New C_r Inequality _mC_r with Unequal Weightage to the Random Variables

Pavan Kumar Thota

Student (M.Sc.), Department of Agricultural Statistics, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia(dist.), West Bengal, India,741252

Abstract: In this ${}_{m}C_{r}$ inequality we can give unequal weightage to the random variables. As a special case we can get the Classic- C_{r} inequality if m=r ≥ 1

Index Terms: Classic- Cr Inequality, Expectation, Random Variables.

INTRODUCTION

The Classic- Cr inequality in Ir space usually stated as follows:

X and Y are random variables,

If $E|X|^r$, $E|Y|^r$ is both finite then $E|X+Y|^r$ is also finite.

$C_r[E|X|^r{+}E|Y|^r] \geq E|X{+}Y|^r$

Where $C_r = 2^{r-1}$ if $r \ge 1$

= 1 if 0<r<1

where E|X|^r is Expectation of |X|^r

The above inequality is limited to give equal weightages to both the random variables as 2^{r-1} if $r \ge 1$. And is limited to give

weightages as the powers of two only. In this paper I formulated an inequality to give unequal weightage to the random variables.

mCr inequality in *lr, m* space stated as follows:

X and Y are random variables,

If $E|X|^r$, $E|Y|^r$ is both finite then $E|X+Y|^r$ is also finite.

$(1+m/r)^{r-1} E|X|^r + (1+r/m)^{r-1} E|Y|^r \ge E|X+Y|^r \qquad m, r \ge 1$

 $C_{1,\,r,\,m}\,E|X|^r+C_{2,\,r,\,m}\,E|Y|^r \geq E|X{+}Y|^r$

Where, $C_{1, r, m} = (1+m/r)^{r-1}$

 $C_{2, r, m} = (1+r/m)^{r-1}$

 $C_{1,r,m}/C_{2,r,m} = (m/r)^{r-1}$

- if m/r < 1 more weightage to random variable Y
 - m/r = 1 Same weightage to both the Random variables

m/r >1 more weightage to random variable X

The proof follows similar way as classic Cr inequality derived but with some more generalized function.

PROOF

Let us consider a more generalized function

$F(p)=[(mp)^r]/m + [(r(1-p))^r]/r$

where m, $r \ge 1$ and $0 \le p \le 1$

 $F'(p)=r(mp)^{r-1}-r(r(1-p))^{r-1}$

Where F'(p) is the first derivative of F(p) with respect p

Let F'(p)=0

We get p*=r/(r+m)

After substituting $p^* = r/(r+m)$ in F''(p), We get F''(p*)>0 it means the point $p^* = r/(r+m)$ is an absolute minimum point of the given function. So, the minimum value of the function after substituting minimum point in (1) we get

 $F(p^*) = [mr/(m+r)]^{r-1}$

So, $F(p) \ge [mr/(m+r)]^{r-1}$

Consider A=|X|, B=|Y|

p=|X|/(|X|+|Y|) Substitute in equation (1)

Then after doing a little bit algebraic manipulations equation (1) boils down to

 $m^{r-1}|X|^r + r^{r-1}|Y|^r \ge (|X|+|Y|)^r [mr/(m+r)]^{r-1}$

We can modify right side of inequality (2) by using Triangular Inequality of Modulus.

We know that $|X+Y| \leq |X|+|Y| => |X+Y|^{r} \leq (|X|+|Y|)^{r}$

Then the equation (2) will change into

 $m^{r-1} |X|^r + r^{r-1} |Y|^r \ge |X+Y|^r [mr/(m+r)]^{r-1}$

Now take the Expectation on both sides of inequality then

 $m^{r-1} E|X|^r + r^{r-1} E|Y|^r \ge [mr/(m+r)]^{r-1}E|X+Y|^r$

after rearranging coefficients of Expectations, we get the following form in $l_{r,m}$ space where m, r ≥ 1

 $(1+m/r)^{r-1} E|X|^r + (1+r/m)^{r-1} E|Y|^r \ge E|X+Y|^r$ m. r>

 $C_{1, r, m} E|X|^r + C_{2, r, m} E|Y|^r \ge E|X+Y|^r$

Where, $C_{1, r, m} = (1+m/r)^{r-1}$ $C_{2, r, m} = (1+r/m)^{r-1}$

 $C_{1, r, m}/C_{2, r, m} = (m/r)^{r-1}$

if m/r < 1more weightage to random variable Y

Same weightage to both the Random variables m/r = 1

m/r >1 more weightage to random variable X

The special case of ${}_{m}C_{r}$ inequality is Classic- C_{r} inequality if $m=r\geq 1$

 $C_{1, r} = 2^{r-1} = C_{2, r}$

 $2^{r-1} [E|X|^r + E|Y|^r] \ge E|X+Y|^r$.

REFERENCES

[1] A.M. Gun, M.K. Gupta, B. Das Gupta An outline of Statistical Theory vol 1(Ch.4). World Press, Kolkata, 2017.

[2] Joel R. Hass, Christopher E. Heil, Maurice D. Weir, Thomas' Calculus (Ch.4), Pearson India Education Services.

(2)