let \(A = \langle A, \oplus, \neg, \sim, 0 \rangle \) be BZMV algebra and \(S \subseteq A \) be a non empty set containing "0". Then \(S \) is a MV algebra of \(A \) iff for all \(x, y \in S \):
* \(x \oplus y \in S \)
* \(\sim x \in S \)

Definition 2.5 :
Let \(A = \langle A, \oplus, \neg, \sim, 0 \rangle \) be BZMV algebra and \(S \subseteq A \) be a non empty set containing "0". If \(S \) is a sub-structure BZMV algebra of \(A \) with respect to "\(\oplus \)" and "\(\sim \)" then we say that \(S \) is a MV algebra of \(A \).

Lemma 2.2:
Let \(A = \langle A, \oplus, \neg, \sim, 0 \rangle \) be BZMV algebra and \(S \subseteq A \) be a non empty set containing "0". Then \(S \) is a MV algebra of \(A \) iff for all \(x, y \in S \):
* \(x \oplus y \in S \)
* \(\sim x \in S \)

Definition 2.6:
A Bipolar-valued fuzzy set \(B = (\mu^+; \mu^-) \) is called a "Bipolar-valued fuzzy MV - algebra" (BFMV) of \(A \), if for every \(x, y \in A \) it satisfies:

i) \(\mu^+(x) \leq \mu^+(\sim x) \)

ii) \(\mu^-(x) \geq \mu^-((\sim x)) \)

iii) \(\inf \mu^+(x) \geq \min\{\mu^+(x), \mu^+(y)\} \)

iv) \(\sup \mu^-(x) \leq \max\{\mu^-(x), \mu^-(y)\} \)

Remark 2.1 :
By the definition \(\sim \sim (\sim x) = x \) we have:
\[
\mu^+(\sim x) \geq \mu^+(\sim x) \Rightarrow \mu^+(x) \leq \mu^+(\sim x)
\]
\[
\mu^-(\sim x) \leq \mu^-((\sim x)) \Rightarrow \mu^-(\sim x) \leq \mu^-(x)
\]
Hence conditions (i),(ii) in definition can be written as:

(i) \(\mu^+(x) = \mu^+(\sim x) \)

(ii) \(\mu^-(x) = \mu^-(\sim x) \)

Strong positive t-cut and Strong negative s - cut

Definition 3.1:
Let \(B = (\mu^+; \mu^-) \) be a Bipolar-valued fuzzy set of \(A \) and \((s,t) \in [-1,0) \times [0,1] \).

Then:
* The set \(B_s^+ = \{x \in A; \mu^+(x) \geq t\} \) is called positive t-cut of \(B \).
* The set \(B_s^- = \{x \in A; \mu^- (x) \leq s\} \) is called negative s-cut of \(B \).
The set \(B^+_x \) is called strong positive s-cut of \(B \)

The set \(B^-_x \) is called strong negative s-cut of \(B \)

The set \(A^+_{y\mid t} \) is called \((t,s)\) cut of \(B \)

The set \(A^-_{y\mid t} \) is called \((t,s)\) cut of \(B \)

Now let \(a \in A \),

Then

\[
\inf_{x \in A} \mu^+(y) = \min \{ \mu^+(x), \mu^+(y) \}
\]

Hence \(\mu^+(a) \geq \mu^+(0) \) \(\rightarrow (1) \)

(iv) \(\max \{-\mu(x), -\mu(y)\} = -\min \{\mu(x), \mu(y)\} \)

\[
\inf (-\mu(v)) = -\sup (\mu(v))
\]

Therefore, by definition of \((BFBZMV)\) and fuzzy BZMV algebra the proof is clear.

Hence proved.

Lemma 3.1: Let \(B_1 \) and \(B_2 \) are \((BFBZMV)\) of \(A \). Then \(B_1 \cap B_2 \) is a \((BFBZMV)\) of \(A \).

Proof: If \(x, y \in B_1 \cap B_2 \) then \(x, y \in B_1 \) and \(x, y \in B_2 \). Since \(B_1 \) and \(B_2 \) are \((BFBZMV)\), hence:

(i) \(\min \{ \mu^+_{B_1 \cap B_2}(x) \} = \min \{ \mu^+_{B_1}(x), \mu^+_{B_2}(x) \} \)

(ii) \(\min \{ \mu^-_{B_1 \cap B_2}(x) \} = \min \{ \mu^-_{B_1}(x), \mu^-_{B_2}(x) \} \)

For every \(y \in x \ominus y \)

(iii) \(\inf \{ \mu^+_{B_1 \cup B_2}(y) \} = \min \{ \inf \mu^+_{B_1}(y), \inf \mu^+_{B_2}(y) \} \)

\[\geq \min \{ \mu^+_{B_1}(y), \mu^+_{B_2}(y) \} \]

\[
\inf \{ \mu^-_{B_1 \cup B_2}(y) \} = \max \{ \mu^-(x), \mu^-(y) \}
\]

\[= \mu^-(0) \]

Hence \(\mu^-(a) \leq \mu^-(0) \) \(\rightarrow (2) \)

Now by, (1) and (2) and using Lemma we can conclude

\(\mu^+(a) = \mu^+(0) \) and \(\mu^-(a) = \mu^-(0) \).

Hence \(a \in S \) and this follows that \(x \ominus y \in A \).

Hence proved.

Proposition 3.2: Let \(S \) be a subset of \(A \) and \(B = (\mu^+; \mu^-) \) be a Bipolar valued fuzzy set determined as:

\[
\mu^+(x) = \begin{cases} k & \text{if } x \in S \\ 1 & \text{if } x \notin S \end{cases}
\]

\[
\mu^-(x) = \begin{cases} m & \text{if } x \in S \\ n & \text{if } x \notin S \end{cases}
\]

Where \(k, l \in [0, 1] \) and \(m, n \in [-1, 0] \) with \(k \leq 1, m \leq n \). Then \(B \) is a BFBZMV of \(A \) iff \(S \) is fuzzy BZMV algebra of \(A \).
Proof:
Let S be a fuzzy BZMV algebra of A. If x,y ∈ A are arbitrary hence:
If x ∈ S, then ¬ x ∈ S.
Hence μ^+(x) = μ^+(¬x), μ^−(x) = μ^−(¬x)
If x ∉ S, then ¬ x ∉ S.
Hence μ^+(x) = μ^+(¬x), μ^−(x) = μ^−(¬x)
we consider the following cases:

Case 1:
Let x, y ∈ S. Then x ⊕ y ⊆ S.
inf{μ^+(v)} = k
= min{k, k}
= min{μ^+(x), μ^+(y)}

and
sup{μ^+(v)} = m
= max{m, m}
= max{μ^−(x), μ^−(y)}

Case 2:
Let x, y ∉ S. Then,
μ^+(x) = 1 = μ^+(y)
μ^−(x) = n = μ^−(y)
so,
min{μ^+(x), μ^+(y)} = min{1, 1}
= 1
≤ inf {μ^+(v)}

Case 3:
Let x ∈ S and y ∉ S. Then:
μ^+(x) = k
μ^+(y) = 1
μ^−(x) = m
μ^−(y) = n

min{μ^+(x), μ^+(y)} = min{k, 1}
= 1
≤ inf {μ^+(v)}
max{μ^−(x), μ^−(y)} = max{m, n}
= n
= sup {μ^−(v)}

Hence B is a (BFBZMV) of A.

Conversely, Let x, y ∈ S.
Since B is (BFBZMV): μ^+(x) = k = μ^+(¬x)
Hence (¬x) ∈ S.
Now let a ∈ x ⊕ y
By the hypothesis we have:
inf{μ^+(v)} ≥ min{μ^+(x), μ^+(y)}
= min{k, k}
= k
and
sup{μ^−(v)} ≤ max{μ^−(x), μ^−(y)}
= max{m, m}
= m
Thus μ^+(a) = k and μ^−(a) = m. This follows a ∈ S, hence x ⊕ y ⊆ S and this proves that S is a fuzzy BZMV of A. Hence Proved.

Proposition 3.3:
If Bipolar valued fuzzy set B = (μ^+; μ^-) is a (BFBZMV)of A, then for all (s,t) ∈ [-1,0] × [0,1] the non empty strong positive t-cut of B and the non empty strong negative s-cut of B are fuzzy BZMV algebras of A.

Proof:
Let B = (μ^+; μ^-) be a (BFBZMV) of A and assume that B^+_t and B^-_r are non empty for all (s,t) ∈ [-1,0] × [0,1].
Let l, m ∈ B^+_t and p, q ∈ B^-_r. Then:
μ^+(l), μ^+(m) > 1
μ^- (p), μ^- (q) < s
Now,
Inf{ \mu^+(v)} \geq \min{\mu^+(l), \mu^+(m)} > t
\]
Where v \in x \oplus y, Which implies that l \oplus m \subseteq \beta I^+.

Now, let x \in \beta I^+.

Since B is a (BFMZMV) we have:
\mu^+ (\sim x) = \mu (x) > t
Hence \sim x and \sim x \in \beta I^+. So \beta I^+ is a BZMV algebra of A.

In other hand we have:
Sup \{ \mu^-(v) \} \leq \max\{ \mu^-(p), \mu^-(q)\} < s
Hence p \oplus q \in \beta I^-.
If x \in \beta I^- Since B is a (BFMZMV), then
\mu^- (\sim x) = \mu^- (x) < s
Hence \sim x \in \beta I^- and this proved that \beta I^- is a fuzzy BZMV algebra of A.
Hence Proved.

Corollary 3.1: If Bipolar valued fuzzy set B = (\mu^+: \mu^-) is a (BFMZMV) of A, then for all (s,t) \in [-1,0] \times [0,1] the non empty strong positive (s,t) - cut of B is a fuzzy BZMV algebra of A.

Proof:
We have, A_B^{(s,t)} = \beta I^+ \cap \beta I^-.
proof follows by proposition 3.3.
If Bipolar - valued fuzzy set B = (\mu^+: \mu^-) is a (BFMZMV) of A, then for all (s,t) \in [-1,0] \times [0,1] the non empty strong positive t - cut of B and the non-empty strong negative s-cut of B are fuzzy BZMV algebras of A.
Hence Proved.

REFERENCES:
[31] Tommaso Flamino and Franco Montanga, Dip. di Mathematica and science Informatics, An Algebraic Approach to states on MV-algebras. 52