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Abstract- In this paper the authors use the hereditary theory of Boltzmann to describe the elastoviscous behavior 

of composites and introduce them to the dynamic mechanical analysis (DMA). In order to well describe the 

experimental data concerning the creep and stress relaxation in large time interval we used a sum of singular 

kernels in the integral hereditary s. In the linear case we have obtain the storage and loss modules as well as the 

loss factor as a function of the hereditary functions and kernels. One has obtained the loss factor by cycling of 

composites as a function of the strain amplitude and frequency. Experimental results for epoxy fiber composite 

with glass fibers (GFC) and natural fiber composite, namely Hemp 2.5 x 2.5 composite (HFC) [1] illustrate the 

applicability of the proposed approach.  
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I. INTRODUCTION  

Composites are increasingly used in modern industry [1,2]. Epoxy fiber composites are elastoviscous solids. At small 

deformations they are linear, but at elevated deformations they possess non-linear behaviors. For glass fiber composites 

their creep and relaxation are linear according to the applied stresses for small deformations [3,4]. Thus, glass fiber and 

natural fiber composites require identification and description in the linear domain. 

The more important parameters to describe the DMA are the complex modules. In the linear case one can use the 

constitutive hereditary s with singular kernels. Vibration attenuation capability of composites is the so-called loss factor. 

In the general viscoelastic case this factor can be defined as the ratio of the dissipated and the stored energy. These 

energies are related to the constitutive mechanical stress-strain s. It is well known that the Boltzmann hereditary theory 

using integral s of Volterra [3,4,5,6] can well describe the creep and stress relaxation of different viscoelastic solids.  In 

this study we propose an analytical approach to describe the complex modules and the loss factor of such a composites 

as a function of the imposed strain (stress) amplitude and frequency. 

 

II. COMPLEX MODULES IN THE LINEAR CASE 

In the case of small deformations one can use the linear hereditary theory to describe the viscoelastic behavior of 

composites. First of all, we need to obtain the complex modules of such viscoelastic solids from relaxation (creep) 

functions and respective kernels.  

The hereditary theory of Boltzmann, involving integral s of Volterra, is often used to describe the viscoelastic behavior 

of polymers, elastomers and composite materials. This theory is sometime expressed with the help of creep and 

relaxation functions, but sometimes one introduces the respective integral kernels [2,3,4]. From this point of view, we 

have obtained some useful relations concerning the complex modules and the loss factor of viscoelastic solids expressed 

as a function of the creep and relaxation functions and on the other hand as a function of the respective kernels in the 

linear case. 

The constitutive viscoelastic relation in the linear hereditary Boltzmann’s theory can be expressed as [3,4] 

 

𝜎(𝑡) = 𝐸𝜀(𝑡) − 𝐸 ∫ 𝑅(𝑡 − 𝜏)𝜀(𝜏)𝑑𝜏
𝑡

0
        .                                (1) 

 

Here 𝜎(𝑡) is the stress as a function of the time,  E  is the Young modulus, 𝜀(𝑡) is the imposed strain, 𝑅(𝑡 − 𝜏) is the 

relaxation kernel which can be found from stress relaxation tests, t - the current time and 0 ≤ 𝜏 ≤ 𝑡. Equation (1) 

represents an integral equation of Volterra. 

The solution of this integral equation looks like [3,4] 

 

𝜀(𝑡) =
1

𝐸
𝜎(𝑡)  +

1

𝐸
∫ 𝐾(𝑡 − 𝜏)𝜎(𝜏)𝑑𝜏  

𝑡

0
 .                                    (2) 
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Concerning the creep kernel 𝐾(𝑡 − 𝜏), we can say the following. It is the resolving kernel of the relaxation one. As 

kernels in the integral equations of Volterra like equations (1, 2) it is recommended to take singular kernels which better 

describe the enhanced creep and relaxation rate at the beginning. In this work we assume the singular relaxation kernel 

of Koltunov [4] 

 

                                                                                𝑅(𝑡) = 𝐴
𝑒−𝛽𝑡

𝑡𝛼 ,                                                               (3a) 

 

which resolving kernel (the creep kernel) looks like [4] 

 

                                                                𝐾(𝑡) =
𝑒−𝛽𝑡

𝑡
∑ 𝐴𝛤(𝛼)𝑛∞

𝑛=1 𝑡𝛼𝑛/𝛤(𝛼𝑛).                                           (3b) 

  

Such a presentation of the elastoviscous linearity is used in many practical problems [4,5].  To better describe the 

viscoelastic behaviors of different materials we can use a sum of such kernels (3a) in equation (1) [5]. In this case the 

resolving kernel in equation (2) can be expressed as a sum of the respective resolving kernels (3b) [5]. 

The constitutive relation (1) can be obtained from the following more general linear relation 

 

    𝜎(𝑡) = 𝐸 ∫ 𝑟(𝑡 − 𝜏)𝜀̇(𝜏)𝑑𝜏
𝑡

−∞
,                                                    (4) 

 

where 𝑟(𝑡 − 𝜏) is the relaxation function and  𝜀̇(𝑡) is the strain rate. This can be made integrating by parts equation (4) 

reduced to  

 

                           𝜎(𝑡) = 𝐸 ∫ 𝑟(𝑡 − 𝜏)𝜀̇(𝜏)𝑑𝜏
𝑡

0
.                    (4a) 

 

This reduction is possible in the case of no aging materials which kernels are time difference ones [3,4]. After integration 

by parts equation (4a) becomes 

 

                                     

𝜎(𝑡) = 𝐸𝑟(0)𝜀(𝑡) + 𝐸 ∫ 𝑟′(𝑡 − 𝜏)𝜀(𝜏)𝑑𝜏
𝑡

0
,          (5a)           where  𝑟′(𝑡) = 𝑑𝑟(𝑡)/𝑑𝑡.             (5b)   

 

If we need to obtain the Hooke’s low for 𝑡 → 0, we should impose 𝑟(0) = 1  (6a). Imposing  𝑅(𝑡) = −𝑑𝑟(𝑡)/𝑑𝑡   (6b),  

from equations (5) and (6) we arrive to equation (1). 

 

II.1 COMPLEX MODULES AS A FUNCTION OF THE RELAXATION AND CREEP KERNELS 

 

Suppose we have the following imposed strain low 

 

                                                                     𝜀𝑖𝑚𝑝(𝑡) = 𝜀𝑜 𝑒𝑥𝑝( 𝑖𝜔𝑡).                                                          (7) 

 

Then the stress response has the form 

 

                                                                                           𝜎(𝑡) = 𝜎𝑜 𝑒𝑥𝑝( 𝑖(𝜔𝑡 + 𝜙)).                                                    (8)   

 

Here 𝜙 is the phase shift angle.  Making the substitution   

 

                                            𝑧 = 𝑡 − 𝜏,      we have  𝜏 = 𝑡 − 𝑧, 𝑑𝜏 = −𝑑𝑧;  𝜏 → 𝑡,  𝑧 → 0 ;   𝜏 → −∞,  𝑧 → ∞.                (9) 

 

Replacing equation (7) into equation (1) and using equation (9) after some transformations we have  

 

                            𝜎(𝑡) = 𝐸𝜀𝑜[𝑒𝑥𝑝( 𝑖𝜔𝑡) − ∫ 𝑅(𝑡 − 𝜏)
𝑡

0
𝑒𝑥𝑝( 𝑖𝜔𝑡)]𝑑𝜏 = 𝐸𝜀𝑜 𝑒𝑥𝑝( 𝑖𝜔𝑡)[1 − 𝑅𝑐 + 𝑖𝑅𝑠],                        (10) 

 

where    

                                              𝑅𝑐 = ∫ 𝑅(𝑥)
∞

0
𝑐𝑜𝑠( 𝜔𝑥)𝑑𝑥,         𝑅𝑠 = ∫ 𝑅(𝑥)

∞

0
𝑠𝑖𝑛( 𝜔𝑥)𝑑𝑥.                                               (11) 

 

Here we need to take the kernels from equation (1) and equation (3a). 
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The complex module 𝐸∗ can be defined as [3,5] 

                   

                                                                                                 𝐸∗ = 𝐸′ + 𝑖𝐸".                               

(12) 

 

where   𝐸′,  𝐸"  are the storage and the loss modules,  𝑖 = √−1. 

Using the correspondence principle [4] we can write 

 

                                                                                               𝜎(𝑡) = 𝐸∗𝜀(𝑡) .                                 

(13) 

 

Compare equation (10) and equations (12, 13). Thus, to the loss and storage modules as a function of the relaxation 

kernels, we have 

 

                                 𝐸′ = 𝐸(1 − 𝑅𝑐),       𝐸" = 𝐸𝑅𝑠            .                                      (14) 

 

Employing the same manner with the help of equation (8) and equation (2) we express the storage and loss modules as 

a function of the creep kernels 

 

                                                                                𝐸′ =
1+𝐾𝑐

(1+𝐾𝑐)2+𝐾𝑠
2,         𝐸′′ =

𝐾𝑠

(1+𝐾𝑐)2+𝐾𝑠
2              ,                               (15) 

 

where 

 

                                                             𝐾𝑐 = ∫ 𝐾(𝑥)
∞

0
𝑐𝑜𝑠( 𝜔𝑥)𝑑𝑥,         𝐾𝑠 = ∫ 𝐾(𝑥)

∞

0
𝑠𝑖𝑛( 𝜔𝑥)𝑑𝑥.                               (16) 

 

 

II.2 COMPLEX MODULES AS A FUNCTION OF THE RELAXATION AND CREEP FUNCTIONS 

 

Often, researchers do not dispose with the creep and relaxation kernels. Thei possesses only the creep or relaxation 

curves. Using the more general integral description - equation (4), we can express the complex modules as a function 

of the relaxation and creep functions.  

Equation (7) concerning the imposed strains can be represented as follows   

 

                                                         𝜀(𝜏) = 𝜀𝑜 𝑐𝑜𝑠( 𝜔𝜏) + 𝜀𝑜𝑖 𝑠𝑖𝑛( 𝜔𝜏).                                                  (17a) 

To the strain rate we have 

 

                                                                             𝜀̇(𝜏) = −𝜀𝑜𝜔 𝑠𝑖𝑛( 𝜔𝜏) + 𝜀𝑜𝜔𝑖 𝑐𝑜𝑠( 𝜔𝜏)      ,                                     (17b)         

 

Using the substitution (9) and replacing equation (17b) into equation (4) we arrive to  

 

                                 𝜎(𝑡) = 𝐸 ∫ 𝑟(𝑡 − 𝜏)
𝑡

−∞
𝜀̇(𝜏)𝑑𝜏 = −𝐸 ∫ 𝑟(𝑧)

0

∞
𝜀̇(𝑡 − 𝑧)𝑑𝑧,                                       (18)

  

Knowing that   𝜀̇ = −𝜀0𝜔 𝑠𝑖𝑛 𝜔 𝜏   and    𝜏 = 𝑡 − 𝑧,  we can wright 

 

                                                                        𝜎(𝑡) = 𝐸 ∫ 𝑟(𝑧)𝜀0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔(𝑡 − 𝑧)𝑑𝑧
∞

0
       .                                         (18a) 

 

From equation (18a) after some continuous mathematical transformations to the stress response we obtain 

 

                                                                              𝜎(𝑡) = 𝐸𝜀0𝜔 𝑒𝑥𝑝 𝑖 𝜔𝑡[𝑟𝑠 + 𝑖𝑟𝑐]   ,                                                      (19) 

 

where 

                                                   𝑟𝑐 = ∫ 𝑟(𝑧)
∞

0
𝑐𝑜𝑠( 𝜔𝑧)𝑑𝑧,         𝑟𝑠 = ∫ 𝑟(𝑧)

∞

0
𝑠𝑖𝑛( 𝜔𝑧)𝑑𝑧    .                                          (20) 

 

Now from equations (12) and (19) to the components of the complex module we have 
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                                                                      𝐸′ = 𝐸𝜔𝑟𝑠,       𝐸" = 𝐸𝜔𝑟𝑐.                                                     (21)             

 

To compare with equations (14). 

Now in order to express the components of the complex module via the creep functions, we suppose an imposed cyclic 

stress    

        

  

                 𝜎𝑖𝑚𝑝(𝑡) = 𝜎𝑜 𝑒𝑥𝑝( 𝑖𝜔𝑡)        ,  or           𝜎(𝜏) = 𝜎𝑜 𝑐𝑜𝑠( 𝜔𝜏) + 𝜎𝑜𝑖 𝑠𝑖𝑛( 𝜔𝜏)    .                    (22) 

 

We know that  𝜀(𝑡) =
1

𝐸
∫ 𝑘(𝜏)𝜎0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔𝜏𝑑𝜏

𝑡

−∞
.  Using the substitution (9) we obtain  

 

                                       𝜀(𝑡) =
1

𝐸
∫ 𝑘(𝑧)𝜎0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔(𝑡 − 𝑧)𝑑𝑧

∞

0
       .                                              (23) 

 

After some transformations over the integral in equation (23) we have 

 

                                       𝜀(𝑡)𝐸 = 𝜎0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔𝑡 ∫ 𝑘(𝑧) 𝑒𝑥𝑝 − 𝑖𝜔𝑧𝑑𝑧
∞

0
        ,                                     (24) 

 

We can simplify equation (24) using the well-known relations   𝑒𝑥𝑝 𝑖 𝜔𝑡 = 𝑐𝑜𝑠 𝜔 𝑡 + 𝑖 𝑠𝑖𝑛 𝜔 𝑡   and    𝑖 𝑒𝑥𝑝 𝑖 𝜔𝑡 =
𝑖 𝑐𝑜𝑠 𝑖 𝜔𝑡 − 𝑠𝑖𝑛 𝜔 𝑡

  
 

                              𝜀(𝑡)𝐸 = 𝜎0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔𝑡 ∫ 𝑘(𝑐𝑜𝑠 𝜔 𝑧 − 𝑖 𝑠𝑖𝑛 𝜔 𝑧)𝑑𝑧
∞

0
      ,                                     (24a) 

 

One can reduce the integral in equation (24a) to  

 

 ∫ 𝑘(𝑐𝑜𝑠 𝜔 𝑧 − 𝑖 𝑠𝑖𝑛 𝜔 𝑧)𝑑𝑧
∞

0
= (∫ 𝑘(𝑧) 𝑐𝑜𝑠 𝜔 𝑧𝑑𝑧 − 𝑖 ∫ 𝑘(𝑧) 𝑠𝑖𝑛 𝜔 𝑧𝑑𝑧

∞

0

∞

0
). 

 

Introducing this  in equation (24a) we have 

 

                   𝜀(𝑡)𝐸 = 𝜎0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔𝑡[∫ 𝑘(𝑧)
∞

0
𝑐𝑜𝑠 𝜔 𝑧𝑑𝑧 − 𝑖 ∫ 𝑘(𝑧)

∞

0
𝑠𝑖𝑛 𝜔 𝑧𝑑𝑧]      .                           (24b) 

 

Putting  

                         

𝑘𝑐 = ∫ 𝑘(𝑧)
∞

0
𝑐𝑜𝑠( 𝜔𝑧)𝑑𝑧,         𝑘𝑠 = ∫ 𝑘(𝑧)

∞

0
𝑠𝑖𝑛( 𝜔𝑧)𝑑𝑧         .                               (25) 

 

in equation (24b), we have 

                                           
𝜀(𝑡)𝐸 = 𝜎0𝜔𝑖 𝑒𝑥𝑝 𝑖 𝜔𝑡[𝑘𝑐 − 𝑖𝑘𝑠]         .                                                  (26) 

 

After simplification of equation (26) and using equations (27) and (12, 13)  we have 

 

                                  𝜀(𝑡)𝐸 = 𝜎0𝜔 𝑒𝑥𝑝 𝑖 𝜔𝑡[𝑘𝑠 + 𝑖𝑘𝑐]
  
,         (27a)      

     
    𝜀 = (𝐸′ + 𝑖𝐸")−1𝜎0 𝑒𝑥𝑝 𝑖 𝜔𝑡    .         (27b) 

 

Thus, we can write    𝐸′ + 𝑖𝐸" = 𝐸𝜔[𝑘𝑠 + 𝑖𝑘𝑐]   . 
 

Finally, we obtain the components of the complex module via the creep function (see equations (25)) 

 

                      𝐸′ = 𝐸𝜔𝑘𝑠     ,   𝐸" = 𝐸𝜔𝑘𝑐      .                                            (28) 

 

III. LOSS FACTOR 

Damping is generally characterized by the amount of energy dissipated under steady harmonic motion. The most 

common measure of this dissipation is the loss factor, which can be defined as the ratio of the average energy dissipated 

per radian to the peak potential (stored) energy during a cycle and in the case of sinusoidal loading can be expressed as 

[6] 

  

                                                                                 𝜂 =
𝐷

2𝜋𝑈
= 𝑡𝑔𝜙 = 𝐸"/𝐸′.                                                            (29) 

 

http://www.ijsdr.org/


ISSN: 2455-2631                                      December 2023 IJSDR | Volume 8 Issue 12 
 

IJSDR2312010 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  81 

 

Using equations (14 and 15) to the loss factor in this case we obtain 

 

                                                                                  𝜂 = 𝐸"/𝐸′ =
𝑅𝑠

1−𝑅𝑐
=

𝐾𝑠

1+𝐾𝑐
.                                                          (30) 

 

To the loss factor in the case, we dispose with the relaxation function, using equation (21) we have 

 

                                                                                      𝜂 = 𝐸"/𝐸′ =
𝐸𝜔𝑟𝑐

𝐸𝜔𝑟𝑠
=

𝑟𝑐

𝑟𝑠
    .                           (31) 

                

To the loss factor in the case, we dispose with the creep function, using equation (28) we arrive to 

 

                                                                                    𝜂 = 𝐸"/𝐸′ =
𝐸𝜔𝑘𝑐

𝐸𝜔𝑘𝑠
=

𝑘𝑐

𝑘𝑠
    .                                                       (32) 

 

Finally, we arrive to express the loss factor as a function of the creep and relaxation functions and kernels 

 

                                                            𝜂 = 𝑟𝑐/𝑟𝑠 = 𝑘𝑐/𝑘𝑠 .                                      (33) 

 

 

IV. EXPERIMENTAL RESULTS AND COMPARISONS 

The relative stress relaxation using the hereditary integral equation (1) with sum of three kernels (equation (3a)) for 

glass fiber composite and hemp composite are illustrated on Fig. 1. 

The imposed sinusoidal strains and the stress responses are shown in Fig. 2. Here the angular frequency was 0.1 [rad/s].  

 

 

 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

           Fig.1 Normalized stress relaxation                                Fig.2 Sinusoidal imposed strains and stress response 

 

Equations (14) on the basis of equations (11) concerning the storage and loss modules are illustrated in Fig. 3 and Fig.4. 

On the next Fig.5 and Fig.6 we have illustrated these dependances for our two composite materials. As on can see the 

hemp composite possesses higher loss factor.  
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             Fig.3  Storage modulus via frequency                                                     Fig.4  Loss modulus via frequency         

   

 

 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

                              

       Fig.5 Loss factor via frequency                             Fig.6 Hysteresis loops-first cycle (sinusoidal imposed strains) 

 

Figures 7 and 8 illustrate the sinusoidal imposed strains and the respective stress responses for HFC and GFC 

respectively. In order to make the respective comparisons we have imposed the same sinusoidal strains lows for both 

composite materials. 
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     Fig.7 Sinusoidal imposed strains and stress response (HFC)       Fig.8 Sinusoidal imposed strains and stress 

response (GFC) 

 

On the next Fig.9 we have illustrated the hysteresis loops for HFC for 10 cycles with sinusoidal imposed strains with 

angular frequency 0.5 [rad/s] and strain amplitude 0.002. Similar result is observed for the GFC. In the positive strain-

stress zone the hysteresis loop has greater surface in the first cycle. This can be due to the more intensive damage in the 

positive zone. Increasing cycle numbers do not influence the loss factor after the first cycle.  

On Fig. 10 one can see the influence of the strain amplitude on the hysteresis loop area in the positive zone. After the 

first cycle the hysteresis loop area remains relatively constant. 

            The module of elasticity and the kernel parameters for the FGC and the HFC were respectively: 

 

 E = 65000 [MPa],  𝐴1 = 0.001, 𝐴2 = 0.015, 𝐴3 = 0.018, 𝛼1 = 0.58, 𝛼2 = 0.94, 𝛼3 = 0.3, 𝛽1 = 0.02, 𝛽2 = 0.1, 𝛽3 =
0.005 for the FGC. 

 

E = 60000 [MPa],  𝐴1 = 0.02, 𝐴2 = 0.02, 𝐴3 = 0.018, 𝛼1 = 0.58, 𝛼2 = 0.94, 𝛼3 = 0.3, 𝛽1 = 0.02, 𝛽2 = 0.1, 𝛽3 =
0.005 for the HFC. 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

           

          

     

    Fig.9. Hysteresis loops for 10 cycles  (HFC)                 Fig.10. Hysteresis loops first cycles (GFC-two frequencies)      

                                                                                                                                     

             

The experimental results are showed with circles for the FGC and with sterns for the HFC. As one can see the storage 

and loss modules increase with increasing strain amplitude and frequency. Our materials are hard and very weakly 

deformable; therefore the applied strains have very small amplitude.  
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We have used here a special dispositive to impose sinusoidal imposed strains. The description of this dispositive can be 

found in [8,9]. The data in Fig.3 and Fig.4 are obtained from the hysteresis curve measuring the hysteresis loop area 

and averaging. 

The experimental samples had the following dimensions: cross section 15 x 6 [mm] and distance between the grips of 

the device 70 [mm]. 
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