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Abstract: Convection in porous media plays an essential role in recent advancements. The application of porous media are 

found in different areas like Geophysics, Petroleum processes, and Air conditioning porosity. In this study, the anisotropic 

effects of porous medium are investigated for suitable range of parameters.  

Free Convection flow of Newtonian liquids in an anisotropic porous medium is talked about by applying Galerkin technique. 

Direct strength is done for both stationary and oscillatory mode. Here the Anisotropic parameter ε increases, the critical 

magnetic heat Rayleigh number Nc is found to decrease. This indicated that, the system destabilizes with respect to 

anisotropic porous medium.  
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I. INTRODUCTION 

Free convection flow of Newtonian liquids in an anisotropic permeable medium utilizing Darcy model is concentrated on with 

computational routines. Galerkin technique is connected. Direct dependability examination is done for both stationary and 

oscillatory modes. The basic magnetic Rayleigh number is registered for different estimations of the parameters which describe the 

flow. It is found that the anisotropic parameter builds, the heat Rayleigh number is found to diminish. Numerical calculations are 

made and showed graphically.  

 

II. MATHEMATICAL   FORMULATION 

Consider an endlessly spread layer of Boussinesq ferro liquid of density 'd', of magnetic field heated from underneath is considered. 

The temperature at the base surface and at the upper surface are and individually. Further the framework is thought to be an 

anisotropic thickly stuffed permeable medium with anisotropy along the vertical course which is taken as the z-axis. The liquid is 

thought to be incompressible liquid having viscosity given by, 

𝜇 = 𝜇1                                                                                                                                     (1) 
The controlling mathematical equations utilized  are as below: 

The continuity equation is  

∇. 𝑞⃗ = 0                                                                                                                                   (2) 

The momentum equation for an incompressible Newtonian fluid with variable viscosity 𝜇 is     

𝜌0
𝐷𝑞

𝐷𝑡
=  −∇𝑝 + 𝜌𝑔 + ∇. (𝐻𝐵) −  

𝜇

𝑘
 𝑞                                                                     (3) 

 

The temperature equation for an incompressible fluid which obeys the modified Fourier’s law as given by Finlayson (1970) is 

[𝜌0𝐶𝑣,𝐻 + 𝜇0𝐻 [
𝜕𝑀

𝜕𝑇
]]    

𝑑𝑇

𝑑𝑡
+ 𝜇0𝑇 [

𝜕𝑀

𝜕𝑇
]

𝑑𝐻

𝑑𝑡
 = 𝐾1 ∇2 𝑇 + ∅                                       (4) 

The density equation of state for Boussinesq magnetic  fluid is   

𝜌 = 𝜌0[1 − 𝛼(𝑇 − 𝑇0)]                                                                                            (5) 

 

Basic state is taken  to be quiescent. A little perturbation has been  imparted  on all the dynamical variables and linear theory is 

utilised. 

Modified Navier Stoked equations on linearization: 

𝜌0
𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+ 𝜇0(𝑀0 + 𝐻0)

𝜕𝐻1
1

𝜕𝑧
−

𝜇1

𝜀𝑘1
 𝑢                                                             (6) 

 

𝜌0
𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑦
− 𝜇0(𝑀0 + 𝐻0)

𝜕𝐻2
1

𝜕𝑧
  -  

𝜇1

𝜀𝑘1
 𝑣                                                            (7) 

 

𝜌0
𝜕𝑤

𝜕𝑡
= −

𝜕𝑝

𝜕𝑧
+ 𝜌0𝑔𝛼𝑇1 − 𝜇0𝐾2𝛽𝐻3

1 +
𝜇0𝐾2

2𝛽𝑇1

(1+𝜒)
+ 𝜇0  (𝑀0 + 𝐻0)

𝜕𝐻3
1

𝜕𝑧
−  𝜇0  (𝑀0 + 𝐻0)

𝐾2 𝛽

(1+𝑥)
− 

𝜇1

𝑘2
 𝑤 − 

𝜇1

𝑘2
𝛿𝜇0  (𝑀0 + 𝐻0)𝑤                                                     

(8)                                                        

 

Further research and methods has been carried out as used by Vaidyanathan et.al. (1995) which leads to the below vertical 

component of momentum equation: 
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𝜌0 [
𝜕∇2𝑤

𝜕𝑡
] = −

𝜇1

𝑘1

𝜕2𝑤

𝜕𝑧2
+ 𝜌0𝑔𝛼∇1

2𝑇1 − 𝜇0𝐾2𝛽
𝜕

𝜕𝑧
(∇1

2𝜙1) +
𝜇0𝐾2

2𝛽

(1 + 𝑥)
∇1

2𝑇1  

                      −
𝜇1

𝑘2
∇1

2𝑤                                                                                            (9) 

 

III. NORMAL MODE ANALYSIS 

The normal mode solutions of all dynamical variables can be presented as 

𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑧, 𝑡)𝑒𝑥𝑝{𝑖(𝑘𝑥𝑥𝑘𝑦𝑦)}                                                                  (10) 

 

𝜌0
𝜕

𝜕𝑡
(

𝜕2

𝜕𝑧2 − 𝑘2) 𝑤 = −
𝜇1

𝜀𝑘1

𝜕2𝑤

𝜕𝑧2 − 𝜌0𝑔𝛼𝑘2𝜃 +
𝜇0𝐾2𝛽

(1+𝑥)
[(1 + 𝑥)

𝜕𝜙

𝜕𝑧
−  𝐾2𝜃] 𝑘2   +

𝜇1

𝑘2
𝑘2𝑤       

                                                                                                                      (11) 

 Equation (3.4) is linearised and the resulting equation upon utilising 𝐻1 = ∇𝜙1 yields 

𝜌𝑐
𝜕𝜃

𝜕𝑡
− 𝜇0𝑇0𝐾2

𝜕

𝜕𝑡
(

𝜕𝜙

𝜕𝑧
) = 𝐾1 [

𝜕2

𝜕𝑧2 − 𝑘2] 𝜃 (𝜌𝑐𝛽 −
𝜇0𝑇0𝐾2

2𝛽

(1+𝑥)
) 𝑤                             (12) 

𝑤ℎ𝑒𝑟𝑒 𝜌𝑐 = 𝜌𝐶𝑣,𝐻 + 𝜇0𝐾2𝐻0                                                                                 (13) 

On fine tuning, 

(1 + 𝑥)
𝜕2𝜃𝑘2

𝜕𝑧2 𝑘
 (1 +

𝑀0

𝐻0
) 𝑘2𝜃 − 𝐾2

𝜕𝜃

𝜕𝑧
= 0                                                              (14) 

Using appropriate non-dimensional terms, 

(
𝜕

𝜕𝑡∗) (𝐷2 − 𝑎2)𝑤∗ = 𝑎𝑅
1

2(𝑀1𝐷𝜙∗ − (1 + 𝑀1)𝑇∗) + (
−𝐷2

𝐾1
∗ +

𝑎2

𝐾2
∗) 𝑤∗                  (15) 

𝑃𝑟
𝜕𝑇∗

𝜕𝑡∗ − 𝑃𝑟𝑀2
𝜕

𝜕𝑡∗  (𝐷𝜙∗) = (𝐷2 − 𝑎2)𝑇∗ + (1 − 𝑀2)𝑎𝑅1/2𝑤∗                           (16) 

 𝐷2𝜙∗ − 𝑎2𝑀3𝜙∗ − 𝐷𝑇∗ = 0                (17) 

where the below non dimensional parameters are used 

   𝑘1
∗ =

𝑘1

𝑑2 , 𝑘2
∗ =

𝑘2

𝑑2 ,   𝑀1 = (
𝜇0𝐾2

2𝛽

(1+𝜒)𝛼𝜌0𝑔
) , 𝑀2 = (

𝜇0𝑇0𝐾2
2

𝜌0𝑐(1+𝜒)
) 

 𝑀3 = (
1+

𝑀0
𝐻0

(1+𝜒)
) , 𝑃𝑟 =

𝜇𝑐

𝐾1
                           (18) 

 

Numerical Solution using Galerkin method 

The boundary conditions for stress free boundaries are 

𝑤∗ = 𝐷2𝑤∗ = 𝑇∗ = 𝐷𝜙∗ = 0 at 𝑧 = −
1

2
 and  𝑧 =

1

2
                        (19) 

Using Galerkin technique force series expansion for the variables are indicated as 

 𝑤(𝑧, 𝑡) = 𝐴𝑤1(𝑧)𝑒𝑖𝜎𝑡 

 𝑇(𝑧, 𝑡) = 𝐵𝑇1(𝑧)𝑒𝑖𝜎𝑡  

 𝜙(𝑧, 𝑡) = 𝐶𝜙1(𝑧)𝑒𝑖𝜎𝑡  
utilizing these, the equations become 

[(𝜎 +
1

𝜀𝑘1
)𝐷2𝑤1(𝑧) − 𝜎𝑎2𝑤1(𝑧) − (

𝑎2

𝑘2
) 𝑤1(𝑧)] 𝐴 + 𝑎𝑅

1

2𝑇1(𝑧)𝐵 = 0                              (20)                                                                  

                                                                                                                                                                                                                                                              

[−(1 − 𝑀1)𝑎𝑅
1

2𝑤1(𝑧)] 𝐴 + ⌊(𝑃𝑟𝜎 + 𝑎2)𝑇1(𝑧) − 𝐷2𝑇1(𝑧)⌋𝐵 − [𝑃𝑟𝑀2𝜎𝐷𝜙1(𝑧)]𝐶 = 0           

                                                                       (21) 

           𝐷2𝜙1(𝑧)𝐶 − 𝑎2𝑀3𝜙1(𝑧)𝐶 −
𝐷𝑇1(𝑧)𝐵 = 0                                       (22) 

Taking 𝑤1(𝑧) =
𝑧4

2
−

3𝑧2

4
+

5

32
 

 𝑇1(𝑧) = 𝑧4 + 𝑧2 −
5

16
 

 𝜙1(𝑧) =
𝑧3

3
−

𝑧

4
 

So as to satisfy the boundary conditions 

[(𝜎 +
1

𝜀𝑘1
) (−0.1214285) − (0.01230158) [𝜎𝑎2 + (

𝑎2+𝛿𝑀3𝑎2

𝑘2
)]]A 

 + [𝑎𝑅
1

2(1 + 𝑀1)(−0.0261367)] 𝐵 − 𝑎𝑅
1

2𝑀1(−0.02023809)𝐶 = 0            (23)                                                                                                                                        

[−(1 − 𝑀1)𝑎𝑅
1
2(−0.025992)] 𝐴 + ⌊(𝑃𝑟𝜎 + 𝑎2)(0.0551873) − (−0.569047619)⌋𝐵 

 −[𝑃𝑟𝑀2𝜎(0.04285714)]𝐶 = 0                                       (24) 

(0.042857)𝐵 + [(−0.03333) + 𝑎2𝑀3(0.003373)]𝐶 = 0                          (25)  

For the existence of non trivial solutions for the above equations, the determinant of the coefficients of A,B and C in equation (23), 

(24) is equated to 0. 
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IV. STABILITY ANALYSIS 

Stationary instability 

Taking 𝜎 = 0 in the above determinant 

 𝑅 =
𝑥6𝑥7 [𝑥1+𝑥2]

𝑥3𝑥5𝑥7+(0.042857)𝑥4𝑥5
 

Where,  𝑥1 =
0.121428

𝜀𝑘1
 

 𝑥2 =
(0.01230158)𝑎2(1+𝛿𝑀3)

𝜀𝑘1
 

  𝑥3 = 𝑎(1 − 𝑀1)(0.0261367) 

   𝑥4 = 𝑎𝑀1(0.02023809) 

  𝑥5 = (1 − 𝑀2)𝑎(0.025992) 

  𝑥6 = 𝑎2(0.0551587) + (0.569047) 

  𝑥7 = −⌊(0.03333)𝑎2𝑀3(0.003373)⌋. 
 

TABLE – 1 

 Marginal stability of Ferro fluid  in an anisotropic porous medium with 𝑴𝟏 = 𝟏𝟎𝟎𝟎, 𝑴𝟐 = 𝟎 ,  

k1 = 0.0001 

 

𝑘1 𝜀 𝑀3 (𝑎𝑐 ) 𝑁𝐶  = (R𝑀1 )C 

 

 

 

 

0.0001 

10 

1 5.17 237643 

3 5.17 195968 

5 5.17 188211 

7 5.17 185308 

30 

1 5.17 203619 

3 5.17 167477 

5 5.17 160434 

7 5.17 157555 
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Fig: 1: Marginal stability of Ferro fluid in an anisotropic porous medium with 𝑴𝟏 = 𝟏𝟎𝟎𝟎, 𝑴𝟐 = 𝟎 , k1 = 0.0001 

 

TABLE - 2 

  Marginal stability of Ferro fluid in an anisotropic porous medium with 𝑴𝟏 = 𝟏𝟎𝟎𝟎, 𝑴𝟐 = 𝟎 and k1 = 0.0001. 

𝑘1 𝜀 𝑀3 (𝑎𝑐 ) 𝑁𝐶= (R𝑀1 )C 

 

 

 

 

0.0001 

 

 

10 

1 5.17 23764 

3 5.17 19597 

5 5.17 18821 

7 5.17 18531 

 

 

30 

1 5.17 20362 

3 5.17 16748 

5 5.17 16043 

7 5.17 15756 

 

 

 

 

 

 = 10 

 

   = 30 
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Fig:2: Marginal stability of Ferro fluid  in an anisotropic porous medium with 𝑴𝟏 = 𝟏𝟎𝟎𝟎, 𝑴𝟐 = 𝟎 and k1 = 0.0001. 

 

V. RESULT AND DISCUSSION 

The impact of magnetic field on free convection flow of Newtonian liquids in an anisotropic thickly stuffed permeable medium has 

been broke down utilizing Darcy model. The permeability value of the porous medium has been taken utilizing the qualities 

proposed by Walker and Homsy (1997). For these liquids M2 is accepted to have irrelevant quality and thus taken to be zero. The 

impact of anisotropy is considered by taking the anisotropic parameter which is the proportion of vertical to level penetrability and 

is fluctuated from 1 to 70 (Goel and Agrawal(1998). The porousness of the permeable medium is fluctuated from 0.0001 to 0.001. 

The discriminating magnetic heat Rayleigh number NC is gotten for distinctive estimations of penetrability k0, anisotropic 

parameter, subordinate viscosity. The normal estimation of M2 is 10-6 Finlayson (1970) and henceforth it is accepted unimportant. 

It can be appeared taking after the investigation of Ramanathan and Suresh (2004), that oscillatory precariousness not happen for 

the issue under thought. Accordingly we restrain our thought to stationary instability. One can likewise see from the figures as the 

coefficient of magnetic field  is expanded, the basic magnetic heat Rayleigh number NC diminishes, this would suggest that the 

magnetic field balances out through varieties as for magnetic field.  

It is clear from the table that as the anisotropic parameter expands, the basic magnetic heat Rayleigh number NC is found to diminish. 

This demonstrates that the framework destabilizes. Comparative results were additionally found for diverse estimations of the 

porousness parameter. The increment in magnetization has a tendency to destabilize the framework. The vicinity of anisotropic 

thickly stuffed permeable medium destabilizes the framework. On examination with hypothetical results acquired by Ramanathan 

and Suresh (2004), the present computational results are observed to be completely in consent to the conceivable degree of 

exactness.  

 

VI. CONCLUSION 

In this study, the impacts of porosity on the free convection flow of Newtonian liquids in an anisotropic permeable medium were 

explored. At the point when the anisotropic parameter builds, the heat Rayleigh number is found to diminish. This demonstrated 

that, the framework destabilizes as for Anisotropic permeable medium. In this manner the impact of both magnetization and 

additionally the vicinity of anisotropic thickly pressed permeable medium is to destabilizes the system.(for the picked values of the 

parameters ) 

          = 10 

 

= 30 

  

 = 10  
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