
ISSN: 2455-2631 October 2023 IJSDR | Volume 8 Issue 10

IJSDR2310147 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 954

Simulating physics in C++ with Verlet Integration

Agastya Singh

Student

Sanskriti School

Abstract- This paper presents a physics simulation program that uses the Verlet integration method and the C++

programming. The program can simulate various physical phenomena, such as gravity, collisions, and pendulums. The

program also allows the user to interact with the simulation by changing parameters, adding or removing objects, and

applying forces. The paper explains the design and implementation of the program, the choice of programming language

and libraries, the concepts and formulas of Verlet integration, and the features and limitations of the physics engine. The

paper also discusses the significance and applications of physics simulation in science, engineering, education, and

entertainment5. The paper concludes with some future avenues for improving and extending the physics simulation

program.

Keywords: physics, c++, verlet integration, simulation, physics engine

Introduction

Aim

The aim of this project is to design and implement a physics simulation program using the Rust programming language. The program

will be able to simulate various physical phenomena, such as gravity, collisions, springs, pendulums, and fluid dynamics. The

program will also allow the user to interact with the simulation by changing parameters, adding or removing objects, and applying

forces.

Significance of Physics Simulation

Physics simulation is an important tool for studying and understanding the natural world. It can help us explore physical systems

that are too complex, too large, too small, or too dangerous to observe directly. It can also help us test hypotheses, verify theories,

and discover new phenomena. Physics simulation can also have practical applications in engineering, education, entertainment, and

art.

Choice of Programming Language

One possible paragraph of “choice on programming language” in context of making a simple physics simulation engine in C++

using verlet integration is:

C++ is a widely used programming language that offers many advantages for developing a simple physics simulation engine using

verlet integration. Some of these advantages are:

● C++ is a compiled language, which means it can run faster and more efficiently than interpreted languages. This is

important for physics simulations, which often involve complex calculations and large data sets.

● C++ supports multiple paradigms, such as object-oriented, procedural, and generic programming. This allows the

developer to choose the best approach for modeling different aspects of the physics simulation, such as objects, forces, collisions,

constraints, etc.

● C++ has a rich set of libraries and frameworks that can help with various tasks related to physics simulation, such as

graphics, user interface, math, networking, etc. For example, OpenGL is a popular library for rendering 2D and 3D graphics, while

SFML is a framework for creating cross-platform applications with audio, input, and window management features.

● C++ is compatible with other languages, such as C and Python. This means the developer can use existing code or libraries

written in these languages, or extend the functionality of the physics simulation engine with scripting or embedding features.

Tools and Prerequisites

Toolchains

1. CMake: This cross-platform build system simplifies the process of managing your project's compilation and build. Ensure

you have CMake installed on your system. If not, you can download it from https://cmake.org/download/.

2. Clang: We recommend using Clang as your C/C++ compiler due to its robust support for modern C++ standards and

optimizations. Verify that Clang is installed and accessible on your system. To obtain Clang, you can refer to https://clang.llvm.org/.

Libraries

1. SFML (Simple and Fast Multimedia Library): I utilize SFML, specifically the "sfml-graphics" module, for handling

graphics and display. You can acquire the SFML library from https://www.sfml-dev.org/download.php.

2. Eigen3: Eigen3 is a versatile C++ template library for linear algebra that will be instrumental in performing vector

mathematics efficiently. To access Eigen3, you can obtain it from http://eigen.tuxfamily.org/dox/GettingStarted.html.

Concepts

Verlet Integration

Verlet integration is a numerical method that can be used to solve Newton’s equations of motion for physical systems, such as the

motion of particles or planets. It is based on the idea of using the position and acceleration at the current time step to estimate the

http://www.ijsdr.org/
https://www.sfml-dev.org/download.php

ISSN: 2455-2631 October 2023 IJSDR | Volume 8 Issue 10

IJSDR2310147 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 955

position at the next time step, without explicitly calculating the velocity. This makes it more stable and accurate than other methods

that use velocity, such as the Euler method. Verlet integration also has some desirable properties for physical systems, such as time

reversibility and conservation of energy and momentum.

Verlet integration can be derived from a Taylor series expansion of the position function around the current time step, and then

adding or subtracting the previous or next time step to eliminate higher-order terms. The basic formula for Verlet integration is:

A simplified version of the equation, that I’ll be using is:

In layman’s terms,

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑙𝑑 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑑𝑒𝑙𝑡𝑎 ∗ 𝑑𝑒𝑙𝑡𝑎

Where 𝑑𝑒𝑙𝑡𝑎 is the chosen time difference.

Building the Engine

Rigid bodies

All the objects in our engine are treated as ‘rigid bodies’, ie, they don’t undergo any kind of compression. For this project , the

rigid_body class represents all the objects in the world.

The class definition is as follows:

#pragma once

#include <Eigen/Dense>

#include <iostream>

namespace engine {

class rigid_body {

 private:

 Eigen::Vector3d position_current;

 Eigen::Vector3d position_old;

 // Eigen::Vector3d velocity;

 Eigen::Vector3d acceleration;

 public:

 rigid_body(float x, float y, float z);

 Eigen::Vector3d get_position();

 Eigen::Vector3d get_velocity();

 Eigen::Vector3d get_acceleration();

 void update_position(float delta);

 void accelerate(Eigen::Vector3d acc);

};

} // namespace engine

The implementations of the methods are as follows:

#include <Eigen/Dense>

#include <rigid_body.hpp>

namespace engine {

rigid_body::rigid_body(float x, float y, float z) {

 position_old = {x, y, z};

 position_current = {x, y, z};

}

Eigen::Vector3d rigid_body::get_position() { return position_current; }

// Eigen::Vector3d rigid_body::get_velocity() { return velocity; }

Eigen::Vector3d rigid_body::get_acceleration() { return acceleration; }

void rigid_body::update_position(float delta) {

 const Eigen::Vector3d velocity = position_current - position_old;

 position_old = position_current;

http://www.ijsdr.org/

ISSN: 2455-2631 October 2023 IJSDR | Volume 8 Issue 10

IJSDR2310147 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 956

 position_current = position_old + velocity + acceleration * delta * delta;

 acceleration = {};

}

void rigid_body::accelerate(Eigen::Vector3d acc) { acceleration += acc; }

} // namespace engine

The world

 All the objects in our world are encapsulated in a class named ‘scene’. This class handles the simulation, applying gravity to objects,

and updating the objects positions. The class definition is as follows:

#pragma once

#include <iostream>

#include <vector>

#include <rigid_body.hpp>

namespace engine {

class scene {

 private:

 std::vector<rigid_body *> rigid_bodies;

 Eigen::Vector3d gravity = {0, 0, -9.8};

 float delta;

 void update_positions(void);

 void update_gravity(void);

 public:

 explicit scene(float delta) : delta(delta) {}

 void update();

 void add_body(rigid_body *rb);

 const std::vector<rigid_body *> &get_bodies();

};

} // namespace engine

The implementation of the methods is as follows:

#include <scene.hpp>

namespace engine {

void scene::update() {

 update_positions();

 update_gravity();

}

void scene::add_body(rigid_body *rb) { rigid_bodies.push_back(rb); }

const std::vector<rigid_body *> &scene::get_bodies() { return rigid_bodies; }

void scene::update_positions() {

 for (auto &rb : rigid_bodies) {

 rb->update_position(delta);

 }

}

http://www.ijsdr.org/

ISSN: 2455-2631 October 2023 IJSDR | Volume 8 Issue 10

IJSDR2310147 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 957

void scene::update_gravity() {

 for (auto &rb : rigid_bodies) {

 rb->accelerate(gravity);

 }

}

} // namespace engine

Conclusion

Key takeaways

● Physics Engine: We have learned what a physics engine is and how it can be used to simulate physical phenomena, such

as gravity, collisions, and constraints.

● Verlet Integration: We have explored the Verlet integration method, a simple but effective technique for updating the

positions and velocities of objects in a simulation.

● C++ Programming: We have gained valuable programming skills in C++, such as using classes, vectors, pointers, and

libraries.

Future Avenues in Physics Simulation

● Advanced Simulations: We can extend our physics engine to simulate more complex systems, such as fluids, cloth, or soft

bodies.

● Game Development: We can use our physics engine to create games that feature realistic physics and interactivity.

● Scientific Research: We can apply our physics engine to model and study real-world problems, such as climate change,

biomechanics, or robotics.

Acknowledgements

I would like to express our gratitude to the following individuals and resources that have supported and inspired us throughout this

research project:

● Teachers and Mentors: I thank our teachers and mentors for providing us with guidance, feedback, and encouragement.

● Open-Source Community: I acknowledge the open-source community, in particular the maintainers of the Eigen3 project,

for offering us invaluable resources, libraries, and tools for physics simulation and programming.

REFERENCES:

1. Bjarne Stroustrup. The C++ Programming Language (4th edition). Addison-Wesley Professional, 2013. ISBN: 978-

0321563842.

2. Eigen3. Eigen: A C++ template library for linear algebra. Online documentation. Accessed on October 26, 2023.

3. Stack Overflow. C++ Eigen Matrix clarifications. Question and answer. Posted on August 9, 2019. Accessed on October

26, 2023.

4. Verlet integration. (2022, May 28). In Wikipedia. Article. Accessed on October 26, 2023.

http://www.ijsdr.org/

