STABILIZATION OF BLACK COTTON SOIL USING FLYASH AND RUBBER POWDER

M. Siva Parvathi¹, B. Anusha², G. Vimalatha³, B. Shayam Kumar⁴

¹Assitant Professor, ^{2,3,4}Student-B.Tech Department of Civil Engineering Holy Mery Institute of Technology and Science, Keesara, Hyderabad, TS, India

Abstract: Soil stabilization is the alteration of soil to enhance their physical and mechanical properties. This improvement includes increasing all the Engineering properties like load bearing capacity, tensile strength, shear strength etc. however recent technology has increased the number of traditional additives used for soil stabilization purpose. Non-traditional stabilizers include rubber-based products such as EPDM (ETHYLENE PROPYELNE DIENE MONOMER) and fly ash. In this research the soil samples are collected from Bogaram village, Medchal district, Telangana and the Stabilizers are waste rubber powder and fly ash. In the collected soil sample, randomly mix the both rubber and fly ash in different percentages say 4%, 8%, 12%, 16% and 20% based on the weight of the soil. mix proportion will be subjected to CBR testing machine to test properties of that selected soil sample .Finally we get the results by comparing the soil sample properties before and after stabilization of it.

Keywords: Bearing capacity, tensile strength, shear strength, Non-traditional stabilizers, EPDM, fly ash, waste rubber powder.

1. Introduction

Every structure must rest upon soil and the soil at that particular site should be satisfactory for the intended use. But unfortunately now a days finding such satisfactory soils is of rare occurrence. Generally the soils, which are unsatisfactory, and are not suitable for the intended uses are mostly expansive clayey soils. Expansive soils are swelling soils and are most problematic because of their drastic changes in volume with addition or removal of water. Hence stabilization of these soils is very essential. It is highly difficult to work on such soils. Since construction on these soils cannot be avoided, we have to identify and modify them to be suitable for our construction works. Soil stabilization is the alteration of one or more soil properties, by mechanical or chemical means, to create an improved soil material possessing the desired engineering properties. Soils may be stabilized to increase strength and durability or to prevent erosion and dust generation. Regardless of the purpose for stabilization, the desired result is the creation of a soil material or soil system that will remain in place under the design use conditions for the design life of the project.

2. Methodology

- 1. Collection and study of data.
- 2. Materials used.
- 3. Preparation of soil sample.
- 4. Testing of soil sample.
- 5. Results and Conclusions.

In this research the soil samples are collected from Bogaram village, Medchal district, Telangana and the Stabilizers are waste rubber powder and fly ash. In the collected soil sample, randomly mix the both rubber and fly ash in different percentages say 4%, 8%, 12%, 16% and 20% based on the weight of the soil. mix proportion will be subjected to CBR testing machine to test properties of that selected soil sample and subjected to Liquid Limit(LL), Plastic Limit(PL), Plasticity Index(PI), Shrinkage Limit(SI), Specific Gravity(G), Optimum Moisture Content(OMC), Maximum dry density (γ_d), Unconfined Compressive Strength(UCC), California Bearing Ratio(CBR) Value .Finally we get the results by comparing the soil sample properties before and after stabilization of it.

3. Literature Review

This paper investigates the feasibility of using fly ash and rubber powder as an alternative source for the partial replacement of soil. This project is supported with the related research papers. Although earlier studies has been conducted on using these waste in soil. But in those studies both the materials has not been used together some studies use only partial replacement of soil with rubber powder or partial replacement soil with fly ash but in this project both components has been used parallel at various percentages. Some of the related studies are as follows

Umar et al., (2015)carried out on soil and soil-tire mixtures, the following observations and conclusions are drawn: i) The optimum moisture content as well as maximum dry density is found to decrease with the increase of the percentage of rubber tire content. This might be due to light weight nature of tire waste. ii) Shredded rubber tire mixed with soil showed enhancement in CBR value with adding up to 8 % and there beyond decreased with additional increment in tire content in unsoaked condition. Hence the optimal value of shredded rubber tyre is 8 % of size 25mm×50mm in unsoaked conditions. iii) The percentage enhancement in CBR value of stabilized soil is 66.28 % in unsoaked condition whereas an increase in CBR value can considerably trim down the total thickness of the pavement and hence the total cost concerned in the project.

Sathwik and Arti (2016) Disposal of scrap tires is environmental dilemma as the utilization of automobiles is in the increasing trends which therefore cause damage to the eco-system. As the tires are manufactured with synthetic rubber, disposal of these wastes have become difficult. It is approximately estimated as 60 to 70% of waste tires are disposed in improper way in various areas. To avoid this damage we can utilize the tire wastes with technical development in different fields like using them in construction project However, they can improve the characteristics of soil which is one of the essential materials used for construction. A program of Standard Proctor tests, Unconfined Compression tests and California Bearing Ratio tests were carried out on the specimens of cohesive soil-tire mixtures, by varying tire powder content like 4%, 8%, 12% and 16% by weight of the soil. This paper discusses the shear strength characteristics of cohesive soil after adding various percentages of tyre powder. The aim of the study is also to analyze the seepage velocity of the soil by adding different proportions of tyre powder.

Ravi and gayarthri (2018) studied the effect of rubber powder on expensive soil. They carried out investigations using rubber powder and added it to expensive soil at 0-10% increases the shear strength and CBR value. This investigation evaluates 10% is the optimum rubber powder for the stabilization of black cotton soil.

Nandini et al., (2018) An immediate benefit obtained by the addition of tire powder to swelling soils is to reduce the potential for swelling upon contact with water. The plastic nature of the soil decreases and the stiffness of the soil increases as the tire powder content increases. For improving the properties described in this paper, the optimum tire powder content was found to be within the range of 4% to 6%.

4. Materials Used

4.1 EPDM

EPDM rubber is used in seals for example; it is used in cold-room doors since it is an insulator, as well as in the face seals of industrial respirators in automotive paint spray environments. EPDM is also used in glass-run channels, radiators, garden, and appliance hose, tubing, pond liners, washers, belts, electrical insulation, vibrators, O-rings, solar panel heat collectors, and speaker cone surrounds.

It is also used as a medium for water resistance in electrical cable-jointing, roofing membranes (since it does not pollute the run-off rainwater, which is of vital importance for rainwater harvesting), geomembranes, rubber mechanical goods, plastic impact modification, thermoplastic, vulcanizates, and many other applications. Colored EPDM granules are mixed with polyurethane binders and toweled or sprayed onto concrete, asphalt, screenings, interlocking brick, wood, etc. to create a non-slip, soft, porous safety surface for wet-deck areas such as pool decks and as safety surfacing under playground play equipment (designed to help lessen fall injury).

4.2. FLY-ASH

Fly ash is the ash removed from the exhaust gas of burning coal at power plants to generate electricity. The ash is removed from the exhaust by air pollution control equipment such as electrostatic precipitators before the exhaust is emitted through stacks or chimneys into the atmosphere. Fly ash, is also known as flue-ash, it is one of the residues generated in combustion, and comprises the fine particles that rise with the flue gases. In an industrial context, fly ash usually refers to ash produced during combustion of coal. Fly ash is classified into two classes as Class F fly ash: Fly ash normally produced by burning anthracite or bituminous coal, usually has been than 5% CaO. Class F fly ash has pozzolanic properties only. Class C fly ash: Fly ash normally produced by burning lignite or sub-bituminous coal. Some fly ash may have CaO content in excess of 10%. In addition to pozzolanic properties, class C fly ash also possesses cementations properties.

5. Results and discussions

Table 5.1: Geotechnical properties of un-treated soil.

Property	Value
Liquid Limit(LL)	75%
Plastic Limit(PL)	20%
Plasticity Index(PI)	58%
Shrikage Limit(SI)	9.92%
Specific Gravity(G)	2.85
Optimum Moistuire Content(OMC)	18%
Maximum dry density (γ_d)	1.18kn/M ³
Unconfined Compressive Strength(UCC)	0.006828kg/Cm ²
Califonia Bearing Ratio(CBR) Value	3.0%

5.2. Geotechnical properties of treated soil.

Table 5.2.1: Liquid limit test results

2. Geotechnical properties o able 5.2.1: Liquid limit test 1		
Mix Proportions	Liquid Limit	
100% Soil	68%	
5% R+5%F + 90% Soil	72%	
10% R +10%F+ 80% Soil	75%	7
15% R +15%F+ 70% Soil	79%	
1	81%	

Table 5.2.2: Plastic limit test results

Plastic Limit
29%
16.92%
13.92%
11.67%
10.26%

Table 5.2.3: Plasticity Index test results

Mix Proportions	Plasticity Index
100% Soil	39%
5%R+5%F+90%Soil	55.08%
10% R+10% F+80% Soil	61.08%
15%R+15%F+70%Soil	67.33%
20%R+20%F+60%Soil	70.74%

~

Table 5.2.4: Shrinkage limit test results

Mix Proportions	Shrinkage Limit
100% Soil	9.50%
5%R+5%F+90%Soil	8.90%
10%R+10%F+80%Soil	9.62%
15%R+15%F+70%Soil	10.25%
20%R+20%F+60%Soil	11.33%

Table 5.2.5: Effect of rubber powder and fly ash on differential free swell (DFSI) test

Mix Proportions	DFSI	
100% Soil	65%	
5%R+5%F+90%Soil	51%	
10%R+10%F+80%Soil	42%	
15%R+15%F+70%Soil	38%	
20%R+20%F+60%Soil	35%	

Table 5.2.6: Effect of Rubber Powder and Fly Ash on OMC and Dry Density

Mix Propositions	Optimum Moisture Content	Maximum Dry Density
100% Soil	16%	0.89
5%R+5%F+90%Soil	18%	1.10
10%R+10%F+80%Soil	18%	1.24
15%R+15%F+70%Soil	20%	1.49

Table 5.2.7: Effect of Rubber Powder and Fly Ash on Unconfined Compressive Strength

Mix Proportions	UCC In Kg/Cm ²
100% Soil	0.006828
5%R+5%F+90%Soil	0.00712
10%R+10%F+80%Soil	0.00785
15%R+15%F+70%Soil	0.00846
20%R+20%F+60%Soil	0.00955

Fable 5.2.7: Ef			
Mix Prop	ortions	UCC In K	g/Cm ²
100% \$	Soil	0.0068	28
5%R+5%F+	-90%Soil	0.0071	12
10%R+10%F	-+80%Soil	0.0078	35
15%R+15%F	-70%Soil	0.0084	16
20%R+20%F	+60%Soil	0.0095	55
able 5.2.8: CB	R values o	61000/	
		T TUU%^ SOL	
Penetration		al Reading	
		al Reading	Load
0	Load Di	al Reading	Load
	Load Di	al Reading	Load
0 0.5	Load Dia	al Reading 0 2.4	Loa 0 14
0 0.5 1	Load Dia	al Reading 0 2.4 5	Load 0 14 25 38
0 0.5 1 1.5	Load Dia	al Reading 0 2.4 5 7.3	Load 0 14 25 38
0 0.5 1 1.5 2	Load Dia	al Reading 0 2.4 5 7.3 4.5	Load 0 14 25 38 54.5 75
0 0.5 1 1.5 2 2.5	Load Dia	al Reading 0 2.4 5 7.3 4.5 5.0	Load 0 14 25 38 54.5 75 97.5
0 0.5 1 1.5 2 2.5 3	Load Dis	al Reading 0 2.4 5 7.3 4.5 5.0 21.5	Load 0 14 25 38 54.5

Table 5.2.9: CBR values of 90% soil+5% fly ash+5%rubber powder

	•		
Penetration	Load Dial Reading	Load	
0	0	0	
0.5	1.2	7	
1	2.3	13	
1.5	4.25	22.5	
2	7.1	36	
2.5	10.2	52	
3	13.3	68	
4	18.4	94	
5	24.3	123	
6	31.3	158	

Penetration	Load Dial Reading	Load
0	0	0
0.5	1.45	9.5
1	3.25	17.5
1.5	4.1	21
2	5	25
2.5	5.4	29
3	7	35
4	9.1	46
5	12.1	61
6	15.4	79

Table 5.2.10: CBR values of 80% soil+10%fly ash+10% rubber powder

Table 5.2.11: CBR values of 70% soil+15%fly ash+15% rubber powder

Penetration	Load Dial Reading	Load
0	0	0
0.5	1.2	7
1	2.3	13
1.5	3.3	18
2	4.3	23
2.5	5.3	28
3	7	35
4	9.4	49
5	11	55
6	12.5	65

6. Conclusions

Hence in this investigation we made an attempt to know the effect of addition of rubber powder and fly ash on the geotechnical properties of expansive clays. Based on the following conclusions are drawn.

- Increase in liquid limit.
- Decrease in plastic limit.
- Increase in plasticity index and shrinkage limit.
- Decrease in differential free swell index of clay.
- Increase in optimum moisture content and decrease in maximum dry density.
- Increase in unconfined compressive strength.
- Increase in CBR value.

References

A. Sathwik, P.Artisudam (2016), Effect of tyre powder on strength characteristics of red and block cotton soil.

D Satheesh, G Tejashwini, A Nandini (2018)Strength improvement of expansive soil by using tyre powder. Y Guruprasad, V saiNiharika.

ErdalCokca (2001). "Use Of Class C Fly ash For The Stabilization Of An Expansive Soil" Journal Of Geotechnical And Geo Environmental. Engineering Vol. 127, July, 2001, 568–573.

Hayder A. Hasan (2012). "Effect of Fly Ash on Geotechnical Properties of Expansive soil" Journal of Engineering and Development, Vol. 16, No.2, June 2012 ISSN 1813-7822.

K.Gayathri(2018) "Perfomance evaluation of crumb rubber powder as soil stabilizer "G. Ravi kumar.

Monica Malhotra and Sanjeev Naval (2013) "Stabilization of Expansive Soils Using Low Cost Materials with and Fly Ash." International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 11, May 2013.

Pandian, N.S., Krishna, K.C. and leelavathamma B (2002) Effect of fly ash on CBR behaviour of soils. Indian geotechnical conference, Allahabad, Vol.1, pp.183-186, 2002.

Umar jan, Vinod K. Santhwal, Ajay kumarDuggal, Er. Jasvirs. Pattan, Mohdirfan (2015) Soil stabilization using shredded rubber tyre.

