Bipolar-valued fuzzy BZMV algebra

${ }^{1}$ EMIMANIMCY.M, ${ }^{2}$ Dr. A. FRANCINA SHALINI

${ }^{1}$ PG SCHOLAR, ${ }^{2}$ ASSISTANT PROFESSOR
DEPARTMENT OF MATHEMATICS, NIRMALA COLLEGE FOR WOMEN, COIMBATORE,TAMILNADU

Abstract

Brower-Zadeh MV - algebra is the result of a natural pasting between Brower - Zadeh algebras and MV - algebras. In this study the Bipolar - valued fuzzy values are introduced to Brower-Zadeh MV - algebras and the Strong s, t cuts are also defined.

Index Terms - BZMV- algebra, BZMV ${ }^{\mathrm{dM}}$ - algebra, Bipolar - valued fuzzy, strong cut

Introduction:

MV algebra have been introduced by C. CHANG [2]in order to provide an adequate semantic characterisation for Lukasiewicz many valued logics. (i.e)complete with respect to the evaluations of propositional variables in the real unit interval[$[0,1]$ Recall in fact that the prototypical example of an MV-algebra is the standard one $[0,1] \mathrm{MV}=\langle[0,1], \oplus, \neg, 0>$ where for all $\mathrm{x}, \mathrm{y} \in$ [0,1],
$x \oplus y=\min \{1, x+y\}$, and $\neg x=1-x$.
In 1965, Zadeh introduced the notion of a fuzzy subset of a set. Since then it has become a vigorous area of research in different domains. There have been a number of generalizations of this fundamental concepts such as intuitionistic fuzzy sets, interval- valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree $(0,1]$ indicates that elements somewhat satisfy the property, and the membership degree $[-1,0)$ indicates that elements somewhat satisfy the implicit counter-property.
Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar to each other. However, they are different from each other. Thus the bipolar-valued fuzzy set concepts are applied to the BZMV ALGEBRAS and some of the properties are verified.

Preliminaries:

[2] Definition1.1 :
A Brower Zadeh MV algebra (shortly BZMV algebra) is a structure $\mathrm{A}=\langle\mathrm{A}, \oplus, \neg, \sim, 0\rangle$, where A is a non empty set of elements, 0 is a constant element of A, \neg and \sim are unary operations on A, \oplus is a binary operation on A. The following axioms hold:

- $(\mathrm{x} \oplus \mathrm{y}) \oplus \mathrm{z}=(\mathrm{y} \oplus \mathrm{z}) \oplus \mathrm{x} \cdot \mathrm{x} \oplus 0=\mathrm{x}$
- $\neg(\neg \mathrm{x})=\mathrm{x}$
- $\neg(\neg \mathrm{x} \oplus \mathrm{y}) \oplus \mathrm{y}=\neg(\mathrm{x} \oplus \neg \mathrm{y}) \oplus \mathrm{x}$
- $\mathrm{x} \oplus \sim \sim \mathrm{x}=\neg 0$
- $\mathrm{x} \oplus \sim \sim \mathrm{x}=\sim \sim \mathrm{x}$
$\bullet \neg \sim[\neg(\neg \mathrm{x} \oplus \mathrm{y}) \oplus \mathrm{y}]=\neg(\sim \mathrm{x} \oplus \sim \sim \mathrm{y}) \oplus \sim \sim \mathrm{y}$

[17]Definition 1.2:

A de - Morgan Brower Zadeh MV algebra (shortly BZMV dM algebra) is a structure $\mathrm{A}=\langle\mathrm{A}, \oplus, \neg, \sim, 0\rangle$ that satisfies the axioms

- $(x \oplus y) \oplus z=(y \oplus z) \oplus x$
- $\mathrm{x} \oplus 0=\mathrm{x}$
- $\neg(\neg \mathrm{x})=\mathrm{x}$
- $\neg(\neg x \oplus y) \oplus y=\neg(x \oplus \neg y) \oplus x$
- $\neg \mathrm{x} \oplus \sim \sim \mathrm{x}=\neg 0$
- $\mathrm{x} \oplus \sim \sim \mathrm{x}=\sim \sim \mathrm{x}$
$\cdot \neg \sim[\neg(\neg \mathrm{x} \oplus \mathrm{y}) \oplus \mathrm{y}]=\neg(\sim \mathrm{x} \oplus \sim \sim \mathrm{y}) \oplus \sim \sim \mathrm{y}$
and also the following condition:
$\sim \neg[\neg(\mathrm{x} \oplus \neg \mathrm{y}) \oplus \neg \mathrm{y}]=\neg(\sim \sim \mathrm{x} \oplus \neg \sim \sim \mathrm{y}) \oplus \neg \sim \sim \mathrm{y}$
Bipolar - valued fuzzy BZMV algebra:

Definition 2.1:[29]

Let G be a non empty set. A Bipolar-valued fuzzy set in G is an object having the form $\mathrm{B}=\left\{\left(\mathrm{x}, \mu^{+}(x), \mu^{-}(x) ; \mathrm{x} \in \mathrm{G}\right\}\right.$ where, $\mu^{+}: \mathrm{G} \rightarrow[0,1]$ and $\mu^{-}: \mathrm{G} \rightarrow[-1 ; 0]$ are mapping.

Note:

In this paper we use the symbol $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$for the Bipolar-valued fuzzy set
$\mathrm{B}=\left\{\left(\mathrm{x}, \mu^{+}(x), \mu^{-}(x)\right) ; \mathrm{x} \in \mathrm{G}\right\}$

Definition 2.2:

A Bipolar-valued fuzzy set $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$is called a "Bipolar-valued fuzzy BZMV -algebra" (BFBZMV) of M , if for every x, y in M it satisfies:
i) $\mu^{+}(x) \leq \mu^{+}(\neg x)$
ii) $\mu^{-}(\mathrm{x}) \geq \mu^{-}(\neg \mathrm{x})$
iii) $\inf \mu^{+}(x) \geq \min \left\{\mu^{+}(x), \mu^{+}(y)\right\}$
iv) $\sup \mu^{-}$(x) $\leq \max \left\{\mu^{-}\right.$(x), μ^{-}(y) $\}$

Definition 2.3:

Let M be a nonempty set endowed with a operation \oplus, an unary operation \sim and \neg and a constant 0 satisfying the following axioms,
for all $x, y, z \in M$:

$$
\cdot(\mathrm{x} \oplus \mathrm{y}) \oplus \mathrm{z}=(\mathrm{y} \oplus \mathrm{z}) \oplus \mathrm{x}
$$

- $\mathrm{x} \oplus 0=\mathrm{x}$
- $\neg(\neg \mathrm{x})=\mathrm{x}$
- $\neg(\neg \mathrm{x} \oplus \mathrm{y}) \oplus \mathrm{y}=\neg(\mathrm{x} \oplus \neg \mathrm{y}) \oplus \mathrm{x}$
$\cdot \mathrm{x} \oplus \sim \sim \mathrm{x}=\neg \mathrm{x}$
- $\mathrm{x} \oplus \sim \sim \mathrm{x}=\sim \sim \mathrm{x}$
$\bullet \neg \sim[\neg(\neg x \oplus y) \oplus y]=\neg(\sim x \oplus \sim \sim y) \oplus \sim \sim y$
For every subsets A and B of M we define the operators as follows:
$a \oplus b=\left\{\begin{array}{c}a+b, \text { if } a+b<1 \text { and also if } a, b \in \mu^{+} \\ 1 \text { otherwise } \\ a+b, \text { if } a+b>-1 \text { and also if } a, b \in \mu^{-} \\ -1 \text { otherwise }\end{array}\right.$
$\neg a=\left\{\begin{array}{c}1-a, \text { if } a \in \mu^{+} \\ -1-a, \text { if } a \in \mu^{-}\end{array}\right.$
$\sim \mathrm{a}=\left\{\begin{array}{c}1, \text { if } a=0 \text { and also } a \in \mu^{+} \\ -1, \text { if } a=0 \text { and also } a \in \mu^{-} \\ 0, \text { otherwise }\end{array}\right.$
for every $a \in A$ and $b \in B$.
EXAMPLE 2.1:
Let $\mathrm{M}=<\{0, \mathrm{a}, 1\}, \neg, \sim, 0>$ and define \oplus, \neg, \sim by the following tables:
$a \oplus b=\left\{\begin{array}{c}a+b, \text { if } a+b<1 \text { and also if } a, b \in \mu^{+} \\ 1 \text { otherwise } \\ a+b, \text { if } a+b>-1 \text { and also if } a, b \in \mu^{-} \\ -1 \text { otherwise }\end{array}\right.$
for every $a \in A$ and $b \in B$.
The operator \neg is defined as follows:
If $\mathrm{a} \in \mu^{+}$

X	0	a	1
$\neg \mathrm{X}$	1	$1-\mathrm{a}$	0

If $\mathrm{a} \in \mu^{-}$

X	0	a	1
$\neg \mathrm{x}$	1	$-1-\mathrm{a}$	0

The operator \sim is defined as follows:
If $\mathrm{a} \in \mu^{+}$

X	0	a	1
$\sim \mathrm{x}$	1	0	0

If $a \in \mu^{-}$

X	0	A	1
$\sim \mathrm{X}$	-1	0	0

Now define μ^{+}and μ^{-}as follows:
If $\mathrm{a} \in \mu^{+}$

X	0	a	1
$\mu^{+}(\mathrm{x})$	0.7	0.2	0.7

If $a \in \mu^{-}$

X	0	a	1
$\mu^{-}(\mathrm{x})$	-1	-0.3	-1

Then $\mathrm{M}=<\{0, \mathrm{a}, 1\}, \neg, \sim, 0>$ is a Bipolar - valued fuzzy BZMV algebra (BFBZMV) of M .

Proposition 2.1:

Let $\mu^{+} ; \mu^{-}$be a BZMV algebra of M.
Then $\mathrm{B}=\left(\mu^{+} ;-\mu^{-}\right)$is a Bipolar-valued fuzzy BZMV algebra of M. Conversely, if $\mathrm{B}=\left(\mu^{+} ;-\mu^{-}\right)$is a Bipolar-valued fuzzy BZMV algebra of M, then $\left(\mu^{+} ; \mu^{-}\right)$are BZMV algebra of M.

Proof:

Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$,
we know that ,
$\min \{-\mu(x),-\mu(y)\}=-\max \{\mu(x), \mu(y)\}$

$$
=\min \left\{\mu_{B_{1} \cap B_{2}}^{+}(x),\left\{\mu_{B_{1} \cap B_{2}}^{-}(y)\right\}\right.
$$

and also,

$$
\begin{aligned}
& \sup _{v \in x \oplus y}\left\{\mu_{B_{1} \cap B_{2}}^{-}(x)\right\}=\max \left\{\sup _{v \in x \oplus y} \mu_{B_{1}}^{-}(v), \sup _{v \in x \oplus y} \mu_{B_{2}}^{-}(v)\right\} \\
& \quad \leq \max \left\{\max \left\{\mu_{B_{1}}^{-}(x), \mu_{B_{1}}^{-}(y)\right\}, \max \left\{\mu_{B_{2}}^{-}(x), \mu_{B_{2}}^{-}(y)\right\}\right. \\
& \quad=\max \left\{\mu_{B_{1} \cap B_{2}}^{-}(x), \mu_{B_{1} \cap B_{2}}^{-}(y)\right\}
\end{aligned}
$$

Hence Proved.

Definition 2.4 :

Let $\mathrm{A}=<\mathrm{A}, \oplus, \neg, \sim, 0>$ be BZMV algebra and $\mathrm{S} \subseteq \mathrm{A}$ be a non empty set containing " 0 ". If S is a sub-structure BZMV algebra of A with respect to " \oplus " and " \neg " then we say that S is a MV algebra of A .
Lemma 2.1:
Let $\mathrm{A}=<\mathrm{A}, \oplus, \neg, \sim, 0>$ be BZMV algebra and $\mathrm{S} \subseteq \mathrm{A}$ be a non empty set containing " 0 ". Then S is a MV algebra of A iff for all $\mathrm{x}, \mathrm{y} \in \mathrm{S}$:

- $x \oplus y \in S$
- $\neg \mathrm{x} \in \mathrm{S}$

Definition 2.5 :
Let $\mathrm{A}=<\mathrm{A}, \oplus, \neg, \sim, 0>$ be BZMV algebra and $\mathrm{S} \subseteq \mathrm{A}$ be a non empty set containing "0". If S is a sub-structure BZMV algebra of A with respect to " \oplus " and " \sim " then we say that S is a MV algebra of A.

Lemma 2.2:

Let $\mathrm{A}=<\mathrm{A}, \oplus, \neg, \sim, 0>$ be BZMV algebra and $\mathrm{S} \subseteq \mathrm{A}$ be a non empty set containing " 0 ". Then S is a MV algebra of A iff for all $x, y \in S$:

- $x \oplus y \in S$
$\cdot \sim x \in S$
Definition 2.6:
A Bipolar-valued fuzzy set $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$is called a "Bipolar-valued fuzzy MV-algebra" (BFMV) of A, if for every $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ it satisfies:
i) $\mu^{+}(x) \leq \mu^{+}(\neg \mathrm{x})$
ii) $\mu^{-}(\mathrm{x}) \geq \mu^{-}(\neg \mathrm{x})$
iii) $\inf \mu^{+}(x) \geq \min \left\{\mu^{+}(x), \mu^{+}(y)\right\}$
iv) $\sup \mu^{-}(x) \leq \max \left\{\mu^{-}(x), \mu^{-}\right.$(y) $\}$

Remark 2.1 :

By the definition $\neg(\neg \mathrm{x})=\mathrm{x}$ we have:
$\mu^{+}(\neg(\neg \mathrm{x})) \geq \mu^{+}(\neg \mathrm{x}) \Rightarrow \mu^{+}(\mathrm{x}) \geq \mu^{+}(\neg \mathrm{x})$
$\mu^{-}(\neg \mathrm{x}) \leq \mu^{-}(\neg(\neg \mathrm{x})) \Rightarrow \mu^{-}(\neg \mathrm{x}) \geq \mu^{-}(\mathrm{x})$
Hence conditions (i),(ii) in definition can be written as:
(i) $\mu^{+}(x)=\mu^{+}(\neg x)$
ii) $\mu^{-}(x)=\mu^{-}(\neg x)$

Strong positive t-cut and Strong negative s - cut Definition 3.1:

Let $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$be a Bipolar-valued fuzzy set of A and
$(\mathrm{s}, \mathrm{t}) \in[-1,0] \times[0,1]$.
Then:

- The set $B_{t}^{+}=\left\{x \in A ; \mu^{+}(x) \geq t\right\}$ is called positive $t-c u t$ of B.
- The set $B_{s}^{-}=\left\{\mathrm{x} \in \mathrm{A} ; \mu^{-}(\mathrm{x}) \leq \mathrm{s}\right\}$ is called negative s-cut of B.
- The set ${ }^{s} B_{t}^{+}=\left\{x \in A ; \mu^{+}(x)>t\right\}$ is called strong positive s-cut of B
- The set ${ }^{s} B_{s}^{-}=\left\{x \in A ; \mu^{-}(x)<s\right\}$ is called strong negative s-cut of B.
- The set $A_{B}^{(t, s)}=\left\{\mathrm{x} \in \mathrm{A} ; \mu^{+}(\mathrm{x}) \geq \mathrm{t}, \mu^{-}(\mathrm{x}) \leq \mathrm{s}\right\}$ is called ($\left.\mathrm{t}, \mathrm{s}\right)$ cut of B .
- The set ${ }^{\mathrm{s}} A_{B}^{(t, s)}=\left\{\mathrm{x} \in \mathrm{A} ; \mu^{+}(\mathrm{x})>\mathrm{t}, \mu^{-}(\mathrm{x})<\mathrm{s}\right\}$ is called strong ($\left.\mathrm{t}, \mathrm{s}\right)$ cut of B .

Note that $A_{B}^{(t, s)}=B_{t}^{+} \cap B_{s}^{-}$

Proposition 3.1:

Let $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$be a (BFBZMV) of A . Then the set,
$A_{B}=\left\{\mathrm{x} \in \mathrm{A} ; \mu^{+}(\mathrm{x})=\mu^{+}(0), \mu^{-}(\mathrm{x})=\mu^{-}(0)\right\}$ is a fuzzy BZMV algebra of A.

Proof:

Let $\mathrm{x}, \mathrm{y} \in A_{B}$
Then

$$
\mu^{+}(\mathrm{x})=\mu^{+}(0)=\mu^{+}(\mathrm{y}) \text { and }
$$

$\mu^{-}(\mathrm{x})=\mu^{-}(0)=\mu^{-}(\mathrm{y})$.
Thus,
(i) $\mu^{+}(\neg \mathrm{x})=\mu^{+}(\mathrm{x})=\mu^{+}(0)$
(ii) $\mu^{-}(\neg \mathrm{x})=\mu^{-}(\mathrm{x})=\mu^{-}(0)$

Hence $\neg \mathrm{x} \in A_{B}$

Now let $\mathrm{a} \in \mathrm{x} \oplus \mathrm{y}$,
Then (iii) $\quad \inf f_{v \in x \oplus y} \mu^{+}(\mathrm{v}) \geq \min \left\{\mu^{+}(\mathrm{x}), \mu^{+}(\mathrm{y})\right\}$
$=\min \left\{\mu^{+}(0), \mu^{+}(0)\right\}$

$$
=\mu^{+}(0)
$$

Hence $\mu^{+}(\mathrm{a}) \geq \mu^{+}(0) \quad \rightarrow(1)$
(iv) $\max \{-\mu(x),-\mu(y)\}=-\min \{\mu(x), \mu(y)\}$
$\operatorname{Inf}(-\mu(\mathrm{v}))=-\sup (\mu(\mathrm{v}))$ $\sup (-\mu(\mathrm{v}))=-\inf (\mu(\mathrm{v}))$
Hence by definition of (BFBZMV) and fuzzy BZMV algebra the proof is clear.
Hence Proved

Lemma 3.1 :

Let B_{1} and B_{2} are (BFBZMV) of A . Then $B_{1} \cap B_{2}$ is a (BFBZMV) of A .

Proof:

If $\mathrm{x}, \mathrm{y} \in B_{1} \cap B_{2}$ then $\mathrm{x}, \mathrm{y} \in B_{1}$ and $\mathrm{x}, \mathrm{y} \in B_{2}$. Since B_{1} and B_{2} are (BFBZMV), hence:
(i) $\quad \min \left\{\mu_{B_{1} \cap B_{2}}^{+}(x)\right\}=\min \left\{\mu_{B_{1}}^{+}(x), \mu_{B_{2}}^{+}(x)\right\}$ $=\min \left\{\mu_{B_{1}}^{+}(\neg \mathrm{x}), \mu_{B_{2}}^{+}(\neg \mathrm{x})\right\}$ $=\min \left\{\mu_{B_{1} \cap B_{2}}^{+}(\neg \mathrm{X})\right\}$
(ii) $\quad \min \left\{\mu_{B_{1} \cap B_{2}}^{-}(x)\right\}=\min \left\{\mu_{B_{1}}^{-}(x), \mu_{B_{2}}^{-}(x)\right\}$

$$
=\min \left\{\mu_{B_{1}}^{-}(\neg \mathrm{x}), \mu_{B_{2}}^{-}(\neg \mathrm{x})\right\}
$$

$$
=\min \left\{\mu_{B_{1} \cap B_{2}}(\neg \mathrm{x})\right\}
$$

for every $\mathrm{v} \in \mathrm{x} \oplus \mathrm{y}$
(iii) $\quad \inf \left\{\mu_{B_{1} \cap B_{2}}^{+}(\mathrm{v})\right\}=\min \left\{\inf \mu_{B_{1}}^{+}(\mathrm{v}), \inf \mu_{B_{2}}^{+}(\mathrm{v})\right\}$

$$
\geq \min \left\{\min \left\{\mu_{B_{1}}^{+}(\mathrm{x}), \mu_{B_{1}}^{+}(\mathrm{y})\right\}, \min \left\{\mu_{B_{2}}^{+}(\mathrm{x}), \mu_{B_{2}}^{+}(\mathrm{y})\right\}\right\}
$$

(iv) $\sup \left\{\mu_{B_{1} \cap B_{2}}^{-}\right.$(v) $\leq \max \left\{\mu^{-}\right.$(x), μ^{-}(y) $\}$

$$
\begin{aligned}
& =\max \left\{\mu^{-}(0), \mu^{-}(0)\right\} \\
& =\mu^{-}(0)
\end{aligned}
$$

Hence μ^{-}(a) $\leq \mu^{-}(0) \rightarrow(2)$
Now by, (1) and (2) and using lemma we can conclude $\mu^{+}(\mathrm{a})=\mu^{+}(0)$ and $\mu^{-}(\mathrm{a})=\mu^{-}(0)$.
Hence $a \in S$
and this follows that $\mathrm{x} \oplus \mathrm{y} \subseteq \mathrm{A}$.
Hence Proved.

Proposition 3.2 :

Let S be a subset of A and $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$be a Bipolar -valued fuzzy set determined as:
$\mu^{+}(x)=\left\{\begin{array}{l}k \text { if } x \in S \\ l \text { if } x \notin S\end{array}\right.$
$\mu^{-}(x)=\left\{\begin{array}{l}m \text { if } x \in S \\ n \text { if } x \notin S\end{array}\right.$
Where $k, 1 \in[0,1]$ amd $m, n \in[-1,0]$ with $k \geq 1, m \leq n$. Then B is a BFBZMV of A iff S is fuzzy BZMV algebra of A.

Proof:

Let S be a fuzzy BZMV algebra of A.
If $x, y \in A$ are arbitrary hence:
If $x \in S$, then $\neg x \in S$.
Hence $\mu^{+}(\mathrm{x})=\mu^{+}(\neg \mathrm{x}), \mu^{-}(\mathrm{x})=\mu^{-}(\neg \mathrm{x})$
If $x \notin S$, then $\neg x \notin S$.
Hence $\mu^{+}(\mathrm{x})=\mu^{+}(\neg \mathrm{x}), \mu^{-}(\mathrm{x})=\mu^{-}(\neg \mathrm{x})$
we consider the following cases:

Case 1:

Let $\mathrm{x}, \mathrm{y} \in \mathrm{S}$. Then $\mathrm{x} \oplus \mathrm{y} \subseteq \mathrm{S}$.

$$
\begin{aligned}
& \inf \left\{\mu^{+}(\mathrm{v})\right\}=\mathrm{k} \\
& \quad=\min \{\mathrm{k}, \mathrm{k}\} \\
& \quad=\min \left\{\mu^{+}(\mathrm{x}), \mu^{+}(\mathrm{y})\right\}
\end{aligned}
$$

and $\quad \sup \left\{\mu^{+}(\mathrm{v})\right\}=\mathrm{m}$
$=\max \{\mathrm{m}, \mathrm{m}\}$
$=\max \left\{\mu^{-}(\mathrm{x}), \mu^{-}(\mathrm{y})\right\}$

Case 2:

Let $\mathrm{x}, \mathrm{y} \notin \mathrm{S}$. Then,
$\mu^{+}(\mathrm{x})=\mathrm{l}=\mu^{+}(\mathrm{y})$
$\mu^{-}(\mathrm{x})=\mathrm{n}=\mu^{-}(\mathrm{y})$
so, $\quad \min \left\{\mu^{+}(\mathrm{x}), \mu^{+}(\mathrm{y})\right\}=\min \{1,1\}$
$=1$
$\leq \inf \left\{\mu^{+}(\mathrm{v})\right\}$

Case 3:

Let $x \in S$ and $y \notin S$.Then:

$$
\left.\begin{array}{ll}
\mu^{+}(\mathrm{x})=\mathrm{k} & \mu^{+}(\mathrm{y})=1 \\
\mu^{-}(\mathrm{x})=\mathrm{m} & \mu^{-}(\mathrm{y})=\mathrm{n}
\end{array}\right] \begin{aligned}
& \quad \min \left\{\mu^{+}(\mathrm{x}), \mu^{+}(\mathrm{y})\right\}=\min \{\mathrm{k}, \mathrm{l}\} \\
& =1 \\
& \leq \inf \left\{\mu^{+}(\mathrm{v})\right\} \\
& \quad \max \left\{\mu^{-}(\mathrm{x}), \mu^{-}(\mathrm{y})\right\}=\max \{\mathrm{m}, \mathrm{n}\} \\
& =\mathrm{n} \\
& =\sup \left\{\mu^{-}(\mathrm{v})\right\}
\end{aligned}
$$

Hence B is a (BFBZMV) of A.
Conversely,
Let $\mathrm{x}, \mathrm{y} \in \mathrm{S}$.
Since B is (BFBZMV): $\mu^{+}(x)=k=\mu^{+}(\neg x)$
Hence $(\neg x) \in S$.
Now let $\mathrm{a} \in \mathrm{x} \oplus \mathrm{y}$
By the hypothesis we have:
$\inf \left\{\mu^{+}(\mathrm{v})\right\} \geq \min \left\{\mu^{+}(\mathrm{x}), \mu^{+}(\mathrm{y})\right\}$

$$
=\min \{\mathrm{k}, \mathrm{k}\}
$$

$$
=\mathrm{k}
$$

and

$$
\begin{aligned}
& =\max \{\mathrm{m}, \mathrm{~m}\} \\
& =\mathrm{m}
\end{aligned}
$$

Thus $\mu^{+}(a)=k$ and $\mu^{-}(a)=m$. This follows $a \in S$, hence $x \oplus y \subseteq S$ and this proves that S is a fuzzy BZMV of A.
Hence Proved.

Proposition 3.3 :

If Bipolar - valued fuzzy set $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$is a (BFBZMV)of A , then for all
$(\mathrm{s}, \mathrm{t}) \in[-1,0] \times[0,1]$ the non empty strong positive t - cut of B and the non empty strong negative s-cut of B are fuzzy BZMV algebras of A.

Proof:

Let $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$be a (BFBZMV) of A and assume that ${ }^{\mathrm{s}} B_{t}^{+}$and ${ }^{\mathrm{s}} B_{t}^{-}$are non empty for all $(\mathrm{s}, \mathrm{t}) \in[-1,0] \times[0,1]$.
Let $\mathrm{l}, \mathrm{m} \in^{\mathrm{s}} B_{t}^{+}$and $\mathrm{p}, \mathrm{q} \in{ }^{\mathrm{s}} B_{t}^{-}$. Then:
$\mu^{+}(\mathrm{l}), \mu^{+}(\mathrm{m})>1$
$\mu^{-}(\mathrm{p}), \mu^{-}(\mathrm{q})<\mathrm{s}$
Now,
$\operatorname{Inf}\left\{\mu^{+}(\mathrm{v})\right\} \geq \underset{\mathrm{t}}{\geq \min }\left\{\mu^{+}(\mathrm{l}), \mu^{+}(\mathrm{m})\right\}$
Where $\mathrm{v} \in \mathrm{x} \oplus \mathrm{y}$, Which implies that $\mathrm{l} \oplus \mathrm{m} \subseteq{ }^{\mathrm{s}} B_{t}^{+}$.
Now, let $\mathrm{x} \in{ }^{\mathrm{s}} B_{t}^{+}$
Since B is a (BFBZMV) we have:
$\mu^{+}(\neg \mathrm{x})=\mu(\mathrm{x})>\mathrm{t}$
Hence $\neg \mathrm{x}$ and $\sim \mathrm{x} \in{ }^{\mathrm{s}} B_{t}^{+}$. So ${ }^{\mathrm{s}} B_{t}^{+}$is a BZMV algebra of A.
In other hand we have:
$\operatorname{Sup}\left\{\mu^{-}(\mathrm{v})\right\} \leq \max \left\{\mu^{-}(\mathrm{p}), \mu^{-}(\mathrm{q})\right\}$ < s
Hence $\mathrm{p} \oplus \mathrm{q} \in{ }^{\mathrm{s}} B_{t}^{-}$.
If $\mathrm{x} \in{ }^{\mathrm{s}} B_{t}^{-}$. Since B is a (BFBZMV), then
$\mu^{-}(\neg \mathrm{x})=\mu^{-}(\mathrm{x})<\mathrm{s}$
Hence $\neg \mathrm{x} \in{ }^{\mathrm{s}} B_{t}^{-}$and $\sim \mathrm{x} \in{ }^{\mathrm{s}} B_{t}^{-}$and this proved that ${ }^{\mathrm{s}} B_{t}^{-}$is a fuzzy BZMV algebra of A .
Hence Proved.

Corollary 3.1:

If Bipolar valued fuzzy set $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$is a (BFBZMV) of A , then for all
$(\mathrm{s}, \mathrm{t}) \in[-1,0] \times[0,1]$ the non empty strong positive $(\mathrm{s}, \mathrm{t})-$ cut of B is a fuzzy BZMV algebra of A .
Proof:
We have, $A_{B}^{(t, s)}={ }^{\mathrm{s}} B_{t}^{+} \cap{ }^{\mathrm{s}} B_{t}^{-}$.
proof follows by proposition 3.3,
If Bipolar - valued fuzzy set $\mathrm{B}=\left(\mu^{+} ; \mu^{-}\right)$is a (BFBZMV) of A , then for all $(\mathrm{s}, \mathrm{t}) \in[-1,0] \times[0,1]$ the non empty strong positive t - cut of B and the non-empty strong negative s-cut of B are fuzzy BZMV algebras of A.

Hence Proved.

REFERENCES:

[1] Blok W., Pigozzi D., Algebraizable Logics. Mem. Amer. Math. Soc, 396 (77). Amer. Math Soc. Providence, 1989.
[2] Chang C. C., Algebraic analysis of many-vaued logics. Trans. Amer. Math. Soc., 88, 467490, (1958).
[3] Hajek P., Metamathematics of Fuzzy Logic. Kluwer Academy Press, 1998
[4] Mundici D., Averaging the truth-value in Lukasiewicz logic. Studia Logica, 55(1): 113127, 1995.
[5] Mundici D., Tensor Products and the Loomis- Sikorski Theorem for MVAlgebras. Advances in Applied Mathematics, 22, 227248, 1999.
[6] G. Birkhoff, Lattice theory, Rev. ed., 1948.
[7] C. C. Chang, Proof of an axiom of Lukasiewicz, Trans. Amer. Math. Soc. vol. 87 (1958) pp. 55-56.
[8] J. Lukasiewicz and A. Tarski, Untersuchungen uber den Aussagenkalkiil, Comptes Rendus des Seances de la Soci6t6 des Sciences et des Lettres de Varsovie, Classe III, vol. 23 (1930) pp. 30-50.
[9] C. A. Meredith, The dependence of an axiom of Lukasiewicz, Trans. Amer. Math. Soc. vol. 87 (1958) p. 54.
[10] A. Rose and J. B. Rosser, Fragments of many valued statement calculi. Trans. Amer. Math. Soc. vol. 87 (1958) pp. 1-53. 50
[11] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 37-111.
[12] A. Tarski, Contributions to the theory of models I, Indag. Math. vol. 16 (1954) pp. 572-581.
[13] M. Wajsberg, Beitrage zum Melaaussagenkalkul I, Monatshefte fiir Mathematik und Physik vol. 42 (1935) pp. 221-242.
[14] Birkhoff, G. Lattice Theory, Third edition, American Mathematical Society Colloquium Publications, Vol. XXV American Mathematical Society, Providence, R.I., 1967.
[15] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M. Algebraic structures related to many valued logical systems. II. Equivalence among some widespread structures, Fund. Inform., 63 (2004), 357373.10 A. Yousefi, A. Borumand Saeid
[16] Cattaneo, G.; Ciucci, D. Shadowed sets and related algebraic structures, Fund. Inform., 55 (2003), 255284.
[17] Cattaneo, G.; Giuntini, R.; Pilla, R. BZMV dM algebras and Stonian MV - algebras (applications to fuzzy sets and rough approximations), Fuzzy Sets and Systems, 108 (1999), 201222.
[18] Cattaneo, G. Abstract approximation spaces for rough theories, Rough sets in knowledge discovery, 1, 5998, Stud. Fuzziness Soft Comput., 18, Physica, Heidelberg, 1998.
[19] Cattaneo, G.; Ciucci, D. BZW algebras for an abstract approach to roughness and fuzziness, IPMU 2002, July 15 2002, Annecy, France, Proceedings, ESIAUniversite de Savoie, 2002.
[20] Chang, C.C. Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467490. 51
[21] Pedrycz, W. Shadowed Sets: Representing and Processing Fuzzy Sets, IEEE Transaction on Systems, Man and Cybernetics Part B: Cybernetics, 28 (1998), 103109.
[22] Pedrycz, W. Shadowed sets: bridging fuzzy and rough sets, Rough fuzzy hybridization, 179199, Springer, Singapore, 1999.
[23] A. Borumand Saeid, Bipolar-valued fuzzy BCK=BCI-algebras, World Applied Sci.J. 7, No.11, (2009), 1404-1411.
[24] R. A. Borzooei, A. Hasankhani, M. M. Zahedi, and Y. B. Jun, On hyper-Kalgebras, 52(1), (2000), 113-121.
[25] Sh. Ghorbani, A. Hasankhani, and E. Eslami, Hyper MV -Algebras, Set-valued Math. and Appl., 1 No.2, (2008), 205-222.
[26] Y. B. Jun, Min Su Kang, and Hee Sik Kim, Fuzzy structures of hyper-MV -deductive systems in hyper-MV -algebras, Computers and Math. with Appl., 59, (2010), 2982-2989.
[27] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intel- ligent Technologies, (2000), 307-312.
[28] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets, J. Fuzzy Logic Intelligent Systems, 14, No. 2, (2004), 125-129.
[29] M. Musa Hasankhani and A. Borumand Saeid An. U.V.T.,Hyper MV-algebras defined by Bipolar - valued fuzzy sets.
[30] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8, (1965), 338-353.
[31] Tommaso Flamino and Franco Montanga,Dip.di Mathematica and science Informatics, An Algebraic Approach to states on MV-algebras. 52

