New C_{r} Inequality ${ }_{m} C_{r}$ with Unequal Weightage to the Random Variables

Pavan Kumar Thota
Student (M.Sc.),
Department of Agricultural Statistics, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia(dist.), West Bengal, India, 741252

Abstract: In this ${ }_{m} \mathrm{C}_{\mathrm{r}}$ inequality we can give unequal weightage to the random variables. As a special case we can get the Classic- C_{r} inequality if $m=r \geq 1$

Index Terms: Classic- C_{r} Inequality, Expectation, Random Variables.

INTRODUCTION

The Classic- C_{r} inequality in $\boldsymbol{I r}$ space usually stated as follows;
\mathbf{X} and \mathbf{Y} are random variables,
If $\mathrm{E}|\mathrm{X}|^{\mathrm{r}}, \mathrm{E}|\mathrm{Y}|^{\mathrm{r}}$ is both finite then $\mathrm{E}|\mathrm{X}+\mathrm{Y}|^{\mathrm{r}}$ is also finite.
$\mathbf{C}_{\mathbf{r}}\left[\mathbf{E}|\mathbf{X}|^{\mathbf{r}}+\mathbf{E}|\mathbf{Y}|^{\mathrm{r}}\right] \geq \mathbf{E}|\mathbf{X}+\mathbf{Y}|^{\mathbf{r}}$
Where $\mathrm{C}_{\mathrm{r}}=2^{\mathrm{r}-1} \quad$ if $\mathrm{r} \geq 1$
$=1 \quad$ if $0<r<1$
where $E|X|{ }^{\text {r }}$ is Expectation of $\mid X$
The above inequality is limited to give equal weightages to both the random variables as 2^{r-1} if $\mathrm{r} \geq 1$. And is limited to give weightages as the powers of two only. In this paper I formulated an inequality to give unequal weightage to the random variables.
${ }_{\mathrm{m}} \mathrm{C}_{\mathrm{r}}$ inequality in $\boldsymbol{l}_{r, m}$ space stated as follows:
\mathbf{X} and \mathbf{Y} are random variables,
If $\mathrm{E}|\mathrm{X}|^{\mathrm{r}}, \mathrm{E}|\mathrm{Y}|^{\mathrm{r}}$ is both finite then $\mathrm{E}|\mathrm{X}+\mathrm{Y}|^{\mathrm{r}}$ is also finite.
$(\mathbf{1}+\mathbf{m} / \mathbf{r})^{r-1} \mathbf{E}|\mathbf{X}|^{r}+(\mathbf{1}+\mathbf{r} / \mathbf{m})^{r-1} \mathbf{E}|\mathbf{Y}|^{r} \geq \mathbf{E}|\mathbf{X}+\mathbf{Y}|^{r} \quad \mathbf{m}, r \geq 1$
$C_{1, r, m} E|X|^{r}+C_{2, r, m} E|Y|^{r} \geq E|X+Y|^{r}$
Where, $C_{1, r, m}=(1+m / r)^{r-1}$
$\mathrm{C}_{2, \mathrm{r}, \mathrm{m}}=(1+\mathrm{r} / \mathrm{m})^{\mathrm{r}-1}$
$\mathbf{C}_{1, r, m} / \mathbf{C}_{2, r, m}=(m / r)^{r-1}$
if $\mathrm{m} / \mathrm{r}<1 \quad$ more weightage to random variable Y
$m / r=1 \quad$ Same weightage to both the Random variables
$\mathrm{m} / \mathrm{r}>1 \quad$ more weightage to random variable X

The proof follows similar way as classic $\mathbf{C}_{\mathbf{r}}$ inequality derived but with some more generalized function.

PROOF

Let us consider a more generalized function
$\mathbf{F}(\mathbf{p})=\left[(\mathbf{m p})^{\wedge} \mathbf{r}\right] / \mathbf{m}+\left[(\mathbf{r}(\mathbf{1}-\mathbf{p}))^{\wedge} \mathbf{r}\right] / \mathbf{r}$
where $\mathrm{m}, \mathrm{r} \geq 1 \quad$ and $0<\mathrm{p}<1$
$F^{\prime}(p)=r(m p)^{r-1}-r(r(1-p))^{r-1}$

Where $F^{\prime}(p)$ is the first derivative of $F(p)$ with respect p
Let $\mathrm{F}^{\prime}(\mathrm{p})=0$
We get $\mathrm{p}^{*}=\mathrm{r} /(\mathrm{r}+\mathrm{m})$
After substituting $p^{*}=r /(r+m)$ in $F^{\prime \prime}(p)$, We get $F^{\prime}\left(p^{*}\right)>0$ it means the point $p^{*}=r /(r+m)$ is an absolute minimum point of the given function. So, the minimum value of the function after substituting minimum point in (1) we get
$\mathrm{F}\left(\mathrm{p}^{*}\right)=[\mathrm{mr} /(\mathrm{m}+\mathrm{r})]^{\mathrm{r}-1}$
So, $F(p) \geq[m r /(m+r)]^{r-1}$
Consider $A=|X|, B=|Y|$
$\mathrm{p}=|\mathrm{X}| /(|\mathrm{X}|+|\mathrm{Y}|)$ Substitute in equation (1)
Then after doing a little bit algebraic manipulations equation (1) boils down to
$\mathbf{m}^{r-1}|\mathbf{X}|^{r}+\mathbf{r}^{r-1}|\mathbf{Y}|^{\mathbf{r}} \geq(|\mathbf{X}|+|\mathbf{Y}|)^{\mathbf{r}}[\mathbf{m r} /(\mathbf{m}+\mathbf{r})]^{\mathrm{r}-1}$
We can modify right side of inequality (2) by using Triangular Inequality of Modulus.
We know that $\quad|\mathrm{X}+\mathrm{Y}| \leq|\mathrm{X}|+|\mathrm{Y}|=>|\mathrm{X}+\mathrm{Y}|^{\mathrm{r}} \leq(|\mathrm{X}|+|\mathrm{Y}|)^{\mathrm{r}}$
Then the equation (2) will change into
$\mathrm{m}^{\mathrm{r}-1}|\mathrm{X}|^{\mathrm{r}}+\mathrm{r}^{\mathrm{r}-1}|\mathrm{Y}|^{\mathrm{r}} \geq|\mathrm{X}+\mathrm{Y}|^{\mathrm{r}}[\mathrm{mr} /(\mathrm{m}+\mathrm{r})]^{\mathrm{r}-1}$
Now take the Expectation on both sides of inequality then $\mathrm{m}^{\mathrm{r}-1} \mathrm{E}|\mathrm{X}|^{\mathrm{r}}+\mathrm{r}^{\mathrm{r}-1} \mathrm{E}|\mathrm{Y}|^{\mathrm{r}} \geq[\mathrm{mr} /(\mathrm{m}+\mathrm{r})]^{\mathrm{r}-1} \mathrm{E}|\mathrm{X}+\mathrm{Y}|^{\mathrm{r}}$
after rearranging coefficients of Expectations, we get the following form in $l_{r, m}$ space where $\mathrm{m}, \mathrm{r} \geq 1$
$(\mathbf{1}+\mathbf{m} / \mathbf{r})^{\mathrm{r}-1} \mathbf{E}|\mathbf{X}|^{\mathrm{r}}+(\mathbf{1}+\mathbf{r} / \mathbf{m})^{\mathrm{r}-\mathbf{1}} \mathbf{E}|\mathbf{Y}|^{\mathrm{r}} \geq \mathbf{E}|\mathbf{X}+\mathbf{Y}|^{\mathrm{r}} \quad \mathbf{m}, \mathbf{r} \geq \mathbf{1}$
$\mathrm{C}_{1, \mathrm{r}, \mathrm{m}} \mathrm{E}|\mathrm{X}|^{\mathrm{r}}+\mathrm{C}_{2, \mathrm{r}, \mathrm{m}} \mathrm{E}|\mathrm{Y}|^{\mathrm{r}} \geq \mathrm{E}|\mathrm{X}+\mathrm{Y}|^{\mathrm{r}}$
Where, $\mathrm{C}_{1, \mathrm{r}, \mathrm{m}}=(1+\mathrm{m} / \mathrm{r})^{\mathrm{r}-1} \quad \mathrm{C}_{2, r, m}=(1+\mathrm{r} / \mathrm{m})^{\mathrm{r}-1}$
$\mathrm{C}_{1, \mathrm{r}, \mathrm{m}} / \mathrm{C}_{2, \mathrm{r}, \mathrm{m}}=(\mathrm{m} / \mathrm{r})^{\wedge} \mathrm{r}-1$
if $\mathrm{m} / \mathrm{r}<1 \quad$ more weightage to random variable Y
$\mathrm{m} / \mathrm{r}=1 \quad$ Same weightage to both the Random variables
$\mathrm{m} / \mathrm{r}>1 \quad$ more weightage to random variable X
The special case of ${ }_{m} C_{r}$ inequality is Classic- C_{r} inequality if $\mathbf{m}=\mathbf{r} \geq \mathbf{1}$
$\mathrm{C}_{1, \mathrm{r}}=2^{\mathrm{r}-1}=\mathrm{C}_{2, \mathrm{r}}$
$\mathbf{2}^{\mathbf{r - 1}}\left[\mathbf{E}|\mathbf{X}|^{\mathrm{r}}+\mathbf{E}|\mathbf{Y}|^{\mathrm{r}}\right] \geq \mathbf{E}|\mathbf{X}+\mathbf{Y}|^{\mathrm{r}}$.

REFERENCES

[1] A.M. Gun, M.K. Gupta, B. Das Gupta An outline of Statistical Theory vol 1(Ch.4). World Press, Kolkata,2017.
[2] Joel R. Hass, Christopher E. Heil, Maurice D. Weir, Thomas' Calculus (Ch.4), Pearson India Education Services.

