Effect of Medicinal Plants on the Mosquito Vectors from the Different Agroclimatic Regions of Tamil Nadu, India.

M.Sabural Begum * and Dr.T.ThangaRani**

*II B.Sc Zoology, Vyasa Arts and Science Womens college, Subramaniapuram,(Affliated to Manonmaniam Sundaranar University,Tirunelveli), Tenkasi,TamilNadu,India.

**Assistant Professor in Zoology, Vyasa Arts and Science Womens college, Subramaniapuram,(Affliated to Manonmaniam Sundaranar University,Tirunelveli), Tenkasi,TamilNadu,India.

ABSTRACT:

Vector control plays a key role in prevention and control of major vector-borne infectious diseases in tropical and subtropical regions. The three main climatic factors that affect malaria transmission and distribution are temperature, precipitation and relative humidity. *Aedes aegypti*, commonly known as the Yellow Fever Mosquito, is a mosquito that can host the dengue fever, Chikungunya and yellow fever viruses. Medicallymost important species, *Culex quinquefasciatus*, breeds in waters polluted with organic debris such as rooting vegetation, household refuse and excreta. Chemical control use of pesticides is still the most important element in the integrated approach to vector control. But they are non-selective and harmful to other beneficial organisms. Hence, botanical have grown very important in controlling the mosquito vectors. Laboratory andfield investigations have been made to evaluate the combined effect *Clerodendron inerme*, *Acanthus ilicifolius* on three species of mosquito vectors, *Anopheles stephensi*, *Aedes aegypti* and *Culex quinquefasciatus*. Different concentrations of *Clerodendron inerme* and *Acanthus ilicifolius* have been tested on the various stages of mosquito vectors. Lethal concentrations (LC₅₀ and LC₉₀) were also worked for the different larval stages of mosquitoes. Significant increased mortality was evident after the plant extracts. The lethal effect on mosquito larvae may be due to the active plant compounds on the gut lining of the mosquito larvae. Thelarval density was decreased after the treatment of plant extracts at the breeding sites (drinking water andditches water), and hence, these plant extracts of the suitable alternatives of synthetic insecticides for the mosquito vector management.

Key words: Clerodendron inerme, Acanthus ilicifolius, Anopheles stephensi, Aedes aegypti, Culex Quinquefasciatus, mosquitocidal activity.

Introduction:

Mosquitoes are one of the most medically significant vectors, and they transmit parasites and pathogens, which continue to have devastating impacton human beings. The vector borne diseases caused by mosquitoes are one of the major health problems in many countries. Malaria, Dengue, yellow fever, filariasis and chikungunya are some of the deadly.

Diseases spread by mosquitoes. *Anopheles stephensi*is recognized as a major vector for urban malaria in India. This species prefers to breed in small synthetic water collections and is responsible for frequent outbreaks of malaria, particularly at construction sites in urban areas [14]. *Culex quinquefasciatus* is important vector of *Brancraftian filariasis* in tropical and subtropical regions. According to WHO[31]about 90 million people worldwide are infected with *Wuchereria bancrafti* the lymphatic dwelling parstite and ten times more people ate at the risk of being infected. In India alone 25 million people harbor microfilaria (mf) and 19 million people suffer from filarial disease manifestations [19,13]. *Aedes aegypti*, a vector of dengue, is widely distributed in the tropical and subtropical zones. About two-thirds of the world's population lives in areas infested withdengue vectors. Dengue haemorragic fever occurs in Asia, the Americas and some Pacific islands. Dengue is endemic in all continents except Europe, and epidemic Dengue viruses, causative agents of dengue fever and more severe dengue haemorragic fever/dengue shock syndrome, infect over 100 millionpeople every year [8].

Over 2000 extracts of higher plants prepared from 325 different plant species were screened for insecticidal activity against the larvae of *A. aegypti*. There are a good number of reports on the successful use of neem and its byproducts against mosquitoes. *Clerodendron inerme* Gaertn. (Verbinaceae), commonly known as Kashmir bouquet is a biennial, hardy plant and widely grown as a hedge plant along home gardens. The leaf extract of the plant has been shown to contain insecticidal properties againstmosquitoes [9]. Review of the literature revealed that various solvent extracts of plant materials have been tested against mosquitoes. Therefore, it was thought rewarding to investigate the dry powder of leaf material as source of insecticidal properties against the mosquito larvae. *Acanthus ilicifolius* Linn. (Acanthaceae) is relatively lesser-known, yet important medicinal plant of Herbal Material Medica. The plant is used in traditional systems of medicine, including Traditional Indian Medicine (TIM) or Ayurveda and Traditional Chinese Medicine (TCM) [5]. *A. ilicifolius* (sea holly) occurs in tropical Asia and Africa, through Malaya to Polynesia.

It is a viny shrub or tall herb, upto 1.5 m high, scarcely woody, bushy, with very dense growth. Shallow tap roots, but occasionally stilt roots are conspicuous. Leaf simple opposite, decussate, cauline, exstipulate, petiole short, flattened, glabrous, pulvinous to sheathing base Flower bisexual, typically zygomorphic, complete, erect, sessile, hypogynous.Fruit 1 cm green and 2.5 - 2.0 cm long, kidney shaped 4 seed drupe, Seed 0.5 - 1.0 cm long [32].

This species is found from intermediate to upstream estuarine zones in the mid to high intertidal regions. It is shade tolerant with a maximum pore water salinity of 65ppt and a salinity of optimal growth of 8ppt [21]. It is found on all soil types, especially muddy areas along inertial banks. This species leaves tend to be less spiney in deeper shade and also on the older leaves and is often sympatric with *Acanthus bracteates*. This species is a low sprawling shrub let ranging from 50-120cm tall. It naturally reproduces vegetatively and also by seeds.Due to this, generation length is difficult to determine for this species.

Thangam and Kathiresan, [25] Insecticides of plant origin have been receiving attention in recent years to overcome the environmental hazards in usingsynthetic insecticides. Large numbers of plant samples have been screened for their insecticidal and/or repellent activities and a few of them havebeen found promising and their products are commercially available. They have investigated for the first time seaweeds, seagrasses and mangrove plants for their larvicidal, skin and smoke repellent activities against mosquito species. Some of them were effective in killing the larvae or repelling adult female mosquitoes. Leaves of *Escoecaria agalloclla* and *Acantllus iliciJolius* were found to show smoke repellent activity. Isolation and identification of activecompounds from the effective samples would be useful in synthesising mosquito larvicides orrepellents on a large scale.

In the present investigation, we have examined the effect of sundried leaf powder of *Clerodendron inerme* and *Acantllus iliciJolius* against mosquitocidalactivity of *Anopheles stephensi*, *Aedes aegypti*, *Culex quinquefasciatus*.

Materials and Methods:

Colonization of mosquito vectorsCollection of eggs:

The eggs of *Anopheles stephensi*, *Aedes aegypti* and *Culex quinquefasciatus* were collected from local(in and around Tenkasii, India) different breeding habitats with the help of a 'O' type brush. The eggs were then brought to the laboratory and transferred to 18 x 13 x 4 cm size enamel trays containing 500ml water and kept for larval hatching.

Maintenance of Larvae:

The freshly hatched larvae were fed with dogbiscuits and yeast at 60:40 ratios. The feeding was continued till the larvae transformed into the pupal stage.

Maintenance of pupae and adult:

The pupae were collected from culture trays and were transferred to glass beakers containing 500 mlof water with help of a sucker. The glass beaker containing pupae were then kept in 90 x 90 x 90 cm size mosquito cage for adult emergence. The cage was made up of wooden frames and covered with polythene sheets on four sides (two laterals, one back and other one upper) and the front part was covered with a muslin cloth. The bottom of The cage was fitted with strong cardboard. The freshly emerged adults were maintained at $27 \pm 2^{\circ}$ C, 75-85% RH, under 14L: 10D photoperiod cycles. Theadults were fed with 10% sugar solution for a period of three days before they were provided an animalfor blood feeding.

Blood feeding of adult Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and egg laying:

The adult female mosquitoes were allowed tofeed on the blood of Rabbit (shaved on the dorsal side) for two days, to ensure adequate blood feeding for five days. After blood feeding, ovitraps were placed inside the cage for the adults to lay eggs.

Collection of plant materials:

The fresh plants *Clerodendron inerme, Acanthusilicifolius* was collected from in and around Tenkasi, India. The plants were authentified at BSI (BotanicalSurvey of India) and the specimens were depositedat Zoology Department lab,Vyasa Arts and Science Womens college,Tenkasi.

Preparation of plant extracts:

Clerodendron inerme, Acanthus ilicifolius fresh leaves were washed with tap water and shade driedat room temperature. An electrical blender powdered the dried plant materials (leaves and seeds). From thepowder 200g of the plant materials were extracted with 2.5 liters of organic solvents of methanol for8h, in a Soxhlet apparatus [27]. The crude plant extracts were evaporated to dryness in rotary vacuum evaporator.

Preparation of required plant extract concentration:

One gram of the plant residue was dissolved in 100 ml of methanol (stock solution) considered as1% stock solution. From this stock solution different concentrations were prepared ranging from 2 to 10%, respectively.

Larval toxicity test of plant extract:

A laboratory colony of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus larvae were used for the larvicidal activity.

Twenty-five numbers of first, second, third and fourth instar larvae were kept in 500 ml glass beaker containing 249 ml of dechlorinated water and 1ml of desired concentration of plant extracts were added. Larval food was given for the test larvae. At each tested concentration 2 to 5 trials were made and each trial consists of three replicates. The control was setup by mixing 1ml of acetone with 249 ml of dechlorinated water. The larvae exposed to dechlorinated water without acetone served as control. The controlmortalities were corrected by using Abbott's formula [1].

Corrected mortality
Observed mortality in treatment - Observed mortality in control
100 - Control mortality

Percentage mortality
Number of dead larvae Number of larvae introduced
100

LC₅₀, LC₉₀ were calculated from toxicity data by using probit analysis [7].

Pupal toxicity test of plant extract:

A laboratory colony of *Anopheles stephensi*, *Aedes aegypti*, *Culex quinquefasciatus* pupae were used for pupicidal activity. Twenty numbers of freshly emerged pupae were kept in 500 ml glass beaker containing 249 ml of dechlorinated water and 1ml of desired plant extract concentrations was added. Five replicates were setup for each concentration and control was setup by mixing 1ml of acetone with 249ml of dechlorinated water. The control mortality was corrected by Abbott's formula [1].

Corrected mortality \Box Observed mortality in treatment - Observed mortality in control \Box 100 - Control mortality

Field trail:

For the field trial the quantity of plant residues required (Based on laboratory LC_{90} values) for each treatment was determined by calculating the total surface area of the water in each habitat. The required quantities of *Clerodendron inerme, Acanthusilicifolius* were mixed thoroughly with water in a bucket with constant agitation. Teepol was used as emulsifying agent (0.05%). Field applications of the *Clerodendron inerme, Acanthus ilicifolius* were done with the help of a knapsack sprayer and uniformlyon the surface of the water in each habitat. Dipper sampling and counting of larvae monitored the larval density before 24 hrs, 48 hrs and 72 hrs after the treatment. A separate sample was taken to determine the species composition of each larval habitat. Twelve trails were conducted for *Clerodendroninerme, Acanthus ilicifolius* alone the treatment. The percentage of reduction was calculated by the following formula:

 $= \frac{C \Box T}{\Box} \Box$ 100 been increased to 88% at 100 ppm of *C. inerme* leaf extract treatment. The LC₅₀ and LC₉₀ values wererepresented as follows: LC₅₀ value of I instar was 45.749%, II instar was 51.042%, III instar was 57.170% and IV instar was 68.166%, respectively. LC₉₀ value of I instar was 110.392%, II instar was 116.758%, III instar was 128.697% and IV instar was 145.587%. The LC₅₀ value of pupae was56.444% and LC₉₀ value of pupae was 184.556% respectively.

Table 3 provides the considerable larval and pupal mortality of *Culex quinquefasciatus* (I to IV instars) after the treatment of methanolic extract of *Clerodendron inerme* leaf extract at different concentrations (20 to 100 ppm). 40% mortality was noted at I instar larvae by the treatment of *C. inerme*at 20 ppm whereas it has been increased to 91% at 100 ppm. The LC₅₀ and LC₉₀ values were represented as follows: LC₅₀ value of I instar was 34.767%, II instar was 39.299%, III instar was 47.311% and IV instar was 54.395%, respectively. LC₉₀ value of I instar was 99.894%, II instar was 108.553%, III instar was 131.860% and IV instar was 150.486%, respectively.

The LC₅₀ value of pupae was 55.100%

^C and LC value of pupae was 190.363% respectively.

90

Where,

C – is the total number of Mosquitoes in control T – is the total number of Mosquitoes in treatment

Statistical analysis:

The average larval mortality data were subjected to probit analysis for calculating LC_{50} and LC_{90} values were calculated by using Finney's Method [7] SPSS 13.00 versions were used.

Results:

Larval and pupal mortality of *Anopheles stephensi* after the treatment of methanolic extract of *Clerodendron inerme* leaf extract is shown in Table 1 .22% mortality was noted at I instar larvae by the treatment at 20 ppm whereas it has been increased to 81% at 100 ppm of *C. inerme* leaf extract. The LC₅₀ and LC₉₀ values were represented as follows: LC₅₀ value of I instar was 55.042%, II instar was 63.338%, III instar was 73.050% and IV instar was 80.167%. LC₉₀ value of I instar was 125.502%, II instar was 137.168%, III instar was 153.544% andIV instar was 156.931%, respectively. The LC₅₀ value of pupae was 74.355% and LC₉₀ value of pupae was 199.206% respectively.

Table 2 illustrates the larval and pupal mortality of *Aedes aegypti* (I to IV instars and pupae) after the treatment of methanolic extract of *Clerodendron inerme* at different concentrations (20 to 100 ppm). 30% mortality was noted at I instar larvae by the treatment of *C. inerme* at 20 ppm whereas it hasTable 4 illustrates the larval and pupal mortality of *Anopheles stephensi* (I to IV instars) after the treatment of methanolic extract of *Acanthus ilicifolius* at different concentrations (20 to 100 ppm). 23% mortality was noted at I instar larvae by the treatment of *A. ilicifolius* at 20 ppm whereas it has been increased to 89% at 100 ppm of *A. ilicifolius*leaf extract treatment. LC₅₀ value of I instar was 52.765%, II instar was 57.764%, III instar was 63.368% and IV instar was 70.185%, respectively. LC₉₀ value of I instar was 108.301%, II instar was 115.835%, III instar was 125.248% and IV instar was 131.288%, respectively. The LC₅₀ value of pupaewas 62.784% and LC₉₀ value of pupae was 141.035% respectively.

Table 5 provides the considerable larval and pupal mortality of *Aedes aegypti* (I to IV instars)after the treatment of methanolic extract of *Acanthus ilicifolius* leaf extract at different concentrations (20to 100 ppm). 19% mortality was noted at I instarlarvae by the treatment of *A. ilicifolius* at 20 ppm whereas it has been increased to 78% at 100 ppm of *A. ilicifolius* leaf extract treatment. The LC₅₀ and LC₉₀ values were represented as follows: LC₅₀ value of I instar was 69.579%, II instar was 76.635%, III instar was 82.692% and IV instar was 88.230%, respectively. LC₉₀ value of I instar was 131.813%,II instar was 143.171%, III instar was 150.588% and IV instar was 155.707%, respectively. The LC₅₀ value of pupae was 87.287% and LC₉₀ value of pupae was 199.466% respectively.

Table 6 illustrates the larval and pupal mortality of <i>Culex quinquefasciatus</i>

Larval	% of mo	rtality				LC ₅₀ and	Regression	95% Confidence limit		Chi-
and	Concenti	ation	(ppm)			LC ₉₀ (%)	equation			square value
pupal								LCL	UCL	
stages	20	40	60	80	100			LC ₅₀ LC ₉₀ (9	%) LC ₅₀ LC ₉₀ (%)	
Ι	22	46	55	62	81	55.0425 125.502	Y= -1.00114 X= 0.01819	48.2069 111.7097	61.401 146.9242	4.472
Π	18	40	50	59	73	63.3387 137.1685	Y= -1.09945 X= 0.01736	56.6562 121.1242	70.3442 162.7326	3.148
III	14	36	47	51	65	73.0505 153.5547	Y= -1.16290 X= 0.01592	56.6799 117.3448	100.9596 286.2014	5.654
IV	10	30	43	48	60	80.1671 156.9319	Y= -1.33835 X= 0.01669	64.2592 120.1046	113.5892 291.7177	5.925
Pupa	26	38	47	53	58	74.3557 199.2067	Y=76323 X=0.01026	63.4073 159.2947	90.119 288.8586	1.119

LCL: 95% of Lower Confidence Limit; UCL: 95% of Upper Confidence Limit;

Table 2: Larval and pupal toxicity effect of <i>Clerodendrone inerme</i> against on dengue vector, <i>Aedes aegypti</i>								
Larval % of	mortality	LC_{50} and	Regression	95% Confiden	ce limit	Chi-		
and Conce	ntration (ppm)	LC ₉₀ (%)	equation			square value		
pupal				LCL	UCL			
D0000440	The second se	CC D	1		20)			

IJSDR2209112 International Journal of Scientific Development and Research (IJSDR) <u>www.ijsdr.org</u> 717

square

stages	s 20	40	60	80	100	LC ₅₀ LC ₉₀ (%) LC ₅₀ LC ₉₀
						(%)
Ι	30	48	60	72	88	45.7491 Y=90697 38.5843 51.7809
_						110.3928 X= 0.01982 99.3206 126.9239 1.219
II	26	45	56	68	85	51.0428 Y=99541 44.3432 57.0188
						116.7588 X= 0.01950 104.8303 134.7089 1.467
III	24	40	52	65	78	57.1706 Y= -1.02434 50.4013 63.6637
						128.6971 X= 0.01792 114.3078 151.1792 0.305
IV	18	36	46	57	69	68.1664 Y= -1.12836 61.2459 76.0115 1.509
						145.5872 X= 0.01655 127.504 175.1563
Pupa	30	48	56	60	63	56.4447 Y=56464 43.5133 68.042 3.814
						184.5568 X= 0.01000 147.8371 268.2409

LCL: 95% of Lower Confidence Limit; UCL: 95% of Upper Confidence Limit;

Table 3: Larval and pupal toxicity effect of *Clerodendrone inereme* against on filarial vector, *Culex quinquefasciatus*

Larva	1% of mo	ortality				LC_{50} and	Regression	95% Confiden	Chi-	
and Concentration (ppm)						LC ₉₀ (%)	-			square value
pupal								LCL	UCL	
stages	20	40	60	80	100			LC ₅₀ LC ₉₀ (%)	LC ₅₀ LC ₉₀ (%)	
Ι	40	52	70	80	91	34.7672	Y=68477	25.7896	41.5636	
						99.8343	X= 0.01970	89.7323	114.9292	100
II	35	50	68	77	86	39.2991	Y=72723	30.528	46.0993	
						108.5534	X= 0.01850	97.0309	126.1946	0.563
III	32	48	59	67	79	47.3119	Y=71714	37.921	54.9079	
						131.8605	X= 0.01516	114.7187	160.8749	0.668
IV	30	45	54	63	72	54.3957	Y=72547	44.8255	62.9172	
						150.4863	X= 0.01334	127.9704	191.6393	0.61
Pupa	34	48	52	60	65	55.1003	Y=52205	40.927	67.2586	
-						190.3638	X= 0.00947	150.5368	285.942	1.048

LCL: 95% of Lower Confidence Limit; UCL: 95% of Upper Confidence Limit;

Table 4: Larval and pupal toxicity effect of Acanthus ilicifolius against on malarial vector, Anopheles stephensi

Larva	1% of mo	rtality				LC50 and	Regression	95% Confider	nce limit	Chi-
and	Concentr	ation ((ppm)			LC ₉₀ (%)	equation			square - value
pupal								LCL	UCL	
stages	20	40	60	80	100			LC ₅₀ LC ₉₀ (%)) LC ₅₀ LC ₉₀ (%)	
I	23	39	57	69	89	52.7651	Y= -1.21760	47.2242	57.9124	1 50 6
							X= 0.02308	98.8274	121.7204	1.736
II	20	37	51	65	85		Y = -1.27480 X = 0.02207	52.2512 105.24	63.1504 131.1084	1.397
III	18	34	46	60	80	63.3688 125.2488	Y= -1.31239 X= 0.02071	57.6952 112.9446	69.287 143.469	1.235
IV	13	31	39	56	75	70.1859 131.2886	Y= -1.47206 X= 0.02097	64.5587 118.3212	76.5245 150.5541	1.921
Pupa	22	37	50	62	71	62.7845 141.0358	Y= -1.02825 X= 0.01638	55.7053 123.5903	70.171 169.553	0.71

LCL: 95% of Lower Confidence Limit; UCL: 95% of Upper Confidence Limit;

Table 5: Larval and pupal toxicity	effect of Acanthus ilicifolius ag	gainst on dengue vector, Ad	edes aegypti
Larval % of mortality	LC ₅₀ and Regression	95% Confidence limit	Chi-

 IJSDR2209112
 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org
 718

and	Concentration (ppm)					LC ₉₀ (%) equation		value		
pupal						-	LCL	UCL		
stages	20	40	60	80	100		LC ₅₀ LC ₉₀	(%) LC ₅₀ LC ₉₀ (%)		
Ι	19	25	39	55	78	69.579 Y= -1.43 131.8131 X= 0.02		76.0079 151.5501	3.225	
Π	15	23	37	51	69	$\begin{array}{rrrr} 76.6356 & \text{Y}=-1.47 \\ 143.1713 & \text{X}=0.01 \end{array}$		84.3722 167.4262	0.415	
III	12	21	33	48	63	82.6928 Y= -1.50 150.5585 X= 0.01		91.6203 177.6935	0.012	
IV	10	17	30	45	58	88.2307 Y= -1.67 155.7074 X= 0.01		98.2329 184.5996	0.17	
Pupa	18	31	42	51	50	87.287 Y= -0.99 199.4663 X= 0.01		105.8331 277.3153	3.958	

LCL: 95% of Lower Confidence Limit; UCL: 95% of Upper Confidence Limit;

 Table 6: Larval and pupal toxicity effect of Acanthus ilicifolius against on filarial vector, Culex quinquefasciatus

Larva	1% of mo	ortality				LC ₅₀ and	Regression	95% Confider	Chi- square	
and Concentration (ppm)						LC ₉₀ (%)	equation		value	
pupal								 LCL	UCL	
stages	20	40	60	80	100			LC ₅₀ LC ₉₀ (%) LC ₅₀ LC ₉₀ (%)	
Ι	33	45	63	72	93	44.1244 103.7729	Y= - 0.9480 X= 0.02149	37.3806 94.0383	49.8068 117.8928	4.515
II	28	41	59	70	85	50.2586 114.8283	Y=-0.9975 X= 0.01985	43.6081 103.3163	56.1545 132.0051	0.481
III	25	38	55	64	79	56.5538 127.4368	Y= -1.0224 X= 0.01808	49.8032 113.3329	62.9771 149.3748	0.55
IV	22	33	51	58	70		Y= -1.0572 X=0.01613	58.4508 73.3233	126.6749 175.3045	1.073
Pupa	38	45	52	60	66	53.7219 194.8983	Y=48767 X= 0.00908	38.3099 152.5323	66.3112 301.0476	0.02

LCL: 95% of Lower Confidence Limit; UCL: 95% of Upper Confidence Limit;

Treatment of methanol extract of *Acanthus ilicifolius* at different concentrations (20 to 100 ppm). 33% mortality was noted at I instar larvae by the treatment of *A. ilicifolius* at 20 ppm whereas it has been increased to 93% at 100 ppm of *A. ilicifolius* leaf extract treatment. The LC₅₀ and LC₉₀ values were represented as follows: LC₅₀ value of I instar was 44.124%, II instar was 50.258%, III instar was 56.553% and IV instar was 65.557%, respectively. LC₉₀ value of I instar was 103.772%, II instar was 114.828%, III instar was 127.436% and IV instar was 145.021%, respectively. The LC₅₀ value of pupaewas 53.761% and LC₉₀ value of pupae was 194.898% respectively.

Table 7, 8, 9, 10, 11, 12 provides larvalmortality at field after applying methanloic extractsof *Clerodendron inerme* and *Acanthus ilicifolius* extract on three species of mosquito vectors namely malarial vector, *Anopheles stephensi*, dengue vector *Aedes aegypti* and filarial vector, *Culex quinquefasciatus*. The selected breeding habitats wereVadavalli, Mettupalayam, Navavoor privu, Pommanam palayam, Ooty, Mettupalayam (Kallaru), at our province Tamil Nadu, India. *Clerodendron inerme* and *Acanthus ilicifolius* extract were prepared at required concentrations and sprayed by using knapsack sprayer. Bio-efficacy of plant extracts havebeen noted. The percentage of larval reduction was noticed during 24 hrs, 48 hrs and 72 hrs at the breeding sites. There was complete reduction of larval density was noted after the treatment of plant extracts. Similarly, larval reduction was also noted after the treatment of plant extracts.

Discussion:

Malaria is the largest single component of disease burden; epidemic malaria, in particular, remains a major public health concern in tropical countries. In many developing countries, and especially in Africa, malaria exacts an enormous toll in lives, in medical costs, and in days of labor lost [12]. *Aedes aegypti*, a vector of Dengue and Dengue hemorrhagic fever, which is a widely distributed tropical and subtropical disease, is now endemic in more than 100 countries and threatens the health of approximately 2.5 billion people. Worldwide, around 80 million people are infected annually at an attack rate of 4% [18]. In recent years, *A*.

ISSN: 2455-2631

aegypti (Diptera: Culicidae) spread the virus of chikungunya which affected the southwest Indian Ocean islands in 2005, spread out to India, and resulted in an ongoing outbreak that has involved >1.5 million patients [24]. *Culex quinquefasciatus*, the potential vector of bancroftian filariasis is the most widely distributed mosquito in India. It is responsible for major public health problem in India with around 31 million microfilaraemics, 23 million cases of symptomaticfilariasis, and about 473 million individuals potentially at risk of infection[3].

Place	: Vadavalli panchayat,							
	Coimbatore							
Habitat	: Used pot							
Size	: 2 X 1.5 m							
Depth	: 1 cm							
Species	: Anopheles stephensi							
Stage	: Larvae							
Calculation	: 0.5x0.5=0.25x4410=11	0.5x0.5=0.25x4410=11.1						
Required Concent	ration : 55.2							
S. No.	Larval Density							
	Before Treatment	After						
	Defore Treatment	Treatment						
		24 hrs	48 hrs	72 hrs				
1	35	2	2					
2	40	8	5					
3	25	6	3					
4	18	3	2					
5	15	4	3					
6	8	2	1					
Total	141	25	16					
Average	23.5	4.2	2.6					
% Reduction	-	82.3%	88.7%	100%				

Table 8: Field trail by using methanolic extract of Clerodendrone inerme on dengue vector, Aedes aegypti.

Place :	Mettupalayam				
Habitat :	Waste Tyers				
Size :	20cm (width)				
Depth :	10cm				
Species :	Aedes aegypti				
Stage :	larval stage				
S. No.		Larval Density			
		Before Treatment	After		
			Treatment		
			24 hrs	48 hrs	72 hrs
1		98	5	2	-
2		85	6	1	-
3		79	5	1	-
4		91	5	2	-
5		72	5	1	-
6		81	7	2	-
Total		506	33	9	-
Average		84.9	5.5	1.5	-
% Reduction		-	93.47%	98.20%	100%

Table 9: Field trail by using methanolic extract of Clerodendrone inerme on filarial vector, Culex

quing	juefasciatus

Place	: Coimbatore (Navavoor privu)
Habitat	: Waste soil tank
Size	: 1m (width)

Depth	: 10cm			
Species Stage	: <i>Culex quinquefasciatus</i> : larval stage			
S. No.	Larval Density			
	Before Treatment	After Treatment		
		24 hrs	48 hrs	72 hrs
1	44	10	-	-
2	40	16	-	-
3	54	20	16	-
4	56	10	-	-
5	60	14	10	-
6	40	10	1	-
Total	-	294	80	27
Average	-	49	13	4.5
% Reduction	-	72.78%	90.81%	100%

Table 10: Field trail by using methanolic extract of Acanthus ilicifolius on malarial vector. Anopheles stephensi Place Pommanam palayam Vadavalli panchayat, Coimbatore

stephensi Place		: Pommanam palayam Vadava
Habitat	:	Water Tank
Size	:	2 X 1.5 m
Depth	:	1 cm
Species	:	Aedes aegypti
Stage	:	Larvae
Calculation	:	2 X 1.5 = 3 X 1.84 X 10 = 55.2
Required	:	
Concentration		55.
	2	

S. No.	Larval Density				
	Before Treatment	After Treatment			
		24 hrs	48 hrs	72 hrs	
1	128	61	12		
2	157	49	7		
3	168	19	13		
4	189	34	4		
5	196	26	4		
6	147	29	6		
Total	985	218	48		
Average	164.1	36.30%	8		
Reduction	-	77.80%	95.10%	100%	

Table 11: Field trail by using methanolic extract of <i>Acanthus ilicifolius</i> on de	engue vector, Aedes aegypti.
--	------------------------------

Place	:	Ooty				
Habitat	:	Tyers				
Size	:	10cm (width)				
Depth	:	10cm				
Species	:	Aedes aegypti				
Stage	:	larval stage				
S. No.		Larval Density				
		Before Treatment	After Treatment			
			24 hrs	48 hrs	72 hrs	
1		32	1	-	-	
2		41	-	-	-	
3		35	-	-	-	
4		27				

5	18	-	-	-	
6	40	1	-	-	
Total	193	2	-	-	
Average	32.2	0.3	-	-	
Average % Reduction	-	99%	100%	100%	

Table 12: Field trail by using methanolic extract of Acanthus ilicitation	lius on filarial vector, Culex
quinquefasciatus	

		1	ingnejuseranus		
Place	:	Mettupalayam(Kallaru)			
Habitat	:	Drainage			
Size	:	20cm (width)			
Depth	:	10cm			
Species	:	Culex quinquefasciatus			
Stage	:	larval stage			
S. No.		Larval Density			
	Before Tre		After Treatr		
			24 hrs	48 hrs	72 hrs
1		95	9	3	-
2		90	6	-	-
3		80	4	-	-
4		95	4	2	-
5		75	6	1	-
6		85	14	2	-
Total		-	520	43	8
Average		-	86.6	7.16	1.3
% Reduction	1		91.73%	98.46%	100%

Murugan *et al.*, [17] established the neem seed kernel extract possess antipupational property for mosquito species. Babu and Murugan [6] investigated that the larvicidal effect of resinous exudate from the tender leaves of *Azadirachta indica*. Vahitha *et al.* studied the larvicidal efficacy of *Pavonia zeylamica* L. and *Acacia ferruginea* D.C. against *Culex quinquefasciatus* Say.

They results clearly suggested that the *C. inerme* interfered with developmental processes of the fourth instar larvae and pupae of *A. aegypti*. In this context, the observations that exposure of fourth instar mosquito *Culex quinquefasciatus* to ether extract of *C. inerme* leaves resulted in death at larval–pupalmolt and pupal–adult eclosion and suggesting inhibition of the moulting process [20] lend further support to our observations. EI₅₀ and EPQ₅₀ were found to be 40.8 mg and 144.8 mg respectively. Inthe present study, *Clerodendron inerme* plant extractsshowed mosquitocidal activity on the three species of mosquito vectors namely malarial vector, *Anopheles stephensi*, dengue vector *Aedes aegypti* and filarial vector, *Culex quinquefasciatus*.

There have been numerous reports on the mosquito larvicidal activity of terrestrial plants. Ours was the first study on mosquito larvicidal and repellent activity of marine plants [11]. Subsequently the mosquito larvicidal activity of seaweeds, *Plocamium* telfairiae and Laurencia nipponica was reported by [28,29]. Mosquito larvicidal compounds were also isolated by them. Effective repellent compounds, like dimethyl pthalate, available in the market are very costly and moreover they can give protection only for a short period of one or two hours [10]. In view of these facts, the purified active compounds from the most effective samples found in our studies could -be effective in killing mosquito larvae or repelling adult female mosquitoes in an economic and safe manner. This finding would be useful in the field of mosquito control without polluting the environment. [26] while Acanthus ilicifolius was most effective against Ae. Aegypti by giving 74% of protection [25]. In the present study, Acanthus ilicifolius treatment of good larval and pupicidal activity of against three species of mosquitovectors namely malarial vector, Anopheles stephensi, dengue vector Aedes aegypti and filarial vector, Culex quinquefasciatus. Rao et al. [22] reported that the fieldtested relatively stable lipid-rich fractions of neem products, which were as effective as good quality crude neem products in the control of culicine vectors of Japanese encephalitis and produced a slight but significant reduction in population of anopheline pupae. In the present study, the field trials wereconducted by using *Clerodendron inerme* and *Acanthus ilicifolius* treatment in different habitats of three species of mosquito vectors namely malarial vector, Anopheles stephensi, dengue vector Aedes aegypti and filarial vector, Culex quinquefasciatus (Vadavalli, Mettupalayam, Navavoor privu, Pommanam palayam, Ooty, Mettupalayam (Kallaru) in Tamil Nadu, India. The percentage reduction of larval mortality also showed the variations among the different breeding habitats of mosquito vectors. This may due to the impact of geographical distribution of

A. stephensi, Aedes aegypti, Culex quinquefasciatus at the breeding sites.

The finding of the present of investigationrevealed that *Clerodendron inerme* and *Acanthus ilicifolius* good larvicidal and pupicidal activity against three species of mosquito vectors namely malarial vector, *Anopheles stephensi*, dengue vector *Aedes aegypti* and filarial vector, *Culex quinquefasciatus* at different Agro-climatic regions of Tamil Nadu, India. Their mode of action and effect on non target organism are presently under the investigations. These plant extracts showed that has good effective mosquito control

properties and also can act as an eco-friendly, bio-pesticide for further vector control programs.

References:

- 1. Abbott, W.S., 2019. A method of computing the effectiveness of insecticides. Journal Economic Entomology, 18: 267-269.
- 2. Abdul Rahuman, A., G. Geetha, P. Venkatesan and K. Geetha, 2018. Isolation and Identification of mosquito from Abutilon indicum (Linn.) Sweet. Parasitology Research, 102: 981-988.
- 3. Agrawal, Lt., V.K. Col, Wg. Sashindran and
- V.K. Cdr, 2006. Lymphatic Filariasis in India: Problems, Challenges and New Initiatives. MJAFI, 62: 359-362.
- 4. Aliero, B.L., 2013. Larvaecidal effects of aqueous extracts of *Azadirachta indica* (neem)on the larvae of *Anopheles* mosquito, AfricanJournal of Biotechnology, 2(9): 325-327.
- 5. Amritpal Singh, Sanjiv Duggal, Ashish Suttee, 2009. *Acanthus ilicifolius* linn.-lesser known medicinal plants with significant pharmacologicalactivities. International Journal of Phytomedicine,1: 1-3.
- 6. Babu, R. and K. Murugan, 2000. Larvicidal effect of resinous exudates from the tender leaves of *Azadirachta indica*. Neem Newsletter, 17:1.
- 7. Finney, D.J., 1971. Probit analysis. Cambridge University Press London. pp: 68-78.
- 8. Hahn, C.S., O.G. French, P. Foley, E.N. Martin and R.P. Taylor, 2021. Bispecific monoclonal antibodies mediate binding of dengue virus toerythrocytes in a monkey model of passive viremia. Journal of Immunology, 66 (2): 1057-1065.
- 9. Kalyanasundaram, M. and P.K Das, 2019. Larvicidal and synergistic activity of plant extracts for mosquito control. Indian Journal of Medical Research, 82: 19–23.
- 10. Kalyanasundaram, M., D. Amalraj, K.P. Paily, Nisha George and C.H. Sujatha, 2019. Synthesis of substituted amides for repellency against mosquitoes. Current Science, 55: 266-268.
- 11. Kathiresan, K. and T.S Thangam, 2020. Lightinduced effects of latex of *Escoecaria agallocha* L. on salt marsh mosquito *Culex siliens* L. Journal of Marine Biology Association. India 29:378-380.
- 12. Lambert, P.H., 2020. Malaria: past and present.h t t p://nobelprize.org/medicine/educational/malaria; [accessed on April 24, 2009]
- 13. Maheswaran, R., S. Sathis and S. Ignacimuthu, 2008. Larvicidal activity of *Leucus aspera* (Willd.) against the larvae of *Culex quinquefasciatus* Say. and *Aedes aegypti*. International Journal of Integrative Biology 2(3): 214-217.
- 14. Mittal, P.K, T. Adak and V.P Sharma, 2015. Bioefficacy of six neem (*Azadirachta indica*) products against mosquito larvae. Journal of Pesticide Research. 7: 35-39.
- 15. Mittal, P.K., T. Adak and S.K. Subbarao, 2015. Inheritance of resistance to *Bacillus sphaericus* toxins in a laboratory selected strain of *An. stephensi* (Diptera: Culicidae) and its response to *Bacillus thuringiensis* var. *israelensis*. Current Science, 89: 442–443.
- 16. Mulla, M.S. and T. Su, 2021. Activity and biological effects of neem products againstarthropods of medical and veterinary importance. Journal American Mosquito Control Association, 15: 133-52.
- 17. Murugan, K., R. Babu, D. Jeyabalan, N. Senthilkumar and S. Sivaramakrishnan, 1996. Antipupational effect of neem oil and neem seed kernel extract against mosquito larvae of *Anopheles stephensi* Liston. Journal of Entomological Research, 20:137–139.
- 18. Monath, T.P., 1994. Yellow fever and denguethe interactions of virus, vector and host in the re-emergence of epidemic disease. Semin. Virology.5: 133-135.
- 19. NICD., 2020. Proceedings of the National Seminar on operation research on vector control in filariasis. New Delhi.
- 20. Pereira, J. and K.N. Gurudutt, 2020. Growth inhibition of *Musca domestica* L. and *Culex quinquefasciatus* (Say) by (levo)-3-epicaryoptin isolated from leaves of *Clerodendron inerme* (Gaertn) (Verbenaceae). Journal of Chemical Ecology, 16: 2297–2306.
- 21. Robertson, A.I. and D.M. Alongi, 2019. Tropical mangrove ecosystems, Coastal and estuarineseries, Bowman, M.J., Barber, R.T., Mooers, C.N.K., and Raven, J.A., 329, American Geophysical Union, Washington, DC.
- 22. Rao, D.R., R. Reuben and B.A. Nagasampagi, 1995. Development of combined use of Neem (*Azadirachta indica*) and water management for the control of culicine mosquitoes in rice fields. Medical Veterinary Entomology, 9: 25-33.
- Subramonia Thangam, T. and K. Kathiresan, 1996. Proceedings of the Second InternationalConference on Urban Pests. K.B. Wildey (editor). pp: 431-435.
- Taubitz, W., J.P. Cramer, A. Kapaun, M. Pfeffer,
 C. Drosten, G. Dobler, G.D. Burchard and T.Loscher, 2020. Chikungunya fever in travelers: clinical presentation and course. Clinical Infectious Diseases, 45: 508.
- 25. Thangam, T.S., K. Srinivasan and K. Kathiresan, 2012. Smoke repellency and killing effect of mangrove plants against the mosquito *Aedes aegypti* (Linnaeus). Tropical Biomedicine, 10: 125-128.
- 26. Thangam, T.S. and K. Kathiresan, 1992b. Smokerepellency and killing effect of marine plants against *Culex quinoquefisciatus*. Tropical Biomedicine, 9: 35-38.
- 27. Vogel., 2015. Textbook of Practical Organic Chemistry. The English Language Book Society and Longman, London, pp:1368.
- 28. Watanabe, K., K. Umeda and M. Miyakado, 1989a. Isolation and identification of three insecticidal principles from the red alga *Laurencia nipponica. Yamada.* AgriculturalBiological Chemistry, 53: 2513-2515.
- 29. Watanabe, K., M. Miyakado, N. Ohono, A. Okada, K. Yanagi and K. Moriguchi, 2000b. A olyhalogenated insecticidal monoterpene from thered alga, *Plocamitrm telfairiae*. Phytochemistry, 2(8): 77-78.
- 30. Watanabe, K., K. Umeda, Y. Kurita, C. Takayama and M. Miyakado, 2020. Two insecticidal monoterpenes, telfairine and aplysiaterpenoid A, from the red alga *Plocamiurn telfairiae*:Structure elucidation, biological activity, and molecular

topographical consideration by a semiempirical molecular orbital study. Pesticide. Biochemistry. Physiology, 37: 275-286. WHO,(1975). *Mimeographed docunzent*, WHONBC175.583.

- 31. World Health Organisation, 2021. Lymphatic Filariasis. Techincal Report Series, 702, Who.1984 Geneva.
- 32. Xie, L.S., Y.K. Liao, Q.F. Huang and M.C. Huang, 2020. Pharmacognostic studies onmangrove *Acanthus ilicifolius*. Zhongguo ZhongYao Za Zhi; 30: 1501-3.