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Abstract- Rheumatoid arthritis is an autoimmune disease that can lead to joint discomfort, swelling, and stiffness. 

It occurs when the immune system malfunctions and targets the synovium, the tissue that lines the joints. As a 

part of the innate immune response, macrophages produce TNF, IL-6, IL-1, GM-CSF, IL-15, IL-18, IL-32, and 

chemokines that induce tissue inflammation. The inflammatory synovium thickens, causing the joint area to feel 

sensitive and painful, appear red and swollen, and become more difficult to move. Occasionally, RA can also 

result in complications for the heart, circulatory system, eyes, and/or lungs. Rheumatoid arthritis (RA) 

experimental models have made a significant contribution to our knowledge of the etiology and management of 

this inflammatory disease. Furthermore, a range of transgenic and genetically engineered knockout mice are 

available to analyze intricate disease processes. This is a big step forward for arthritis translational research. 

The current review will be focusing on improving knowledge of the experimental arthritis models in rodents and 

pathophysiology of RA based on the signaling pathways involved. 
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1. INTRODUCTION: 

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes joint deterioration and 

inflammation, resulting in a shorter life expectancy, an increase in mortality rates, and increasing impairment. [1-4] In 

addition to causing lesions in the joints, RA can also cause anemia, osteoporosis, or weakness in the muscles. [1,5] 

These systemic symptoms can hinder the functioning of the urinary, neurological, and cardiovascular systems. [6,7] 

This condition often manifests between the ages of 35 and 60, with periods of remission and aggravation. It can also 

affect young children, even younger than 16 years old; this is known as juvenile RA (JRA). [5,8-10] Rheumatoid 

nodules under the skin, tiredness, fever, weight loss, and morning stiffness of the afflicted joints lasting more than thirty 

minutes are typical signs of RA. [8-10] 

The fact that RA is more common in females than in males is most likely due to the strong immunity that females 

possess. [5] According to certain research, female hormones such as prolactin and estrogen may promote the 

development of B cell autoantibodies, which may contribute significantly to an individual's susceptibility to disease. 

[5,8,10] 

Specifically, it has been observed that inflammatory mediators are important in the development of RA-related 

inflammation and joint degeneration. [13-15] Consequently, several RA therapeutic    strategies seek to inhibit specific 

cytokines, including tumor necrosis factor (TNF) and interleukin-1 (IL-1), which have been shown to be crucial for the 

onset of RA. [13,16-19] However, in addition to their unclear long-term hazards and benefits, their extreme side effects, 

including potentially fatal infections and an elevated risk of cancer, restrict their usage in many communities. [20,21] 

Patients with RA can avoid joint deterioration and maintain their productivity at work by receiving early diagnosis and 

therapy. [22,23] The diagnosis of RA cannot be made with a single test. As a stand-in for diagnosis, classification 

criteria created by the European League Against Rheumatism (ACR/EULAR 2010) and the American College of 

Rheumatology (ACR 1987) are frequently utilized. [22,24,25] 

Over the last few decades, numerous plant extracts and chemicals have been employed in basic and clinical studies 

regarding the management of RA, and a few of these have provided a reliable adjuvant therapeutic strategy. [20,21] 

In 2012, tofacitinib became the first JAK inhibitor to be licensed in the US for treating moderate to severe RA. [26-28] 

The EU and Japan thereafter followed suit with approvals. [26,29] The more recent JAK inhibitors are filgotinib 

(authorized in 2020 in Japan and the EU) and Upadacitinib (approved for RA in the US and the EU in 2019). [26,28,30] 

Peficitinib was approved in the Asian countries in 2019.Several regulatory bodies have now approved JAK inhibitors 

for use in various contexts. Any elevated risk of opportunistic hazards with JAK inhibitors is particularly relevant to 

their safe use in clinical practice, given their extensive use in the therapy of RA. [28,31] 
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Creating an animal model of a disease is a productive technique to investigate the course of the illness, its routes, 

medication treatment, behavioral characteristics, and associated pain. Animal models of RA have been developed, 

according to several research, although they are only useful for figuring out the pathogenesis and new treatment 

approaches. [32-35] On the other hand, little information is currently available about how behaviors contribute to the 

etiology of rheumatoid arthritis. [32,33,35] A crucial component of many research projects is behavioral analysis, which 

offers information on the behavioral expressions of molecular changes that take place as a disease progresses. The 

methodological technique known as behavioral phenotyping helps to clarify the physiological alterations, behavioral 

patterns, and underlying mechanisms that contribute to the development of disease. [32] 

Collagen-induced arthritis (CIA) resembles human RA in many morphological aspects, including pannus development, 

articular cartilage and bone degradation, and synovitis. Similar biological components, namely the cytokines found in 

the cartilage and synovium, are shared by CIA and RA. Consequently, CIA has been commonly employed as the animal 

model in RA research since its development in 1977. [13,36] 

 

2. SIGNALLING PATHWAYS INVOLVED IN THE PATHOGENESIS OF RA: 

2.1 JAK/STAT SIGNALING PATHWAY IN RA: 

The JAK-STAT signaling system is critical for cytokine signaling and has a role in inflammation, cell proliferation, 

differentiation, apoptosis, and immunological control. [6,37] 

The JAK kinase family has four members: JAK1, JAK2, JAK3, and TYK2. Signal transduction is performed by 

different cytokine receptor families via unique JAK isoforms. Research indicates that JAK has a significant impact on 

RA. [6,37,38] 

The STAT family includes STAT1-4, STAT5A, STAT5B, and STAT6. STATs are cytoplasmic proteins that activate 

transcription and transmit signals. The SH2 domain enables STAT to connect to an active receptor. STAT interacts with 

JAK to produce a dimer that enters the nucleus and regulates gene expression. [37-40] 

THE ROLE OF JAK/STAT IN THE PATHOGENESIS OF RA: 

Recently, aberrant JAK-STAT pathway activity has been linked to the onset and progression of RA. The interplay of 

pro-inflammatory cytokines phosphorylates JAK and activates STAT. STAT gene expression is linked to chronic 

inflammation and severity of RA joint damage. Inflammatory reactions in RA synovium include activation of adhesion 

molecule genes and cytokines, which are linked to specific signaling pathways through transcription factors. [6,37-40] 

2.2 MAPK SIGNALING PATHWAY IN RA: 

The MAPK pathway includes protein kinases RAS, RAF, MEK, and ERK. Mitogen-activated protein kinase (MAP3K) 

triggers MAP2K, which then activates MAPK. RA can result from abnormal MAPK signaling pathway activation. 

Various external stimuli, such as neurotransmitters, hormones, inflammation, stress, viruses, and growth factors, can 

activate the MAPK pathway. Overactivation is linked to articular cartilage damage and synovial tissue inflammation. 

ERK1 and ERK2 play critical roles in cell differentiation, proliferation, and survival. Oxidative stress, ischemia, and 

neurotransmitter activation activate the ERK1/2 signaling pathway. [6,37,41-43] 

In rheumatoid arthritis, P38 is a key member of the MAPK family that contributes to inflammation. In RA synovial 

tissue, p38 is activated and strongly expressed by MKK3 and MKK6,207. Commonly used p38 MAPK inhibitors 

suppress pro-inflammatory cytokines in neutrophils, macrophages/monocytes, and T cells. [6,37,46] 

THE ROLE OF MAPKS IN THE PATHOGENESIS OF RA: 

MAPKs have a crucial function in regulating pro-inflammatory cytokines and signaling downstream of IL-1, IL-17, and 

TNF-α receptors in damaged joint tissue.  JNK MAPKs primarily contribute to the pathophysiology of RA by destroying 

cartilage through matrix metalloproteinase (MMP) activity. IL-1β and TNF-α activate the JNK signaling pathway, 

which promotes extracellular matrix breakdown by modulating MMP production in chondrocytes and FLS. [6,37,41-

46] 

2.3   THE PI3K/AKT SIGNALING PATHWAY:   

The PI3K family of kinases catalyzes phosphatidylinositol. PIP2 can be phosphorylated to PIP3 by PI3K, while PIP3 

can be dephosphorylated to PIP2 by phosphatases like PTEN. This cycle ultimately ends PI3K signaling. PI3K primarily 

regulates PIP3. AKT, a serine/threonine kinase, plays a critical role in the PI3K pathway, influencing several cellular 

processes via multiple downstream effectors. [6,47-49] 

The PI3K/AKT signaling pathway facilitates growth factor signaling in various cellular activities, including glucose 

homeostasis, lipid metabolism, protein synthesis, and cell survival. The PI3K-AKT pathway involves the phosphate 

group at position 3 of PIP3 recruiting PDK1 and AKT proteins to the plasma membrane. This causes PDK1 to 

phosphorylate threonine at position 308 (T308) of the AKT protein. This stimulates AKT, which triggers downstream 

regulatory pathways. [6, 47,48] 

THE ROLE OF PI3K/AKT IN THE PATHOGENESIS OF RA: 

The PI3K/AKT signaling pathway has been linked to RA onset and progression. RA patients have elevated PI3K 

expression in their synovial tissue, which may regulate synovial fibroblasts and cause inflammatory erosive arthritis. 

Inflammatory substances such as IL-1β, IL-6, IL-17, IL-21, IL-22, and TNF-α play a significant role in the development 
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of RA clinical alterations. The PI3K/AKT signaling pathway affects both FLS cell proliferation and synovial 

inflammation, as well as osteoclast development and production. [6,47-50] 

 

3. ANIMAL MODELS OF RHEUMATOID ARTHRITIS: 

There are several animal models of arthritis that have been used to evaluate the substances that may be used as new 

therapies for RA. Generally, animal RA models are used to assess the effectiveness of treatment medications. The 

immunologic features of these animal models help identify the similarities and differences between various animal 

models and humans. As a result, careful thought must go into choosing the right animal model for a variety of in vivo 

investigations. 

3.1 COLLAGEN-INDUCED ARTHRITIS: 

Considering the striking similarities between real RA and collagen-induced arthritis (CIA), including synovitis, 

symmetric joint involvement, and cartilage and bone degradation, CIA is the most widely utilized animal model of 

human RA. Because of two characteristics such as the induction of autoantibodies against collagen and the self and the 

shattering of tolerance, the CIA model is the gold standard in vivo paradigm for studies on RA. In susceptible strains 

of rats and mice, type II collagen immunization in incomplete Freund's adjuvant (IFA) or complete Freund's adjuvant 

(CFA) induces arthritis, respectively. Though Th17 cells appear to play a major pathogenic role, both Th1 and Th17 

responses are elevated in CIA. It is confined to the peripheral joints and primarily affects the fore and hind paws and 

rarely affects the knees. Notable characteristics of the consequent polyarthritis include moderate to severe synovitis, 

bone resorption, periosteal bone growth, and significant cartilage degeneration brought on by immune complex 

deposition on articular surfaces. At the time of the clinical beginning of arthritis, pro- and anti-inflammatory mediators, 

such as TNF-α, IL-1β, and IL-6, as well as transforming growth factor-beta isoforms, such as TGF̲1, TGF-β2, and TGF-

β3 can be seen in CIA joints. [1,36,51-54] 

3.2 ADJUVANT-INDUCED ARTHRITIS: 

The adjuvant-induced arthritis model, often known as Freund's adjuvant arthritis, was developed in the 1950s by the 

bacteriologist Freund. Later, In 1956, Pearson discovered that rats inoculated with mineral oil containing heat-killed 

Mycobacterium tuberculosis (MT) particles, known as Complete Freund's Adjuvant (CFA), developed polyarthritis. 

Complete Freud's adjuvant (CFA) was injected subcutaneously once at the base of the tail to cause arthritis in rats. 

Adjuvant induction of RA can cause persistent joint deformities, including ankylosis, depending on how severe it is. 

Early phases of inflammation in the joint are characterized by the expression of cytokines that stimulate macrophages, 

such as TNF-α, IFN, and IL-17. Elevated cytokine levels are observed in the joint, as inflammation worsens.  

It is appropriate for researching the molecular relationships between T cells and subpopulations. The pathogenic 

alterations in this model, however, are self-limiting, and it does not have the chronic, progressive nature of RA. [52, 54-

58] 

3.3 PRISTANE-INDUCED ARTHRITIS: 

Pristane-induced arthritis (PIA) mimics the characteristics of human RA. Synovial hyperplasia, bone and cartilage 

erosions, inflammatory cell infiltration, and pannus-like development are the principal histological characteristics. 

Although the exact mechanism causing PIA is yet unknown, researchers have found that pristane stimulates the immune 

system to produce autoimmune responses when it encounters antigens on common environmental microorganisms. 

To develop arthritis, 150 μl of pristine (2,6,10,14 tetramethylpentadecane) can be injected in mice, intradermally at the 

base of the tail, or 0.5 ml can be injected intraperitoneally. If the trial is intended to last 180 days (about 6 months), an 

equivalent booster injection is administered seven weeks later. After receiving a pristane injection, the rats are typically 

examined one to four times a week for 28 days (about 4 weeks). [59,60] 

A macroscopic scoring system for the four limbs is commonly used to monitor arthritis development. The scoring 

scheme that is employed is as follows: 

0.5 = Extremely mild ankle/wrist swelling 

1= Mild swelling of paw 

2= moderate swelling of paw 

3= Marked swelling of paw 

4= Significant swelling of paw 

Thus, the total score for each animal will be 16. 

3.4 PROTEOGLYCAN-INDUCED ARTHRITIS: 

PGIA can only be induced in the BALB/c and C3H mouse lines. Previously, CFA was employed as an adjuvant. 

However, DDA is now commonly used in trials due to its early onset and increased severity of arthritis. If Freund's 

adjuvants are utilized for immunization, females should be employed due to the aggressive behavior and high mortality 

rates of males following repeated intraperitoneal injections with FCA. Using DDA as an adjuvant reduces susceptibility 

and mortality among BALB/c colonies but causes more acute and dramatic disease compared to Freund's adjuvants. 

On day 0, 21, and 42, human cartilage proteoglycans emulsified with dimethyl-dioctadecyl ammonium bromide (DDA) 

or Complete Freund's Adjuvant (CFA) are administered intraperitoneally. After the third inoculation, mice's paws, 
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including their ankle and wrist joints, were examined twice a week for signs of arthritis, such as swelling and redness. 

The degree of arthritis was determined visually on a scale of 0 to 4 for each paw, as described in pristane-induced 

arthritis. 

Mice with PGIA exhibit CD4 T cell responses and an antibody response to PG. IgG 2a antibody levels correlate with 

disease severity. Antibodies generated in the joint may interact with proteoglycan in mouse cartilage, leading to 

complement deposition, immune cell activation, and cytokine and chemokine secretion.  

PGIA is less commonly utilized than CIA because it requires considerable processing of human cartilage to obtain the 

necessary proteoglycan fraction. [52,61-63] 

3.5 FORMALIN INDUCED ARTHRITIS: 

Formalin-induced arthritis is a well-known paradigm for studying anti-arthritic properties. When rats' knee joints are 

injected with formalin (0.5, 3, and 5%), they experience dose-dependent pain. Arthritis will be induced 30 minutes 

following administration of the vehicle/drug by sub-plantar injection of 0.1 ml formaldehyde (2%v/v) into an animal's 

hind paw on day 1 and 3. Arthritis will be measured using a Vernier caliper over a 10-day period to determine the mean 

increase in paw diameter. [64-66] 

3.6 CARRAGEENAN-INDUCED ARTHRITIS: 

Carrageenan, also known as carrageenin, are a naturally occurring family of linear sulfated polysaccharides that are 

derived from edible red seaweed. Acute inflammation has been widely studied using the hind paw edema model caused 

by carrageenan. In this paradigm, intraarticular injections of 1% carrageenan cause arthritis in the tibiofemoral joint of 

rats. As a control, 0.1 milliliter of saline was injected into the contralateral paws. To assess the extent of edema in the 

footpad, a punch tissue biopsy will be performed. The five primary indicators of local inflammation caused by induced 

carrageenan are redness, swelling, heat, loss of function, and hypersensitivity. [67-69]  

3.7 HUMAN TNF TRANSGENIC MICE: 

Most immune system cells produce pro-inflammatory cytokine tumor necrosis factor (TNF). The onset of autoimmune 

and inflammatory disorders like rheumatoid arthritis is associated with biologically active TNF. Numerous 

transcription-binding sites found in the human TNF gene operate differently depending on the cell type and stimulation. 

In 1991, the first transgenic mouse model for TNF was created. Since then, numerous research has used TNF transgenic 

mice to assess the pathways involved in rheumatoid arthritis, with a particular emphasis on anti-TNF therapy. 

Transgenic mice expressing human TNF-α transgenes that are 3′ modified and wild-type were created by Keffer et al. 

According to research conducted on transgenic mice, human TNF-transgenic (Tg197) mice spontaneously developed 

arthritis and displayed significant quantities of soluble and transmembrane human TNF α. In this murine model, the 

mice showed signs of synovial hyperplasia and inflammatory cell infiltration in the joints after 3 to 4 weeks of age as 

well as pannus development, cartilage degradation, and bone erosion at about 10 weeks of age.  

The mice used to create the human TNF transgenics have MHC haplotypes H-2K and H-2B, which   are less conducive 

to the development of arthritis. Nonetheless, backcrossing to the DBA/1 background, which is prone to arthritis, led to 

an earlier beginning and the development of a more severe disease, suggesting that MHC may have an impact on the 

course of the disease. [70,71] 

 

CONCLUSION: 

Understanding the mechanisms underlying the autoimmune arthritis disease process has been made easier by the variety 

of experimental models available for the condition. Over the last few years, significant progress has been made in both 

the development and testing of novel treatment medicines, such as JAK inhibitors, as well as in our understanding of 

the disease process, including the role of recently reported cytokines like IL-17, IL-23, and IL-27. 

As a result, assessing the reliability of RA animal models will aid a better understanding of the disease's pathophysiology 

and the creation of secure and efficient treatment plans. An optimal animal model of RA, however, needs to strike a 

compromise between practicality and biological viability. 
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