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Abstract- In this paper we study a mathematical model on unsteady blood flow through rigid tube in the presence of mild 

stenosis has been studied numerically by finite difference method. The effects on the pressure gradient, wall shear stress 

are obtained and the velocity profiles have been investigated are obtained and shown graphically.  
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INTRODUCTION 

The blood flow problem a stenosed artery  are of increasing interests to the researcher due to its physiological and clinical 

importance. The investigation of pulsatile flow in circular tubes is understanding and predicting blood flow in large arteries are of 

considerable importance in many cardiovascular diseases particularly atherosclerosis. The normal flow of blood is disturbed due 

to some abnormal growth like stenosis in the lumen of the artery. The actual reasons for  formation of stenosis is not known, but 

its effect over the flow characteristics has been studied by many research workers. Bhardwaj  et.al. [1] the considerable effect of a 

magnetic field on blood flow through on indented tube in the presence of erythrocytes. Shukla et. al. [2] considered the effects of 

stenosis on blood flow through the artery with mild stenosis.  

Halder and Dey [3] solved the problem Effects of erythrocytes on the flow  characteristics of blood in on indented tube. The 

response of blood flow through an artery under stenotic conditions has been attempted by  

Chakrabarty et.al. [4] We studied Blood flow through an artery under stenotic conditions. Halder and Ghosh  [5] investigated the 

Effects of a magnetic field on blood flow through on indented tube in the presence of erythrocytes. Sanyal et. al. [6] considered 

the  Unsteady arterial blood flow with mild stenosis. Kumar et. al. [7] studied Performance modeling and analysis of blood flow 

in elastic arteries. Haldar, K. [8] et. al.  discussed the Oscillatory flow of blood in a stenosed artery. 

The aim of the present investigation is to study the pulsatile flow characteristics of blood in a single constricted blood vessel. The 

analytical expression for velocity, volumetric flow rate, pressure gradient and the wall shear stress are obtained. The numerical 

solutions for pressure gradient and wall shear stress have also been obtained and discussed. 

 

MATHEMATICAL MODEL 

It is obvious that stenosis has no well-defined geometrical configuration. In general complex three dimensional flow pattern have 

been developed near the stenosis which are virtually impossible analyses. In this paper ‘Collar like’ stenosis model i.e. 

axisymmetric constriction in a tube has been considered. It is assumed that flow is unsteady and laminar, the artery is a constant 

diameter (2R0) proceeding and following the stenosis. 

For mathematical convenience we take the artery to be a long cylindrical tube with the axis coinciding with z axis. 

The basic equations of motion in the cylindrical co-ordinate system 

 (r, 𝜃, z) are given by 
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Where 

 w   –  is the axial velocity.  

 p    –  is the fluid pressure. 

 
z

p




  –  is the pressure gradient. 

      –  density of blood. 

 )/(  = ) –       the kinematic viscosity of blood. 
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   )r(h1
0

+=  – is the viscosity of blood as proposed by Einstein. 

 𝜇0    –      the coefficient of viscosity of plasma. 

 𝛽    –  a constant. 

   n

m )R/r(1h)r(h −=  –  the hematocrit. 

 hm    – is maximum hematocrit at the centre of the tube. 

 R0    – is radius of the normal tube. 

 )2(n    – is a parameter determining the shape of the constriction. 

The geometry of the stenosis is shown in figure and described as Chakrabartry [1998] 
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Here s )2(  is a parameter which determines the shape of the stenosis, 
0l  is the length of stenosis, R(z) is the radius of the 
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Solution of the problem we assumed the pulsatile sinusodal flow, we have 

 .Substituting the value of v, 𝜇, h(r) in the eq.(3) and then using the transformation.  
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              With   𝛽ℎ𝑚= k , a =1+k                                                               (8) 

           Then we have form equation  (7).                                                              
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This means that the real part gives the velocity for pressure gradient P cos t and the imaginary part gives the velocity for the 

pressure gradient P sin t. 

 From equation (3), (12) and (13) we have 

                







++=

dr

dW

r

1

dr

Wd
PWi 2

2

       (15) 

              


−=



−+

P
W

i

dr

dW

r

1

dr

Wd
2

2

                  (16) 

The corresponding boundary conditions (5) are transformed to 

       
                               (17) 

                       [IV] SOLUTION OF THE 

PROBLEM 
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where both J0(x) and Y0(x) are Bessel functions of zero order and are of the first and second kind respectively. 

  

 

              Thus the equation of (8) is 
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Since   and W have to be finite on the axis (i.e at r = 0) and Y0(0) is not finite, B has to be zero. Also, because of the no slip 

condition W(r)=0 when r = R, we have  

   0B,0
i

p
R//iAJ 2/3

0
==


+     (21) 

Let 
2 =

2R



=



 2R
       (22) 

so that 









=

)i(J

1Pi
A 2/3

0

     (23)    













−



−
=

)i(J

)si(J
1

P
)r(W 2/3

0

2/3

0i
     (24) 

Where s = r/R        (25) 

Finally, we get the velocity of the hematocrit 
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             Eq. (10) can be written as 

                                𝐴1
𝑑2𝑊

𝑑𝑦2 +𝐴2
𝑑𝑊

𝑑𝑦
+𝐴3w+ C y = 0                      (27) 

 Where 𝐴1=y (a - k𝑦𝑛) , 𝐴2= a - k𝑦𝑛- n k 𝑦𝑛,𝐴3= -𝛼2y  

Applying finite difference scheme for (27), We get 

    𝐵1 [i]w [i+1] + 𝐵2[i]w[i] + 𝐵3[i]w[i-1]= 𝐵4[i]                           (28) 

 Where 𝐵1 [i] = 𝐴1[i]+h𝐴2[i] , 𝐵2 [i] =−2𝐴1[i]-h𝐴2[i]+ ℎ2𝐴3 [i]         

 𝐴3 [i] = 𝐴1[i], 𝐵4 [i]= -ciℎ2 and h is mesh size along space direction.In eq.( 27 ) taking i=1(1)m and using the eq.(17)  boundary 

conditions ,we get the following tridiagonal system of equation. 

                              EW=D (29) 

 Where E is tridiagonal matrix of order m and these element are defined by 

 𝐸𝑖,𝑖 [i] = 𝐵2[i],i=1(1)m, 𝐸𝑖−1,𝑖 [i] = 𝐵1[i],i=2(1) m, 𝐸𝑖,𝑖−1 [i] = 𝐵3[i],i=2(1)m and W,D are column matrices having m components, 

they are w[i] and 𝐵4[i],i=1(1)m , respectively. 

The eq. (29) is solved by Gauss-Seidel iteration method. To prove convergence of finite difference scheme , the computation is 

carried out for slightly changed value was observed in the value of w and also after each cycle of iteration the convergence check 

is performed the tolerance is set at 108 is satisfied at all point .Thus if is concluded that the finite difference scheme is convergent 

and stable. 

Let Q be the volumetric flow rate of the fluid in stenotic region, then 

               Q=2𝜋 ∫ 𝑤𝑦 𝑑𝑦 
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0
                                                          (30) 

The pressure gradient in stenotic region from eq. (10 ) and (12 ) as : 
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   The shear stress at the surface of stenosis is defined by: 

                  𝜏𝑠= -[𝜇(𝑟)
𝑑𝑊

𝑑𝑟
]𝑟=𝑅                                                         (32) 
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NUMERICAL RESULTS AND DISCUSSION:            

       In order to get physical insight into the problem  , the axial velocity field ,Volumetric flow rate ,Pressure gradient and wall 

Shear stress are discussed taking different numerical value of the parameters  encountered into the problem under consideration 

𝛽 = 1, 𝑐 = 1, 𝑛 = 2, 𝑠 = 2 ,6,10,12   𝑙0=1,2,5,6 and d=0. 

        In Fig.1 ,the axial velocity field w has been plotted versus y for different values of maximum hematocrit[ℎ𝑚],frequency 

parameter [𝛼],ratio of the maximum height of stenosis and radius of the normal tube [
𝜀

𝑅0
]and parameter determine the shape of the 

constriction  [n], respectively .From these figures ,we observed commonly that an increase in ℎ𝑚 ,𝛼, 
𝜀

𝑅0
, and n decreases the axial 

velocity field. 

      In Fig. 2 and Fig. 3  , the shear stress at the surface of stenosis 𝜏𝑠 has been plotted versus z for different values of maximum 

hematocrit [ℎ𝑚] at 
𝜀

𝑅0
 =0.05, 0.10,0.15,and 0.20 respectively .From these figures ,we observed that the shear stress is maximum at 

z =0 ,z=1.0 and minimum at z =0.5 .The shear stress gradually decreases within the region [0< 𝑧 < 0.5] and increases within the 

region [0.5< 𝑧 < 1.0]  for different values of ℎ𝑚 . It is also observed that an increase in maximum hematocrit and maximum 

height of the stenosis decreases the shear stress in stenotic region. These figures are exactly symmetrical about z=0.5   .  

 

CONCLUSIONS 

      In this paper we have studied the unsteady blood flow through rigid tube in the presence of mild stenosis has been numerically 

.The blood flow in an artery through a symmetrical stenosis by considering the blood as Newtonian fluid. From the above 

discussion, it is clear that the pressure gradient increase with the increase of hematocrit value, indicating that there is higher value 

in systolic and lower value in diastolic pressure. In high systolic and low diastolic pressure, peripheral blood flow will increase, 

but coronary arterial blood flow will decrease. 
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