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Abstract- Biosensors are becoming more popular as analytical tools based to their ability to detect and identify biological 

substances in a variety of applications. Biosensors have proven useful in many important fields such as medicine, food 

safety, environmental monitoring, security, medicine and verification. One of the leaders in the biosensor market is 

diagnostic equipment, as diagnostic equipment supports approximately 70% of medical decisions. This article explains on 

the use of artificial intelligence (AI) and machine learning (ML) in various types of biosensors. Artificial intelligence 

increases the capabilities of biosensors and is used in automation, electronics, medical devices, etc. It opens up new 

opportunities in fields. Wearable biosensors are now entering our daily lives and playing an important role in the 

advancement of technology. Biosensors with micro-nano structure have advantages such as small size, high sensitivity, 

production, simple arrangement and integration compared to chemical biosensors, and these advantages make them an 

improved method for pressure sensors. In this article, we review recent advances in machine learning for biosensor 

applications. We discuss various machine learning techniques applied to biosensors, including models for data processing, 

feature extraction, classification, and data analysis. Issues related to machine learning and biosensor integration are also 

touched upon and future trends in this field are presented. 
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Introduction 

Biosensors are biological and physical devices that detect analytes by generating signals. The first biosensor was discovered by 

American biochemist "L.L Clark" in 1950. The word "biosensor" was first used by "Cammann" in 1977 [1]. A biosensor is a 

system that uses partly biological recognition and partly signal transduction to perform selective quantification of analytes or 

biomarkers [2]. These analytes can be drugs, toxins, dissolved fats, etc. inorganic substances such as cells, proteins, DNA, etc. 

There may be biological substances such as In biosensors, when a biometric element detects a test of interest, the sensor confirms 

the presence of the analyte quantitatively or semiquantitatively [3]. Then the signal generated due to the known event is converted 

into the output signal. There is interest in biosensors in clinical diagnostics. Biosensors have proven to be useful in many important 

fields such as medicine, food safety, environmental monitoring, safety, medicine, and verification [4]. One of the leaders in the 

biosensor market is diagnostic equipment. Biosensors for monitoring cells have many advantages, including high performance and 

fast response, high specificity, and high sensitivity [5]. In addition, other advantages include continuous measurement without the 

need for experienced personnel, versatility, reaction time, safety, low cost and accuracy. Processing the data generated by 

biosensors can be considered as an important step affecting the above improvements. In this case, biosensors that can give 

molecular names of patients may help pave the way for precision medicine. Low-cost, easy-to-use biosensors should find 

application as self monitoring[6]. Automated and autonomous biosensors are being integrated into public infrastructure 

(transportation, schools, workplaces, etc.) to increase public safety by informing the public about biological threats [7]. These 

devices can also be connected via the “Internet of Things” and produce large amounts of population related data. Diagnosis of 

diseases, bone marrow, image contrast during MRI, cardiac examination, medical mycology, healthcare, etc. These are the 

important features or general areas of use of biosensors [8,9]. Therefore, future biosensor technology will inevitably need to use 

AI and ML based algorithms to process more information. In recent years, ML has emerged as a promising method to improve 

biosensor performance by providing accurate, reliable, and cost-effective data analysis. ML is a part of artificial intelligence, which 

is a framework that allows algorithms to learn from data. Many ML-based learning methods have been proven to solve complex 

real-world tasks. Thses are particularly suitable for tasks that require learning many models from data [10]. This is because such 

models can work very well and with human performance. In recent years, machine learning (ML) has become a powerful tool for 

disease diagnosis and has helped develop new methods that can analyze large amounts of data and provide accurate predictions. 

This review aims to provide an overview of various machine learning algorithms and techniques for disease diagnosis, focusing 

on recent advances, challenges, and future directions in this field. 

 

The Basic Principle of Biosensors and Their components 

These two elements are combined together by a number of methods such as covalent binding, matrix entrapment, physical 

adsorption and membrane entrapment. Biosensors work on the principle of signal transmission. These components include a 

biorecognition element, a biotransducer, and consisting of a display, a processor, and an amplifier. A bio-recognition element, 

essentially a bioreceptor, can engaged with a target analyte. The transducer monitors this interaction and outputs a signal. The 
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output signal has a direct relationship to the analyte concentration. This signal is then amplified and processed by an electronic 

system. Key advantages of biosensors include: fast and continuous measurement, high specificity, very less consumption of 

reagents needed for calibration, fast response time, etc.[11] Biosensors mainly consist of three main components (Figure 1): a 

recognition element, a transducer and signal processor, and a display. 

 
Figure 1. The different working principles of biosensors (A) and (B), various types of biosensors. 

 

The recognition element enables the detection and measurement of specific analytes or target molecules in the sample. It is 

designed to selectively interact with the target molecule of interest and provide a measurable signal in response to its concentration. 

The recognition element is often from biological materials [12]. Several common types of recognition elements used in biosensors 

are enzyme, antibody, nucleic acid, receptor proteins, whole cells, or microorganisms. The transducer element of a biosensor is 

the key component and acts as a bridge between the biological interaction taking place on the sensing surface and the detection 

system which provides a quantitative output [13]. A biological recognition element selectively interacts with a target analyte, 

leading to a specific biochemical reaction. A transducer element then converts this biochemical signal into a measurable physical 

or electrical signal. Some commonly used transducer elements include: optical transducers, electrochemical transducers, 

piezoelectric transducers, thermal transducers. The transducer's signal is examined by the signal processor. The desired 

measurement or diagnostic information is subsequently provided by displaying or further analyzing the processed signal.  

Biosensors can be categorized according to the different transducers used in the sensor, such as optical, electrochemical, 

piezoelectric and magnetic sensors [14]. Each type provides distinct benefits and can be tailored to meet specific analytical needs. 

Biosensors can be classified according to the different transducers used in the sensor, including electrochemical and optical sensors. 

Depending on other sensing mechanisms, optical biosensors include holographic, fluorescence, and colorimetric biosensors. The 

output of optical biosensors can be intensity- or wavelength-based optical signals that smartphone applications could read for 

image capture and processing (Fig. 1). A holographic contact lens sensor was produced for continuous monitoring of glucose in 

tear fluids [15]. Depending on the targeted biofluid, the sensing components should be integrated with a wearable platform such 

as a contact lens, mouthguard, and smart watch [16]. As biosensors move into the Internet of Things and Big Data era, the device 

should communicate wirelessly with smartphones and other sensor nodes. The system should consist of data processing and storage 

units for processing and storing streaming biosensing data and creating user health profiles. 

Advances in biosensing technology have been driven by breakthroughs in nanotechnology, microfabrication techniques, and 

biotechnology [17]. These developments have resulted in the creation of highly sensitive, portable, and reasonably priced 

biosensors that can do quick real-time analyses [18]. Biosensing is crucial to healthcare diagnosis, monitoring, and tailored 

medicine. For instance, glucose biosensors have transformed the management of diabetes by enabling people to quickly and 

precisely check their blood glucose levels [19]. In order to aid in the early detection of medical disorders, biosensors can also 

identify disease biomarkers, such as certain proteins or genetic material in cancer, infectious diseases, and other diseases. 

Continued advances in biosensing technology have enormous potential to improve health care outcomes, improve environmental 

monitoring, ensure food safety, and support advances in pharmaceutical research [20]. We may lead safer and healthier lives by 

utilizing biosensor technology, and we can also gain from quick and accurate biological material analysis. Biosensors also have a 

positive impact on the health and safety of the environment. They can detect contaminants in the air and water, track the health of 

food and farm produce, and measure the impact of remediation measures [21]. 

 

 

AI-ML for biosensing  
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A critical point in the use of artificial intelligence-enabled wearable biosensors is to help users understand and interpret the 

collected data, which includes analyzing data points and drawing correct conclusions. In particular, as continuous and multiplexed 

sensing becomes a common trend for wearable biosensing technologies, the data dimension is higher and obtaining useful 

information is more complex. While ML algorithms can efficiently process large amounts of high-dimensional streaming 

biosensing data, which means their great potential can be used to convert raw sensing data into user-friendly information (Figure 

2). In addition, ML algorithms can handle noisy or low-resolution biosensing data [22]. 

 

 
Figure 2: AI vs Machine Learning vs Deep Learning. 

 

Depending on the types of sensors, the raw sensed data is present in different forms, such as digital data files from electrochemical 

biosensors and image data files from optical sensors. An ML model can be designed based on datasets to efficiently process the 

data. In addition, raw sensing data often require various pre-processing methods to improve the performance of ML models and 

provide early warning when abnormalities are detected [23]. The accuracy and computation time of artificial intelligence models 

can depend heavily on data pre-processing. The accuracy of camera-based early detection of skin cancer has often been affected 

by image enhancement, image restoration, and hair removal to improve image quality and remove noise. In addition, preprocessing 

methods such as Savitsky-Golay smoothing, background subtraction, and min-max scaling were used to process surface-enhanced 

Raman scattering spectra (SERSS) [24]. The pre-processed data were fed into a CNN for further processing, which significantly 

increased sensitivity to metabolites or toxins. In addition, data pre-processing has also been applied to wearable devices for a 

location reminder system. In addition, a wearable wireless integrated interface was designed to classify gestures using surface 

electromyogram signals. The signals were pre-processed using a pseudo-wavelet pre-processor to remove noise caused by 

movement during use [25]. Denoised data represents a higher quality signal and will therefore require less processing time. 

 

Machine Learning (ML) Algorithms Used in Biosensors 

A biosensor is a device that detects and measures the presence of biological analytes and chemical analytes. Biosensors have 

traditionally been limited in their sensitivity, specificity, and adaptability. However, with the help of ML, these limitations can 

be overcome and biosensors can be more effective in detecting and monitoring diseases, pollutants, toxins, etc. Machine 

Learning (ML) is a subset of Artificial Intelligence (AI) that enables computers to process data to make predictions or make 

decisions. In the biosensors context, ML algorithms can extract more information from complex data generated by the biosensor, 

improve its accuracy, and automate it. One of the key benefits of ML for biosensors is its ability to process large data sets and 

extract meaningful information. ML algorithms are able to learn from large datasets and can identify patterns and correlations 

which may not be visible in traditional analysis methods. As a result, the accuracy and sensitivity of the biosensor can be 

improved. This is especially useful in applications that generate complex data. Another advantage of ML in biosensors is the 

ability to optimize biosensor performance. Biosensors have come a long way in recent decades, thanks to the development of 

nanotechnologies, signal amplification techniques and transducers. All biosensors, however, have irregular signal noise, and 

some rely heavily on antibody or protein acting as bio-receptors, resulting in short shelf life, poor selectivity and poor 

commercialization. ML algorithms can help to improve these parameters by optimizing electrode design, analyste selection, 

assay conditions, and other parameters to increase their sensitivity, selectivity, and selectivity. Biosensors may also be able to 

adapt better to changing conditions, as ML algorithms can learn from data and adapt to new situations. This can make biosensors 

more effective tools to monitor dynamic processes, such as the progression of disease or environmental changes. Therefore, 

researchers are looking for breakthroughs in other aspects to improve the performance of biosensors. The focus is on machine 

learning (ML)-based analysis of sensing data. ML can provide new strategies to overcome the challenges faced by biosensors, 

and it can also be a way for common biosensors to become intelligent biosensors that can automatically predict species or 

http://www.ijsdr.org/


ISSN: 2455-2631                                          October 2023 IJSDR | Volume 8 Issue 10 
 

IJSDR2310067 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  391 

 

analyte concentration based on a decision-making system (Figure 3).

 
 

Figure 3. Basic procedures of ML-reinforced biosensors. 

 

In recent years, there has been a huge increase in the number of advanced ML algorithms being developed for data processing. 

Some of these algorithms are: K-nearest neighbor (KNN) Support vector machine (SVM) Naive Bayes Decision tree (DT) Gradient 

boosted tree (GBT) Random forests (RF) Feed forward artificial neural network (FFANN) Recurrent neural network (RNN) 

Conceptual neural network (CNN) Others have not been fully studied yet [30]. Advanced ML methods are able to detect non-

linear relationships within complex biological samples better than conventional approaches. This makes advanced ML methods a 

useful tool for solving urgent problems in biosensors. AI, ML and DL Relationship and Different ML Algorithms are shown in 

Figure 4. 

 
 

Figure 4. Different types of machine learning (ML) algorithms used in biosensors. 

 

Supervised learning 

Supervised learning is an ML algorithm in which input data is labelled and the algorithm is trained to infer output labels from the 

input data. Biosensors Supervised learning algorithms in biosensors are used to diagnose diseases, discover drugs, and monitor 

environmental conditions.[31]. Support vector machine (SVM) is one of the most commonly used methods for many supervised 

classification tasks, where the input is a set of n-dimensional data points, each accompanied by a true label. The goal of SVM is 

to find hyper-planes (generalizations of lines and planes to higher dimensional spaces) that can accurately separate these data 

points. For example, in 2D space this hyperplane would be simple. a line that divides a space into two subregions, each 

corresponding to a different class. These hyperplanes are defined by a set of points called support vectors. Support vector machine 

(SVM) and random forest (RF) are supervised learning algorithms that classify patient samples as “healthy” or “diseased” 

according to their biomarker levels [32]. SVMs are one of the most widely used supervised learning algorithms in biosensors 

because of their high-dimensional data handling capabilities and nonlinear relationship between input features. SVM is widely 

used in cancer detection, environmental monitoring and food safety applications. Random forest (RF) is another widely used 

supervised learning algorithm based on decision tree. RF is widely used in bioassays, such as bacterial contamination detection in 

food samples and cancer cell classification based on gene expression profile [33]. 

 

Unsupervised learning 

Unsupervised learning, also known as unsupervised learning, is a type of machine learning that works with unstructured input 

data. It is designed to identify patterns or clusters in the data. Biosensors use unstructured learning algorithms to perform tasks 

such as predicting protein structure, analyzing microbial communities, and learning about gene expression patterns [34]. For 

example, protein structure prediction is a challenge in computational biology. Deep learning neural networks, for example, can be 

used to predict protein 3D structure based on amino acid sequences. ML algorithms have shown promising results in this area. In 
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microbial community analysis, unstructured algorithms such as Principal Component Analysis (PCA) or hierarchical clustering 

can be used to identify microbial communities based on their DNA sequences. In gene expression analysis, an unstructured learning 

algorithm was used to cluster genes according to their expression profiles. Understanding gene expression patterns is essential for 

understanding cell processes and identifying drug potentials [35]. 

 

Reinforcement learning 

Reinforcement learning, on the other hand, is a type of machine learning algorithm that interacts with the environment and receives 

rewards or punishments for its actions. In the case of bio sensors, reinforcement learning algorithms are used for self-optimization 

and control. For instance, in bio-optimization, reinforcement learning algorithms optimize bio-electrode design, bioanalyte 

selection, and bioassay conditions to increase bio sensor sensitivity and selectivity [37]. In bio-control, reinforcement learning 

algorithms control bio sensors in real-time to enable autonomous decisions based on sensor data [38]. 

 

Artificial Neural Networks (ANN) 

One branch of machine learning that has received significant attention recently is called artificial neural networks (ANNs). These 

methods are loosely inspired by the inner workings of the human brain, but in reality these methods apply many highly non-linear 

and complex functions, aka neurons, to the input data in parallel. This complex nonlinear dynamics allows them to extract much 

more complex and useful feature representations from the raw data, leading to more useful representations and significantly better 

performance in many complex tasks. The learning process within such ANN models is actually to find the optimal parameters for 

the synaptic weights of neurons in order to obtain reasonable accuracy [39]. It is also necessary to mention that in most ANN 

architectures, more than one layer of neural operations are cascaded to solve more complex tasks, which gives them the name 

"Deep Learning models". 

 

Convolutional Neural Networks or Deep Learning 

A specific form of ANN is called a convolutional neural network (CNN). These architectures are specifically designed for image-

based tasks such as image/video classification, object detection, tracking, recognition, etc., although they have been applied to 

other problems as well [40]. Unlike Feed Forward Neural Net (FFNN), these architectures use specially designed cells that use a 

convolution operation. More specifically, the learnable weights of a network are the parameters of a set of convolution kernels that 

are convolved with the input images or outputs of each layer. Such architectures were originally proposed for image focusing 

problems, mainly because they exploit the effect of spatial invariance in images as well as the importance of spatially adjacent 

features [40]. Deep learning is a machine learning algorithm that uses neural networks with multiple layers learn effectively from 

data. In the field of biosensors, deep learning algorithms have been instrumental in disease diagnosis, drug discovery, and image 

analysis [41]. For instance, in disease detection, CNNs (convolutional networks) can be used to classify X-rays, MRIs, and other 

medical images. Drug discovery can be predicted by deep learning algorithms based on chemical structures of compounds. Image 

analysis can be analyzed by deep learning algorithms for environmental monitoring, food safety, and more. [42]. 

 

Wearable biosensors with artificial intelligence support 

In the development of wearable biosensing devices, the functions of the devices have expanded to include acquiring physiological 

information from users, wireless communication, data processing and storage, and providing an interactive user interface [43]. 

Wearable AI-enabled biosensors typically consist of sensing modules, wireless communication components, processors, memory 

devices, displays, wireless charging, energy harvesting components, and power supplies (Figure 5). 

 
Figure 5. Different types of AI-assisted wearable biosensors. 
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Biosensors act as data acquisition units that collect biochemical or biophysical data from body fluids and convert them into signals 

that can be recognized by data acquisition and processing devices. Wearable biosensors can directly collect biofluids on the body 

surface and detect levels of health-related biomarkers [44]. A biosensor consists of a bioreceptors (i.e., antibodies, nucleic acids, 

or glucose oxidases) and a sensor that interprets physiological signals as optical, electrochemical or mechanical signals. Biosensors 

based on various biofluids could be integrated with a variety of wearable platforms, including wrist bands, contact lenses and 

electronic skin [45]. Wireless communication devices then transmit the data collected by the biosensors to personal smart reading 

devices or other terminals for processing. Current communication technologies potentially applied in wearable biosensors are 

Bluetooth, NFC and 5G mobile network. The raw sensed data is finally processed and stored on local devices or cloud servers 

where machine learning (ML) algorithms can be used to aid in diagnosis. The integration of the above components improves the 

availability of AI-enabled wearable biosensors, which represent a compelling alternative to invasive blood-based diagnostics [46]. 

 

Wearable Biosensing Device  

In recent years, researchers have focused on the development of continuous, noninvasive, and real-time monitoring of various 

health-related biomarkers in biofluids, such as glucose, lactate, and ions [ 47 ]. Such sensors can be integrated with a variety of 

wearable platforms, including contact lenses for tear fluid analysis, wristbands, tattoos, electronic skin, and epidermal sensing 

patches for sweat fluid analysis and mouthguard salivary fluid analysis [48]. Notably, the non-invasive nature of biosensors implies 

an effective alternative to invasive blood-based diagnostics. Wearable sensors can now detect various diseases such as COVID-

19, cancer, diabetes and dry eye syndrome [49]. In addition to recent research on wearable sensing techniques, other components 

that can be integrated into wearable devices have also been intensively investigated. For example, microfluidics provides a reliable 

way to collect body fluids and deliver fluids to the sensing sites of wearable biosensors [50]. Meanwhile, the integration of energy 

harvesting devices with wearable biosensors can extend the lifetime while maintaining light weight and small volume for wearing 

convenience. In addition, recent developments in flexible electronics enable the production of devices that are capable of being 

worn for long periods of time while maintaining the performance of the electronics. Recent advances in the fabrication of 

biosensors, microfluidic channels, self-powered devices and flexible electronics have also further enhanced the functions of 

wearable biosensors to enable non/minimally invasive, multiplexed real-time monitoring of physiological and pathological 

biomarkers [51].  

 

Analyzing biosensing data using ML 

ML algorithms can learn from existing biosensing data and analyze users' health status. ML can efficiently process high-

dimensional biosensing data generated by wearable multiplexed sensors and find hidden patterns and relationships between data 

points. Powerful pattern recognition capability can help users interpret and understand collected biosensing data. In recent years, 

both non-neural and neural algorithms have been used in biosensors to process biomedical data to classify healthy and unhealthy 

users and quantify biomarker levels [52]. Biosensing Non-Neural Algorithms In recent years, several research papers have been 

published on the use of Non-neural Algorithms in Biosensing. Linear Discriminant Analysis (LDA), Support Vector Machines 

(SVM), Naive Bayes (NB), K-nearest Neighbors (kNN), Decision Tree (DT), and Random Forest (RF) [53]. LDA Directed ML 

Algorithm LDA predicts linear decision boundaries Probability estimation of input features Different biomarkers can be classified 

using LDA SVM Supervised Learning Algorithms SVM can be used for Classification, Regression, and Abnormality Detection 

of Raw Sensing Data. Performance of SVM depends only on the selection of kernel function (Linear, Polynomial, Sigmoid, and 

Radial basis Functions (RBF) [54]. Therefore, SVM can maintain its performance even for a problem with large dimensions, so it 

is suitable for processing multiplexed sensing data. Therefore, SVM has been applied in various biosensors such as glucose 

oxidase-based glucose sensing and nitrate sensing [55]. 

NB is a set of supervised learning algorithms used for probabilistic classifications based on Bayes theorem assumptions with strong 

naive independence between different features. Since the assumption greatly simplifies the problem, NB classifiers can work well 

with small amounts of training data [56]. kNN is a non-parametric algorithm used for classification and regression. The principle 

of kNN is to find a user-defined number (k) of training data points closest to a new data point and predict the output of the new 

data point. The distance can be calculated using Euclidean distance, Manhattan distance, maximum distance and Mahalanobis 

distance [57]. DT and RF are non-parametric directed ML algorithms for regression and classification. The principle of DT is to 

predict the values of the target variables by learning simple decision rules from the features of the input data set. The main 

advantage is that DT results can be interpreted and understood using tree visualization. Interpretability of prediction results is 

essential for quality control of wearable biosensors [58]. DT also shows that its cost is logarithmic in the number of training data 

points, which reduces computational cost and improves model efficiency in biosensing technologies. 

Unlike the aforementioned non-neural algorithms, artificial neural networks (ANNs) are inspired by the structure of neurons in 

the human brain. ANNs can be divided into different categories based on network structures, including feedforward neural 

networks (FNNs), recurrent neural networks (RNNs), and CNNs [59]. Compared to other non-neural algorithms, the main 

advantage of using ANN is that it learns from a training dataset without any user-defined parameters. However, ANNs are not 

interpretable and explainable, so it is difficult to guarantee the performance and duration of problem solving, which becomes a 

significant drawback for ANNs for use in the medical field [60]. FNN has been used to diagnose lung cancer using exhaled breath 

analysis. The results showed a sensitivity of 83% and a specificity of 84%. In addition, RNN has been used to develop a health 

monitoring system for diabetes patients to monitor blood glucose, heart rate, and blood pressure [61]. The RNN model predicted 

the blood glucose level and showed the highest performance among the other tested algorithms [62]. Recent research on 

multiplexed biosensing technologies using artificial intelligence has already demonstrated high accuracy and reliability in detecting 

biomarker levels and associated diseases. The implementation of artificial intelligence in the medical field can significantly reduce 
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the cost of treatment and improve the accuracy of diagnosis. Future research should focus on adaptive learning and interpretable 

models. With adaptive learning, the AI model will be able to learn from the environment. 

 

Recent advances in artificial intelligence-enabled wearable biosensors 

Wearable AI biosensors coupled with smartphone-based sensing systems are effective platforms for continuous health and fitness 

monitoring. Researchers have begun to integrate energy harvesting techniques and wireless communication into artificial 

intelligence-enabled wearable biosensors. Artificial intelligence-enabled wearable biosensor applications provide a chance to 

develop a more personalized healthcare and telemedicine system. 

 

A smartphone-based biosensing system 

The worldwide popularity of smartphones has led to a growing interest in smartphone-based biosensing systems. Since most 

commercially available smartphones carry additional hardware components such as wireless communication, mobile processors, 

cameras, and audio ports, users can control wearable biosensors and receive biosensors in real time. The benefits of using 

smartphone-based biosensing systems have been realized and have begun to play a vital role in AI-enabled biosensing systems for 

processing, storage, sharing, user interface, and cloud connectivity of health data [63]. Data collected by biosensors are transmitted 

to smartphones or other platforms for data processing. In real-world environments, wireless data transmission is often required to 

be integrated with wearable devices. However, due to the power limitation of wearable devices, it is more advantageous to integrate 

low-power wireless communication technology with wearable devices. With energy-efficient wireless data transmission, streaming 

biosensing data can be sent to data storage and processing devices. In addition, by applying wireless communication technologies, 

artificial intelligence-enabled wearable biosensors can increase flexibility and add new devices to build a wearable artificial 

intelligence biosensor network. 

 

Plasmonic sensor for cancer detection 

One-way plasmonic sensors can be used for cancer detection through surface-enhanced Raman spectroscopy (SERS). SERS is a 

powerful technique that can identify specific molecular compositions based on their unique vibrational spectra. By integrating 

plasmonic nanostructures, such as gold or silver nanoparticles, with biological samples, the SERS sensitivity can be significantly 

increased [64]. In cancer detection, plasmonic SERS sensors can be used to identify cancer-specific biomarkers present in body 

fluids such as blood or urine. These sensors can be designed to selectively bind to cancer biomarkers, allowing their detection at 

extremely low concentrations. By analyzing the Raman scattering of bound biomarkers, plasmonic SERS sensors can provide 

accurate and rapid cancer diagnosis information [65]. In addition, plasmonic sensors can also be used to detect circulating tumor 

cells (CTCs), which are cancer cells that have broken away from the primary tumor and entered the bloodstream. Plasmonic sensors 

can be designed to capture and detect CTCs based on their unique molecular and physical properties. This enables non-invasive 

monitoring of cancer progression and treatment response [66]. Overall, plasmonic sensors offer a promising technology for cancer 

detection. Their high sensitivity, specificity and ability to analyze complex biological samples make them a valuable tool in the 

fight against cancer. However, further research and development is needed to optimize the performance and translate these sensors 

into clinical applications. 

 

Biosensing for patient monitoring 

Biosensing in patient monitoring refers to the use of biological, sensing, and data analysis techniques to continuously or 

periodically track patient health outcomes [67]. Biosensors are devices that collect physiological data in real-time, often through 

the use of a wearable device or implantable device. This allows healthcare professionals to track patient health, identify anomalies, 

and make clinical decisions [68]. Monitoring patients using biosensitivity is a major improvement over traditional methods. 

Biosensors enable healthcare providers to capture real-time, dynamic readings of vital signs, markers, and other vital signs. [69]. 

This comprehensive understanding of the patient's state of health allows early detection of any changes or deviations from normal 

values. Continuous monitoring is particularly useful in the treatment of chronic diseases, as it provides valuable insights into 

disease progression, response to treatment and overall patient well-being. 

Biosensors used in patient monitoring can detect a variety of vital signs, including heart rate, blood pressure, body temperature, 

respiratory rate, and oxygen saturation [70]. Biosensors can also detect biomarkers that are important for the management of 

conditions like diabetes, heart disease, kidney disease, and infectious diseases (e.g. hormones and enzymes) [71]. Biosensing works 

by interacting with the patient’s body. It detects and converts biological signals into quantifiable electrical, optical or chemical 

outputs [72]. The data collected by a biosensor is extremely valuable to healthcare providers. With the use of sophisticated 

algorithms, data analytics and machine learning, clinicians can identify patterns, trends and anomalies in biosensing data to gain 

insights into a patient’s health [73]. Biosensing data can then be integrated into electronic health records (EHRs) and clinical 

information to create a complete patient profile, allowing for personalized medicine and personalized treatment plans [74]. This 

can lead to improved patient outcomes and improved overall healthcare outcomes. Biosensing-based patient monitoring is not 

limited to medical facilities, as it can also be performed remotely and in the home environment. Wearable biosensors, including 

smart watches and fitness trackers, allow individuals to continuously monitor their health parameters. This promotes self-

awareness and proactive health management [75]. In addition, remote patient monitoring allows healthcare providers to monitor 

patients from afar, reducing the need for frequent hospital visits and increasing patient comfort and convenience. The benefits of 

using biosensing for patient monitoring are numerous. It makes it possible early detection of deteriorating health conditions, early 

intervention and adaptation care. In addition, it increases patient safety, lowers healthcare costs, and improves patient outcomes. 

Biosensing technology leads to proactive and preventive healthcare by enabling continuous monitoring that can detect subtle 
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changes that could indicate the beginning of a health problem before symptoms appear. As biosensing technologies advance, 

patient monitoring will become increasingly advanced, convenient and seamlessly integrated into daily routines. 

 

Futuristic biosensors for Point of Care (POC) diagnostics 

For diagnostic purposes, point-of-care (POC) can be defined as a quick, inexpensive, and efficient process that is performed close 

to the patient's environment. The integration of biosensors with wireless capabilities via Bluetooth, Wi-Fi, and GPS has facilitated 

the proximity of the professional healthcare professional and the home patient [76]. The sensor is connected to a readout circuit 

and amplification channels along with a microcontroller for sensing and generating information from a remote source. Power 

consumption is a limitation for such devices, and self-powered devices are generally designed so that once the device is implanted, 

it is impractical to charge the implanted device. The goal of POC diagnostics is to rapidly initiate medication or prognostic 

treatment where laboratory equipment is less or unavailable. In developing and underdeveloped countries, facilities are much less 

distributed than per unit of individuals. Therefore, POC diagnostics with biosensors as the core is emerging as a significant protocol 

along with advances in digitization. In addition, the development of carbon nanotubes, graphene metal nanoparticles, improved 

the selectivity of the POC diagnostic tool [77]. The programmable bio-nanochip (p-BNC) system is another biosensor platform 

with learning capacity. It is a "biology digitization platform" in which the sample produces an immunofluorescence signal on 

agarose bead sensors corresponding to a small amount of the patient's sample, which is further optically extracted and adjusted for 

antigen concentrations. The essential components for p-BNCs are microfluidic cartridges, software for automated data analysis, a 

portable analyzer, and embedded mobile health interfaces [78]. In addition, to include fluid transfer, optical recognition, image 

exploration, and user interface, a compact analysis tool that speaks to a general framework for acquiring, preparing, and overseeing 

clinical information has been built [79]. POC-based applications can be further classified as lab-on-a-chip, labeled, label-free, 

wearable nanomaterials, and wireless [80]. Detection mechanisms for wearable devices are electrochemical, calorimetric and 

optical. Conductive ink on a textile screen-printed electrode and smart tattoos and patches are able to sense a small number of 

microfluids as biopatterns on the epidermis of the skin [81]. "Lab on a chip (LOC)" is a replacement for complex pathologies and 

heavy machines in which the biomarker is sensed using a micro- and nanotransduction mechanism. These mechanisms include 

fluorescence intensity measurement, absorbance-based spectrometry, surface plasmon resonance, chemiluminescence, 

interferometry, amperometry, voltammetry, impedance, conductometric, thermal, acoustic waves, paper-based microfluidic 

devices, and lateral flow immunoassay [82]. Lab-on-a-chip and microfluidics are robust contenders to supply the necessary 

hardware to these electrochemical reagents and biosensors. A microfluidic system built using polydimethylsiloxane using soft 

lithography has various limitations such as cost inefficiency and limited availability, since the introduction of paper-based 3D wax 

printing technologies such as multi-jet lab-on-a-chip modeling has gained so much appeal at a very low cost. time span. Other 

techniques for optical, mechanical, and electrical biosensing modes are described in the literature within label-free and labeled 

detection for micro- and nanosensing. For the quantitative detection of CRP, a microfluidic system is introduced by implementing 

a chemiluminescence immunoassay [83]. This LOC microfluidic platform with portability, quantification and automation features 

creates a significant strategy for POC diagnostics. 

Multiplex point-of-care testing (xPOCT) is the simultaneous testing of different analytes for disease from a single sample [84]. 

Multiplex capabilities for POC testing can be grouped as a paper-based system, an array-based system, a bead-based system, and 

a microfluidic multiplex system with detection techniques lying between optical and lateral flow. The development of user 

interface devices such as smartphones and smart watches with such technologies has also opened the future space for xPOCT [84]. 

The most prominent machine learning algorithms for futuristic biosensors and various issues related to the integration of biosensors 

with wireless functions via Bluetooth, Wi-Fi and GPS for POCs were investigated. Real-time monitoring of a specific patient 

makes it easier to diagnose the patient in a timely manner. Compiling the interpretation of results using machine learning and data 

analysis approaches is understood to be quite efficient and to support clinical decision making [85]. These parameters are key 

components for assembling size-efficient and composite smartphone-based devices. The goal of POC diagnostics is to rapidly 

initiate medication or prognostic treatment where laboratory equipment is less or unavailable. The Internet of Things reduces or 

eliminates active human intervention in remote and hard-to-reach places [86]. Soon, it is also likely that biomarkers of hematocrit, 

oxygen saturation, HbA1C, lipids, infection and inflammation, which are signs of volume overload or dehydration, can also be 

integrated into AI technology. In addition, a new twist in this field is a non-contact or pseudo-touch biosensor that is used to 

diagnose diseases by reading physiological activities running deep mind algorithms. Nowadays, scientists are quite interested and 

involved in the development of new, smart and advanced devices to invent more specific, sensitive and stable biosensors for 

theranostic purposes. Integrated AI tools combining mechanics, biology, chemistry, engineering, etc. are the requirement of the 

current scenario to combat typical diseases and environmental problems. 

 

Key challenges and the way forward 

Despite increasing progress over the past few years, there are still a number of significant hurdles to overcome for AI biosensors 

for IoT-based applications. With EHRs and cloud storage, data allows for detailed patient profiles and personalized care.[87]. 

Although the analysis of wearable sensor data presents some challenges, innovative techniques and visualization methods are 

constantly being developed to effectively address them. Wearables and patient monitoring are expected to experience significant 

growth and development in the coming years. Sensor technology is one of the key areas of development, where advances in sensor 

technology are expected to lead to more advanced and smaller-scale biosensors that can detect a wider variety of biological 

molecules with greater precision and energy efficiency [88]. The integration of multiple biosensors in a single wearable device is 

a major obstacle to comprehensive health monitoring, which provides a comprehensive view of an individual’s health and allows  

for tailored treatment plans. Combining data from multiple sensors, modalities, and data analysis techniques will inform and 

support better decision-making. Real-time feedback and interventions will become increasingly easy, enabling wearable devices 
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to continuously monitor health parameters and provide immediate alerts or interventions. For commercial applications, flexible 

bioelectronic materials are a key component [89]. The human body and its internal organisms are naturally elastic and flexible. In 

this case, the integration of electronics into platforms made of flexible material is necessary. Flexible bioelectronics are 

advantageous for adapting the human body and organs (such as skin, eyes, and muscles) with low mechanical tissue damage and 

less adverse effects after long-term use [90]. Medical artificial intelligence biosensors will play a key role in the development of 

key technologies in the future with the help of nanotechnology. They will continue to pursue miniaturization, scalability, low 

power consumption, low cost, high sensitivity, multi-functionality, safety, non-toxicity and degradability. Another problem is that 

most ML-enhanced biosensors currently lack adaptive learning capabilities. Biosensors can learn from their surroundings through 

adaptive learning, and not just depending on manually entered training sets. Unlike a non-adaptive system, an adaptive model 

continuously improves and optimizes by learning from the environment [91]. This can reduce the likelihood of catastrophic errors 

and erroneous results that a single fixed model can cause. Building an intelligent sensor system that relies on huge datasets and 

algorithms is a significant hurdle for a data processing and storage platform. In recent years, cloud computing has been used to 

process sensor signals because it offers superior computing power and data storage. The integration of cloud and biosensors is 

nothing new, especially for monitoring applications where the volume of data is constantly growing over time. Connecting many 

sensors directly to the cloud is sometimes too expensive and slow due to the exponential growth of the number of sensors. Edge 

computing has thus been introduced in recent years. Instead of a single data center, edge computing enables data processing on 

dispersed edge devices. It benefits from great computational efficiency, fast network processing, low cost, and more. Biosensors 

are therefore likely to make use of this cutting-edge technology [92]. Machine learning algorithms will enable more precise 

predictions for personalized medicine while providing strong data protection and privacy safeguards. Wearable biosensors 

combined with telehealth and remote monitoring will enhance access to healthcare and facilitate early detection and treatment, 

particularly for patients in remote settings. These future perspectives reflect how biosensors and patient monitoring will 

revolutionize healthcare practice and set the stage for a more interconnected and data-driven health system. 

 

Conclusion and future work 

The impact of biosensors on healthcare, the environment and biotechnology is far-reaching. Wearable biosensors play an important 

role in diagnosing diseases, providing personalized medicine and monitoring the environment. Biosensors are particularly useful 

in the context of continuous physiological data collection for remote health monitoring and personalized care. The use of artificial 

intelligence in biosensors is gaining increasing attention in the healthcare industry for various purposes. AI-based methods are 

being adopted in the healthcare industry, where low-cost, intelligent, and adaptable methods are impacting areas such as clinical 

decision support, diagnostics, prevention, telehealth, public health policy, and clinical recommendations. Machine learning 

algorithms have played a major role in enhancing biosensor performance. By automating data analysis, pattern recognition, and 

prediction, these algorithms have greatly improved the accuracy, sensitivity, and adaptability of biosensors. They also made it 

possible to fine-tune biosensor properties, overcoming bottlenecks and extracting valuable information from large data sets. 

Biosensing algorithms are used for a variety of purposes, including diagnosing diseases and monitoring environmental conditions. 

These algorithms can be supervised or unsupervised. To summarize, the use of ML algorithms in biosensors has tremendous 

advantages that automate the cumbersome and complicated process of extracting, processing, and analyzing data that is generated 

by biosensors. More user-friendly machine learning technologies such as Auto ML, clinical AI, patient-centric AI, and explainable 

AI are needed to strengthen the trust of healthcare stakeholders and make machine learning an integral part of everyday clinical 

practice. Artificial intelligence can only help healthcare professionals and improve lives, and in no way can AI replace the human 

touch that is the essence of every field. AI and doctors should work together to maximize benefits for patients. Given the vast 

amount of data and computing power available today, we expect an increasing role for AI and biosensors in clinics to augment or 

assist healthcare professionals and reduce their workload. Looking further ahead, AI and ML will bring unlimited possibilities for 

high-accuracy data collection in the next generation of various sensor devices such as medical sensors and biosensors. 

 

Acknowledgements 

The author would like to acknowledge Prof. Hari Murthy for his supervision and Christ University, Kengeri campus, Bangalore 

for providing the resources to write the current paper. 

Declarations 

Funding  

No external funding was obtained for the purpose of the study. 

Availability of Data and Materials 

Materials required for the current review article were previously published peer review articles which have been cited in the text 

and references. 

Ethics Approval 

Not applicable. 

Consent for Publication 

Not applicable. 

Competing interests 

Author declare that they have no conflicts of interest relevant to the content of this review. The authors have no affiliation with 

any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. 

 

 

 

http://www.ijsdr.org/


ISSN: 2455-2631                                          October 2023 IJSDR | Volume 8 Issue 10 
 

IJSDR2310067 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  397 

 

REFERENCES: 

1. Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 

2020,165, 112412. 

2. Manickam, P.; Kanagavel, V.; Sonawane, A.; Thipperudraswamy, S.P.; Bhansali, S. Electrochemical systems for healthcare 

applications. Bioelectrochem. Interface Eng. 2019, 385–409. 

3. Bhalla, N., Jolly, P., Formisano, N., Estrela, P.: Introduction to biosensors. Essays Biochem. 2016, 60, 1.  

4. Palchetti, I., Mascini, M.: Biosensor technology: A brief history. Lecture Notes in Electrical Engineering. 2010, 54 LNEE, 15–

23.  

5. Cui, F., Yue, Y., Zhang, Y., Zhang, Z., Zhou, H.S.: Advancing Biosensors with Machine Learning. ACS Sens.2020, 5, 3346–

3364. 

6. Mehrotra, P.: Biosensors and their applications – A review. J Oral Biol Craniofac Res.2016, 6, 153.  

7. Yoo, E.H., Lee, S.Y.: Glucose biosensors: An overview of use in clinical practice. Sensors. 2010, 10, 4558–4576.  

8. Karunakaran, C., Rajkumar, R., Bhargava, K.: Introduction to Biosensors. Biosens. Bioelectron. 2015, 1–68.  

9. Naresh, V., Lee, N.: A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. 

Sensors 2021, 21, 1109. 

10. D’Orazio, P.: Biosensors in clinical chemistry. Clinica Chimica Acta.2003, 334, 41–69. 

11. Kim, E.R., Joe, C., Mitchell, R.J., Gu, M.B.: Biosensors for healthcare: current and future 

perspectives. Trends Biotechnol.2023, 41, 374–395. 

12. Alhadrami, H.A.: Biosensors: Classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2018, 

65, 497–508. 

13. Teymourian, H., Barfidokht, A., Wang, J.: Electrochemical glucose sensors in diabetes 

management: an updated review (2010–2020). Chem Soc Rev. 2020, 49, 7671–7709. 

14. Yoo, E.H., Lee, S.Y.: Glucose biosensors: an overview of use in clinical practice. Sensors 

(Basel). 2010, 10, 4558–4576.  

15. Singh, K., Agarwal, T., Kumar, U., Pal, S., Runthala, A., Pan, T.M., Wu, C.C.: Optical 

biosensors for diabetes management: Advancing into stimuli-responsive sensing mechanisms. Smart Mater Med. 2023, 4, 91–101. 

16. Haleem, A., Javaid, M., Singh, R.P., Suman, R., Rab, S.: Biosensors applications in 

medical field: A brief review. Sensors International. 2021, 2, 100. 

17. Rivet, C., Lee, H., Hirsch, A., Hamilton, S., Lu, H.: Microfluidics for medical diagnostics 

and biosensors. Chem Eng Sci. 2011, 66, 1490–1507. 

18. Tan, T.H., Gochoo, M., Chen, Y.F., Hu, J.J., Chiang, J.Y., Chang, C.S., Lee, M.H., Hsu, 

Y.N., Hsu, J.C.: Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless 

Communication Technologies: Development and Evaluation. Sensors 2017, Vol. 17, Page 202. 17, 202. 

19. Castillo-Henríquez, L., Brenes-Acuña, M., Castro-Rojas, A., Cordero-Salmerón, R., Lopretti-Correa, M., Vega-Baudrit, J.R.: 

Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. Sensors (Basel). 2020, 20, 1–26. 

20. Su, L., Jia, W., Hou, C., Lei, Y.: Microbial biosensors: A review. Biosens Bioelectron. 2011, 26, 1788–1799.  

21. Qureshi, A., Gurbuz, Y., Niazi, J.H.: Biosensors for cardiac biomarkers detection: A review. Sens Actuators B Chem. 

2012,171–172, 62–76. 

22. Altintas, Z., Fakanya, W.M., Tothill, I.E.: Cardiovascular disease detection using biosensing techniques. Talanta. 2014, 128, 

177–186. 

23. Luo, X., Davis, J.J.: Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev. 2013, 42, 

5944–5962.  

24. Johnston, L., Wang, G., Hu, K., Qian, C., Liu, G.: Advances in Biosensors for Continuous Glucose Monitoring Towards 

Wearables. Front Bioeng Biotechnol.2021, 9. 

25. Haleem, A., Javaid, M., Singh, R.P., Suman, R., Rab, S.: Biosensors applications in medical field: A brief review. Sensors 

International. 2, 100100 (2021). 

26. Kaur, D.; Uslu, S.; Rittichier, K.J.; Durresi, A.: Trustworthy artificial intelligence: A review. ACM Comput. Surv. 2022, 55, 

1–38. 

27. Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y.: Artificial intelligence in 

healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243 

28. Shokrekhodaei, M.; Cistola, D.P.; Roberts, R.C.; Quinones, S. Non-Invasive Glucose Monitoring Using Optical Sensor and 

Machine Learning Techniques for Diabetes Applications. IEEE Access 2021, 9, 73029–73045 

29. Kaur, P.; Kumar, R.; Kumar, M. A healthcare monitoring system using random forest and internet of things (IoT). Multimed. 

Tools Appl. 2019, 78, 19905–19916 

30. Brownlee, J.: Supervised and unsupervised machine learning algorithms. Machine Learning Mastery. https ://machi nelea rning 

maste ry.com/super vised -and-unsup ervis ed-machi ne-learn ingalgorithms /. Accessed 16 Sep 2023. 

31. Paiva, J.S., Cardoso, J., Pereira, T.: Supervised learning methods for pathological arterial pulse wave differentiation: a SVM 

and neural networks approach. Int J Med Inform 2018, 109, 30–38. 

32. Kaushik, A.K.; Dhau, J.S.; Gohel, H.; Mishra, Y.K.; Kateb, B.; Kim, N.-Y.; Goswami, D.Y. Electrochemical SARS-CoV-2 

Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management. ACS Appl. Bio Mater. 2020, 3, 7306–

7325. 

33. Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-

enabled medical computer vision. npj Digit. Med. 2021, 4, 5.  

http://www.ijsdr.org/


ISSN: 2455-2631                                          October 2023 IJSDR | Volume 8 Issue 10 
 

IJSDR2310067 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  398 

 

34. Langarizadeh, M.; Moghbeli, F. Applying Naive Bayesian Networks to Disease Prediction: A Systematic Review. Acta Inform. 

Medica 2016, 24, 364.  

35. Shen, Y.; Li, Y.; Zheng, H.-T.; Tang, B.; Yang, M. Enhancing ontology-driven diagnostic reasoning with a symptom-

dependencyaware Naïve Bayes classifier. BMC Bioinform. 2019, 20, 330.  

36. Fauziyyah, N.A.; Abdullah, S.; Nurrohmah, S. Reviewing the Consistency of the Naïve Bayes Classifier’s Performance in 

Medical Diagnosis and Prognosis Problems. AIP Conf. Proc. 2020, 2242, 30019. 

37. Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm 

and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. 

38. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: 

review, opportunities and challenges. Brief Bioinform. 2018, 19, 1236–1246. 

39. Banaee, H., Ahmed, M.U., Loutfi, A.: Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent 

Trends and Challenges. Sensors (Basel). 2013, 13, 17472.  

40. Kwon, Y.-T.; Kim, H.; Mahmood, M.; Kim, Y.-S.; Demolder, C.; Yeo, W.-H. Printed, wireless, soft bioelectronics and deep 

learning algorithm for smart human–machine interfaces. ACS Appl. Mater. Interfaces 2020, 12, 49398–49406. 

41. Acosta, J.N., Falcone, G.J., Rajpurkar, P., Topol, E.J.: Multimodal biomedical AI. Nature Medicine 2022, 28, 1773–1784.  

42. Zhang, S., Li, Y., Zhang, S., Shahabi, F., Xia, S., Deng, Y., Alshurafa, N.: Deep Learning in Human Activity Recognition with 

Wearable Sensors: A Review on Advances. Sensors 2022, 22,1476.  

43. Sabry, F., Eltaras, T., Labda, W., Alzoubi, K., Malluhi, Q.: Machine Learning for Healthcare Wearable Devices: The Big 

Picture. J Healthc Eng. 2022. 

44. Majumder, S., Mondal, T., Deen, M.J.: Wearable Sensors for Remote Health Monitoring. Sensors (Basel). 2017, 17. 

45. Milenković, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health monitoring: Issues and an implementation. 

Comput Commun. 2006, 29, 2521–2533. 

46. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: Architecture, applications, and approaches. 

Wirel Commun Mob Comput. 2013, 13, 1587–1611.  

47. Akherfi, K., Gerndt, M., Harroud, H.: Mobile cloud computing for computation offloading: Issues and challenges. Applied 

Computing and Informatics. 2018, 14, 1–16. 

48. Besjedica, T., Fertalj, K., Lipovac, V., Zakarija, I.: Evolution of Hybrid LiFi–WiFi Networks: A Survey. Sensors (Basel). 

2023, 23.  

49. Gambhir, S.S., Ge, T.J., Vermesh, O., Spitler, R., Gold, G.E.: Continuous health monitoring: an opportunity for precision 

health. Sci. Transl. Med. 2021, 13, eabe5383. 

50. Ates, H.C., Nguyen, P.Q., Gonzalez-Macia, L., Morales-Narváez, E., Güder, F., Collins, J.J., Dincer, C.: End-to-end design of 

wearable sensors. Nature Reviews Materials. 2022, 7:11. 7, 887–907.  

51. Kim, J., Campbell, A.S., de Ávila, B.E.F., Wang, J.: Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 

37, 389–406. 

52. Asha Sharma, Anoop Singh, Vinay Gupta, Sandeep Arya: Advancements and future prospects of wearable sensing technology 

for healthcare applications. Sensors & Diagnostics. 2022, 1, 387–404.  

53. Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., Qureshi, B.: An Overview of IoT Sensor Data Processing, Fusion, 

and Analysis Techniques. Sensors 2020, 20, 6076.  

54. Serpush, F., Menhaj, M.B., Masoumi, B., Karasfi, B.: Wearable Sensor-Based Human Activity Recognition in the Smart 

Healthcare System. Comput Intell Neurosci. 2022.  

55. Gurumoorthy, K.B., Rajasekaran, A.S., Kalirajan, K., Gopinath, S., Al-Turjman, F., Kolhar, M., Altrjman, C.: Wearable Sensor 

Data Classification for Identifying Missing Transmission Sequence Using Tree Learning. Sensors (Basel). 2023, 23, 4924. 

56. Abdulmalek, S., Nasir, A., Jabbar, W.A., Almuhaya, M.A.M., Bairagi, A.K., Khan, M.A.M., Kee, S.H.: IoT-Based Healthcare-

Monitoring System towards Improving Quality of Life: A Review. Healthcare. 2022, 10. 

57. Yoo, E.H., Lee, S.Y.: Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors (Basel). 10, 4558 (2010).  

58. Haleem, A., Javaid, M., Singh, R.P., Suman, R., Rab, S.: Biosensors applications in medical field: A brief review. Sensors 

International. 2021, 2, 100. 

59. Schackart, K.E., Yoon, J.Y.: Machine Learning Enhances the Performance of Bioreceptor- Free Biosensors. Sensors (Basel). 

2021, 21.  

60. Awad, M., Khanna, R.: Machine Learning. Efficient Learning Machines. 2015, 1–18. 

61. Schackart, K.E., Yoon, J.Y.: Machine Learning Enhances the Performance of Bioreceptor- Free Biosensors. Sensors (Basel). 

2021, 21. 

62. Cui, F., Yue, Y., Zhang, Y., Zhang, Z., Zhou, H.S.: Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–

3364. 

63. Ha, N., Xu, K., Ren, G., Mitchell, A., Ou, J.Z.: Machine Learning‐Enabled Smart Sensor Systems. Advanced Intelligent 

Systems. 2020, 2, 2000063. 

64. Moon, G. et al. Machine learning and its applications for plasmonics in biology. Cell Rep. Phys. Sci.2022,  3, 9. 

64. Qureshi, T.A.; Gaddam, S.; Wachsman, A.M.; Wang, L.; Azab, L.; Asadpour, V.; Chen, W.; Xie, Y.; Wu, B.; Pandol, S.J. 

Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images. 

Cancer Biomark. 2022, 33, 211–217. 

65.Farhadi, S., Farmani, A., Hamidi, A.: Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot 

effect. Opt. Quant. Electron. 2021, 53(9), 518. 

http://www.ijsdr.org/


ISSN: 2455-2631                                          October 2023 IJSDR | Volume 8 Issue 10 
 

IJSDR2310067 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  399 

 

66. Schackart, K.E., Yoon, J.Y.: Machine Learning Enhances the Performance of Bioreceptor- Free Biosensors. Sensors 2021, 21, 

5519. 

69. Bucur, B., Purcarea, C., Andreescu, S., Vasilescu, A.: Addressing the Selectivity of Enzyme Biosensors: Solutions and 

Perspectives. Sensors 2021, Vol. 21, Page 3038. 21, 3038 (2021).  

70. Wang, M., Yang, Y., Min, J., Song, Y., Tu, J., Mukasa, D., Ye, C., Xu, C., Heflin, N., McCune, J.S., Hsiai, T.K., Li, Z., Gao, 

W.: A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nature Biomedical Engineering 2022 

6:11. 6, 1225–1235.  

71. Patel, S., Nanda, R., Sahoo, S., Mohapatra, E.: Biosensors in Health Care: The Milestones Achieved in Their Development 

towards Lab-on-Chip-Analysis. Biochem Res Int. 2016. 

72. Zhang, K., Wang, J., Liu, T., Luo, Y., Loh, X.J., Chen, X.: Machine Learning-Reinforced Noninvasive Biosensors for 

Healthcare. Adv Healthc Mater. 2021, 10, 2100734. 

73. Madrid, R.E., Ramallo, F.A., Barraza, D.E., Chaile, R.E.: Smartphone-Based Biosensor Devices for Healthcare: Technologies, 

Trends, and Adoption by End-Users. Bioengineering. 2022, 9. 

74. Smith, A.A., Li, R., Tse, Z.T.H.: Reshaping healthcare with wearable biosensors. Scientific Reports 2023, 13,1. 13, 1–16.  

75. Harb, H., Mansour, A., Nasser, A., Cruz, E.M., De La Torre Diez, I.: A Sensor-Based Data Analytics for Patient Monitoring 

in Connected Healthcare Applications. IEEE Sens J. 21, 974–984 (2021).  

76. Bedin, F. Boulet, L., Voilin, E., Theillet, G. Rubens, A., Rozand, C.: (2017) Paper-based point-of-care testing for cost-effective 

diagnosis of acute flavivirus infections. J Med Virol 2017, 89,1520–1527. 

77. Capoferri, D., Álvarez-Diduk, R., Carlo, M., Compagnone, D., Merkoçi, A.: Electrochromic molecular imprinting sensor for 

visual and smartphone-based detections. Anal Chem 2018, 90, 5850–5856. 

78. Citartan, M., Gopinath, S.C., Tominaga, J., Tang, T.H.: Label-free methods of reporting biomolecular interactions by optical 

biosensors. Analyst. 2013, 138(13),3576–3592. 

79. McRae, M.P., Simmons, G., Wong, J., McDevitt, J.T.: Programmable bio-nanochip platform: a point-of-care biosensor system 

with the capacity to learn. Acc Chem Res 2016, 49, 1359–1368. 

80. Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., Zhang, W.: Progress of new label-free techniques for biosensors: a review. Crit 

Rev Biotechnol. 2016, 36, 465–481. 

81. Satija, U., Ramkumar, B., Manikandan, M.S.: Real-time signal quality-aware ECG telemetry system for IoT-based health care 

monitoring. IEEE Int Things J. 2017, 4, 815–823. 

82. Singh, P., Singh, S., Pandi-Jain, G.S.: Effective heart disease prediction system using data mining techniques. Int J Nanomed. 

2018, 13:121. 

83. Stefano, G.B., Fernandez, E.A.: Biosensors: Enhancing the natural ability to sense and their dependence on bioinformatics. 

Med Sci Monit. 2017, 23, 3168–3169. 

84.Thévenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification1. 

Biosens Bioelectron. 2001, 16,,121–131. 

85. Zhou, W., Li, K., Wei, Y., Hao, P., Chi, M., Liu, Y., Wu, Y.: Ultrasensitive label-free optical microfiber coupler biosensor for 

detection of cardiac troponin I based on interference turning point effect. Biosens Bioelectron. 2018, 106, 99–104. 

86. Seshadri, D.R., Li, R.T., Voos, J.E., Rowbottom, J.R., Alfes, C.M., Zorman, C.A., Drummond, C.K.: Wearable sensors for 

monitoring the physiological and biochemical profile of the athlete. npj Digital Medicine 2019, 2:1. 2, 1–16. 

87. Polat, E.O., Cetin, M.M., Tabak, A.F., Güven, E.B., Uysal, B.Ö., Arsan, T., Kabbani, A., 

Hamed, H., Gül, S.B.: Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors (Basel). 2022, 12. 

88. Verma, D., Singh, K.R., Yadav, A.K., Nayak, V., Singh, J., Solanki, P.R., Singh, R.P.: Internet of things (IoT) in nano-

integrated wearable biosensor devices for healthcare applications. Biosens Bioelectron X. 2022, 11, 100153. 

89. Ye, S., Feng, S., Huang, L., Bian, S.: Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports 

Analytics. Biosensors (Basel). 2020,10. 

90. Darwish, A., Hassanien, A.E.: Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring. 

Sensors (Basel). 2011, 11, 5561. 

91. Vaghasiya, J. V., Mayorga-Martinez, C.C., Pumera, M.: Wearable sensors for telehealth based on emerging materials and 

nanoarchitectonics. npj Flexible Electronics. 2023 7:1. 7, 1–14. 

92. Cui, F., Yue, Y., Zhang, Y., Zhang, Z., Zhou, H.S.: Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–

3364. 

http://www.ijsdr.org/

