Role of Ecofriendly ZnO Nanoparticles to β-(1-4) Linked Polysaccharide '*Chitosan*' in CTPP-Zinc Oxide Polyelectrolyte Membrane

Shiv Prakash Mishra

Assistant Professor in Chemistry (Guest Faculty) Department of Physics & Electronics Dr. Ram Manohar Lohia Avadh University, Ayodhya – 224001, (U.P.), India

Abstract: A β -(1-4) linked polysaccharide as chitosan may crosslinking to sodium tripolyphosphate (CTPP) membrane which are impregnated with ecofriendly zinc oxide (ZnO) nanoparticles for can serve as a good adsorbent or to improve the antifouling performance in membrane surface. In synthesis of CTPP membrane, the concentration of tripolyphosphate (TPP) may varied , (0.5%, 1.0% & 1.5%) at pH 5.0, where the chitosan to zinc oxide nanoparticle ratio is 8:1,4:1 and 2:1 , with specific wider pore radius of CTPP-ZnO membrane. The membrane performance test have checked by using of methylene blue pigment dye when 4 pm concentration is passed through the membrane. The addition of ZnO reported that the interaction of methylene blue and ZnO nanoparticles mainly consider as the ionic bonding between the positively charged of ZnO and negatively charged of methylene blue (-SO₃⁻), which led to affect in hydrophilicity of polyelectrolyte membrane with high performance as reverse transport in osmosis during performance test.

Keywords: Polysaccharide, membrane, chitosan, tripolyphosphate, zinc oxide nanoparticles.

[1]. INTRODUCTION:

In 'protein-polysaccharide world' there are several kinds of protein (gelatin) as well as polysaccharides such as cellulose, chitosan, dextran, heparin, inulin and chondroitin sulphate etc. have been potential importancy in hydrogel mediated biomedicalengineering application due to their practicle performance such as delivery of bioactive-selective components, regeneration of tissue cell as well as encapsulation of nanoparticles¹. Knowing, a membrane is a thin living materials which can selectively transport the mass of a component as a result of thurst force and the physico-chemical properties between the membrane and permeated compound. Membrane are often used for purification, in process such as haemodialysis² and biodiesel³/waste water purification⁴, which on comparing with other waste- water treatment methods such as adsorption and coagulation, a membrane is effective because it saves time is continuous and to conserves energy, but some of antifouling in membrane based filtration process as well as improving the efficiency of the membranes used⁴.

Recent studies has been carried out the effort in to membrane synthesis from natural polymers, for example, the membranes made from polysaccharide such as cellulose⁵ but ought chitosan based^{6,7}. Chitosan is a one of the natural polymers which are prepared through deacetylation of chitin, usually sourced from shrimp or crab skin⁸, and is often use to creat chitosan membranes cross-linked with tripolyphosphates to remove humic acid from water, resulting polyelectrolyte complex PEC-CTP membrane which can serve as a good adsorbent of metal compounds⁹ and dye¹⁰.

In current paper, we have been reported the chitosan crosslinked with tripolyphosphate as a complex polyelectrolyte membrane¹¹ made of CTP combined with zinc oxide nanoparticles, where a rapid developed ZnO/ecofriendly inorganic nanoparticle, which are more reactive than at normal sized to potential for degrading pollutant by oxidizing-reducing based¹² modified complex polyelectrolyte membrane with nanoparticles to reduced fouling effects in the membrane. The impregnation of nanoparticles into a membrane is expected to degrade pollutants trapped on the membrane surface with improved antifouling performance¹³. The pollutant use to test membrane performance in this study is methylene blue dye pigment¹⁴. It has high solubility in water, and so, in the fixation process a large amount of dye is lost with waste water. Another, one of the weakness of chitosan membrane is its instability in acid pH. To improve the stability of chitosan membrane, one possible method is to be crosslinking of chitosan with tripolyphosphates as a complex polyelectrolyte membranes for best performance (in figure-1).

375

Fig. 1 (a) Chemical structure of cross - linking between chitosan and TPP in CTPP

Fig. 1 (b) Prediction of structure of CTPP- Zinc oxide Molecules

[2]. MATERIALS AND METHODS:

In synthetic procedures, the materials used in this study such as chitosan, sodium tripolyphosphate, acetic acid and ZnO nanoparticles (< 50nm in size) have industrial and laboratory grade. These experimental work which are adopted from the work described by Febriasari et al¹⁵. Firstly, chitosan (polysaccharide) is dissolved in about 2% CH₃COOH(acetic acid) with a ratio of 1:50, then stirred and heated at 60°C. After the chitosan solution is homogeneous, it is mixed with zinc oxide (ZnO) nanoparticles. The ratio of chitosan by weight to zinc oxide nanoparticles by weight are 2:1, 4:1 & 8:1, respectively, and solution is stirred at

1300rpm for 30 minutes. Once it is homogeneous, then sodium tripolyphosphate solution is added at 0.5%, 1% & 1.5% concentration variation (each at pH 4.5) until a clear suspension is formed. Then 50ml of the resulting solution have taken to be moulded in teflon moulds and oven-dried at 60°C, until a CTP-ZnO membrane film is formed.

The characterization and performance test of the CTPP and CTPP-ZnO membrane may performed by the instruments used in this study are a teflon membrane mould with 10cm diameter, a set of membrane performance test equipment as scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX), FTIR, surface pore size or particle size analysis by BET analyser (N₂ adsorption at77.35K) equipment and water contact angle measurement as well as flux recovery ratio (FRR) for target compounds used as artificial waste in this study are methylene blue pigment which analysis by its performance on spectrophotometer UV-visible of wavelength.

[3]. RESULTS AND DISCUSSION:

The preparation of chitosan-TPP membrane is performed by the mixing and evaporation method. The dominant polymer solution which is chitosan in acetic acid is added with sodium tripolyphosphate (TPP) with 0.5, 1.0 & 1.5% conc. variation at pH 5.0. Notable, in acedic pH, chitosan has in cation form, so it had an NH_3^+ group which could bind with anion TPP¹⁶. The figure-1 is an illustration of the bond between chitosan and TPP¹⁷. The chitosan membrane is crosslinked to TPP which impregnated with zinc oxide nanoparticles. The mixing of chitosan-TPP with zinc oxide is performed at 1300 rpm until homogeneous. It is dried at 60°C until a CTP-zinc oxide (ZnO) membrane film is formed.

The physico-chemical analysis measurement determines the comparison with wider average pore radius/volume and surface area of CTPP and CTPP membrane impregnated with zinc oxide nanoparticles (Table-1), based on membrane adsorption of nitrogen at 77.35K, where zinc oxide addition influence the pore radius (8:1, 4:1 and 2:1) of CTPP membranes. The water contact angle measurement is to evaluate the hydrophilicity of the membrane and performed by surface membrane during addition of tripolyphosphate and zinc oxide nanoparticles. The intermolecular bonding between membrane and water is conducted by van der Waal's forces. The presence of TPP and ZnO nanoparticles may inhibit the adsorption of water since they could obstruct the -OH (hydroxyl) and amine functional group of membrane.

Table-1. PHYSICO-CHEMICAL DATA	OF CHITOSAN-TRIPOLY	PHOSPHATE AND (CHITOSAN-TRIPOLYPHOSPHATE
MEMBRANE I	MPREGNATED WITH ZI	NC OXIDE NANOPA	ARTICLES

S.N.	Membranes	Average pore	Total pore	BET	Water
		radius	volume	surface area	contact
		(10Å)	$(10^{-2} cc/g)$	(m^2/g)	angle(°)
1.	Chitosan	4.128	2.341	11.340	46
2.	CTPP 0.5%	3.568	2.717	15.225	48
3.	CTPP 1%	4.259	2.163	10.159	50
4.	CTPP 1.5%	4.436	2.221	10.014	54
5.	CTPP-ZnO (8:1)	4.671	1.956	08.375	64
6.	CTPP-ZnO (4:1)	5.039	2.037	08.085	65
7.	CTPP-ZnO (2:1)	4.683	2.347	10.021	66

The membrane performance is demonstrated that, by using of methylene blue dye, where the methylene blue solution with a 4ppm concentration is passed through the membrane using membrane performance test equipments and transport membrane take place in reverse osmosis. Although, using of methylene blue dye may influence the pH on adsorption with their photocatalytic degradation activity also observed¹⁸. The feed solution are pumped through the membrane under controlled pressure by valve in 10 bar. The filtration is varied by measurement time. The water of methylene blue solution are diffused through the membrane since the CTP membranes are hydrophilic and methylene blue molecules are trapped in the membrane surface. The time measured (1 to 5h) variable is chosen in order to evaluate the stability of flux permeate of the membrane transport. The flux decrease since the first minute of transport, this indicated that the fouling of methylene blue has appeared in the surface of membrane. The determination of antifouling performance test by calculating of flux recovery ratio (FRR) value¹⁹, (Flux recovery ratio (%) = $J_{w2} \times 100/J_{w1}$)²⁰, where J_{w1} is flux value of the membrane when passed by the target compounds and J_{w2} is flux value after backwashing of the membrane by demineralized water. The zinc oxide nanoparticles may predicted to have capavility degrading compound as methylene blue dye in membrane surface, where interaction of methylene blue and zinc oxide nanoparticle manly cosiderded as the ionic bonding between positively charged of ZnO (Zn(OH)⁺) and negatively charged of methylene blue (-SO₃⁻).

CONCLUSION:

In conclusion, on the basis of finding results, we have been reported that β -(1-4) linked based linear polysaccharide such as chitosan are crosslinked with TPP in CTPP membrane which can influence the membrane surface where the pore radius increased by the addition of TPP. The zinc oxide nanoparticles impregnation can affect membrane morphology, making the surface rougher, as well as it affect the hydrofilicity of the membrane surface, the more zinc oxide ecofriendly nanoparticles have the good performance test

using dye (methylene blue) pigment which showed that the addition of zinc oxide nanoparticles in CTPP membrane is proven to improve antifouling performance in the membrane.

REFERENCES:

- [1] T.T. Nguyen, C.K. Huynh, V.T. Le, M.D. Truong, B.L. Giang, N.Q. Tran and M.T. Vu, Asian J.Chem., 31, 1062-1070, (2019).
- [2] W.I. Mortada, K.A. Nabieh, A.F. Donia, A.M. Ismail and I.M.M. Kenawy, J.Trace Elem. Med. Biol., 36, 52,(2016).
- [3] I.M. Atadashi, M.K. Aroua, A.R.A. Aziz and N.M.N. Sulaiman, Appl. Energy, 88, 4239,(2011)
- [4] S. Judd, Trends Biotechnol., 26, 109,(2008)
- [5] F.M. Sukma and P.Z. Culfaz-Emecen, J. Memb. Sci., 545, 329,(2017)
- [6] A.A. Alshahrani, H. Al-Zoubi, L.D. Nghiem and M. Panhuis, *Desalination*, 418, 60, (2017)
- [7] S.Tamburaci and F. Tihminlioglu, Mater.Sci.Eng. C, 80,222 (2017)
- [8] H. Altaher, J. Hazard. Mater., 233-234, 97, (2012)
- [9] M. Ahmad, K. Manzoor and S. Ikram, Int. J. Biol. Macromol., 105,190(2017)
- [10] C.C. dos Santos, R. Mouta, M.C.C. Junior and S.A.A. Santana, Carbohydr.Polym., 180, 182(2018)
- [11] Minkal .M. Ahuja and D.C. Bhatt, Int. J. Biol. Macromol., 106, 1184(2017)
- [12] L. Djerahov, P. Vasileva, I. Karadjova, R.M.Kurakalva and K.K. Aradhi, Corbohyr. Polym., 147, 45(2016)
- [13] R. Ma, Y.L. Ji, Y.S. Guo, Y.F. Mi, Q.F. An and C.J. Gao, Desalination, 416, 35(2017)
- [14] J. Kalmar, G.Lente and I.Fabian, Dyes Pigments, 127, 170(2016)
- [15] A. Febriasari, D.Siswanta, N.Riyanto, N.Hidayat Aprilita and F. Silvianti, Asian J. Chem., 30, 2509(2018)
- [16] C.P. Kiilll, H.S. Barud, S.H. Santagneli, S.J.L. Ribeiro, A.M. Silva, A. Tercjak, J. Gutierrez, A.M. Pironi and M.P.D. Gremiao, Carbohyr. Polym., 157, 1695(2017)
- [17] F. Razga, D.Vnukova, V. Nemethova, P. Mazancova and I.Lacik, Carbohydr. Polym., 151, 488 (2016)
- [18] A. F. Alkaim, A. M. Aljeboree, N. A. Alrazaq, S. J. Baqir, F. H. Hussein and A. J. Lilo, Asian J. Chem., 26,8445(2014)
- [19] Y. Feng, K.Wang, C.Davies and H. Wang, Nanomaterials, 5,1366 (2015)
- [20] Z. Xu, X. Li, K. Teng, B. Zhou, M. Ma, M. Shan, K. Jiao, X. Qian and J. Fan, J. Membr. Sci., 535,94 (2017)

