PHYTO CHEMICAL EVALUATION AND ANTI-ULCER ACTIVITIES OF TERMINALIA ELLIPTICA

¹U.Swathi, ²M. Rakesh

Department of Pharmacology Jayamukhi college of pharmacy Arsampet, Chennaraopet road Warangal, Telangana, India. **Correspondence to Author: U.Swathi**

Abstract- This research looked at how well AETE worked as an antioxidant and an antiulcer agent. Evidence from this study suggests that AETE can protect against aspirin-induced ulcers and act as an antioxidant. The presence of alkaloids, carbohydrates, glycosides, tannins, proteins, and amino acids was detected in the early phytochemical screening of whole plant extracts. An NSAID-induced anti-ulcer study was conducted to screen the antiulcer impact of Terminalia elliptica's ethanol extract. According to the findings of these studies, Terminalia elliptica ethanol extract has an antiulcer effect. When compared to the control group, the aspirin-induced model showed improvements in the following areas: ulcer index, total acidity, total volume of stomach contents, total protein concentration, pH of gastric secretion, and glutathione content. The standard comparison agent was famotidine.

Keywords: Evaluvation, Anti-Oxidant, Anti-Ulcer, EthanolicExtract, Terminalia elliptica, Invitro Methods.

INTRODUCTION

An imbalance between aggressive and protective elements causes gastric hyperacidity, a chronic global condition that affects millions of people.[1] Acid, pepsin, bile acids, medicines, and bacterial products (Helicobacter pylori) are among the potentially harmful agents that the stomach mucosa is constantly exposed to. Antimuscarinics, proton pump inhibitors, and H2 receptor antagonists are the mainstays of peptic ulcer treatment today. Nevertheless, the majority of these treatments come with side effects like hypersensitivity, irregular heartbeat, inability to erection, gynecomastia, and disorders affecting the blood cells.[2]

In Cancer, heart disease, and diabetes are characterized by oxidative assaults; antioxidants seem to protect the biological system from these.[3] ROS such superoxide, hydrogen peroxide, hydroxyl, and nitric oxide (NO) radical are responsible for this oxidative damage.[4] In a biological organism, these ROS accumulations directly promote mast cell histamine production and destroy important macromolecules as DNA, lipids, proteins, polyunsaturated fatty acids, carbohydrates, and nucleic acids.[5] Vitamins C and E, carotenoids, flavonoids, and tannins are among the most abundant antioxidants found in vascular plants.There has been a lot of research on the powerful antioxidant capabilities of naturally occurring polyphenolic chemicals, particularly flavonoids [6-7].

Our phytochemical analysis of Terminalia elliptica plant extracts will help in the plant's authentication and identification for both commercial and academic uses, particularly in areas pertaining to its antioxidant activity. Pharmacological systems rely on antioxidants for their ability to scavenge free radicals. Antioxidants are gaining traction as potential medicinal and preventative agents. Therefore, the powerful extract was also tested for its antioxidant properties. Now I'm employing invitro methods to evaluate the anti-oxidant and antiulcer properties of plant extracts from Terminalia elliptica.

MATERIALS & METHODS

Collection and Authentication of Plant

The whole plant of Terminalia elliptica collected in the month of June, 2023 from chittur dist. The plant materials were identified and authenticated.

Aspirin Induced Ulcer

SI NO	DRUG	DOSE	ROUTEOF	NO.OF ANIMALS	PARAMETERSFOR STUDY
	Control		Oral		
1.	(water)		administration	6	1.Ulcer index&
	Standard				Ulcer score
2.	(famotidine)	3mg/kg	Oral	6	2.Total acidity
3.	AETE	100mg/kg	Oral	6	3.Acid volume
					4.pH
					5.Glutathione
4.	AETE	200mg/kg	Oral	6	6.Total protein
5	AETE	400 mg/kg	Oral	6	

 Table No 1 : Dose dependent studies: (Animal: rats)

RESULTS AND DISCUSSION Soxhlet Extraction of *TERMINALIA ELLIPTICA*

The percentage yield of the Terminalia elliptica was found to be 20.88 % w/v.

Table No 2: Extraction of Terminalia elliptica

Plant	Partused	Method of Extraction	Solvents	Percentage Yield (%W/V)
Terminalia elliptica	Wholeplant	Maceration	Ethanol(95%)	20.88

Table 3: phytochemical evaluation

Parameters	value
1. Alkaloid	+
2. Carbohydrates	+
3. Glycosides	+
4. Flavonoids	+

5. Tannins & Phenolic compounds	+
6. Proteins & Amino acids	+
7. Saponins	-
8. Sterols or Triterpenes	-

In Vitro Antioxidant Activities Effect of superoxide radical scavenging activity:

Table No 4: Effect of AETE on Superoxide in vitro RadicalScavenging Activity

Concentration	Absorbance	ce Percentage inhibition		nhibition
(µg/ml)	Ethanol extract	Vitamin C	Ethanol extract	Vitamin C
0	0.78±1.22	0.78±1.5	0±0.00	0±0.00
2	0.72±2.31	0.54±3.5	7.6±1.35	30.76±0.71
4	0.65±3.1	0.41±0.78	16.6±4.71	47.43±1.79
6	0.58±1.27	0.36±1.55	25.64±3.6	53.84±2.53
8	0.54±1.72	0.28±2.3	30.76±1.55	61.94±4.22
10	0.47±5.5	0.19±3.6	39.47±2.44	75.64±1.67
12	0.41±3.7	0.14±2.3	47.43±3.39	82.05±2.36
14	0.35±1.78	0.11±3.2	55.12±0.67	85.89±0.37

Results are mean \pm SD of three individual experiments

Concentration	Absorbance	bsorbance		hibition
(µL/IIII)	Ethanol extract	VitaminC	Ethanol extract	VitaminC
1	0.694±0.21	0.58±1.23	0.5±0.71	15.8±2.3
10	0.676±1.31	0.487±3.5	4.35±.56	29.9±2.9
20	0.640±3.22	0.361±1.23	9.03±0.78	49±5.6
30	0.60±1.52	0.121±1.5	14.2±1.3	67.8±4.9
40	0.566±4.35	0.101±3.2	19.2±1.27	87.3±4.3
50	0.530±2.33	0.046±4.2	23.4±1.32	97.3±4.2
60	0.461±3.5	0.06±4.9	29.2±.79	96.1±3.2
70	0.459±3.6	0.05±4.1	36.3±0.96	96.2±4.56
80	0.40±4.6	0.05±0.22	41.9±0.95	96.2±4.32
90	0.36±2.5	0.04±0.3	48.13±1.32	97.5±3.78
100	0.327±3.72	0.03±.52	54.23±1.56	98.3±3.96

Effect of AETE on DPPH radical reducing activity

Table No 5	study of <i>in</i>	vitro DPPH	Radical Sca	venging Activity
	siduy or m		Maultal Dea	venging Activity

Results are mean \pm SD of three individual experiments.

Pharmacological Study

Fig. No 2: Photographs Showing Aspirin Induced Gastric Ulcers

Low dose	High Dose

Effect of AETE on Ulcer Index on NSAID induced Ulcer model

Table No 6: Effect of AETE on Ulcer Index on NSAID inducedUlcer model

S.No	Treatment	Dose	Ulcer Index
1	Control(water)	-	4.11±0.25
2	Famotidine	3mg/kg	1.68±0.42**
3	AETE	100mg/Kg	3.32±0.28
4	AETE	200mg/Kg	2.29±0.21*
5	AETE	400mg/Kg	1.89±0.11**

AETE - *Alcoholic Extract ofTerminalia elliptica* **P<0.001, *P<0.05, compared with control

Fig. No 3: Effect of AETE on Ulcer Index on NSAID induced Ulcermodel

Effect of AETE on Total Acidity on NSAID induced Ulcer model

			Total Acidity(m Eq/L
S.No	Treatment	Dose	
1	Control(water)	-	73.14±1.13
2	Famotidine	3mg/kg	28.1±0.84**
3	AETE	100mg/Kg	75.6±0.22*
4	AETE	200mg/Kg	67.06±0.516*
5	AETE	400mg/Kg	40.20±0.21**

AETE - Alcoholic Extract of Terminalia elliptica **P<0.001, *P<0.05, compared with control

Effect of AETE on Acid Volume on NSAID induced Ulcer model Table No 8: Effect of AETE on Acid Volume on NSAID induced Ulcermodel

S.No	Treatment	Dose	Acid Volume (ml)
1	Control(water)	-	5.30±0.21
2	Famotidine	3mg/kg	3.93±0.33**
3	AETE	100mg/Kg	$5.10{\pm}0.11^*$

	AETE		
4		200mg/Kg	$4.32 \pm 0.09^*$
_		100 /77	
5	AETE	400mg/Kg	4.04±0.04**

AETE - *Alcoholic Extract of Terminalia elliptica* **P<0.001, *P<0.05, compared with control

Effect of AETE on pH in NSAID induced Ulcer model Table No 8: Effect of AETE on pH in NSAID induced Ulcer model

S.No	Treatment	Dose	РН
1	Control(water)	-	2.15±0.10
2	Famotidine	3mg/kg	4.88±0.16**
3	AETE	100mg/Kg	3.49±3.05
4	AETE	200mg/Kg	3.82±4.77**
5	AETE	400mg/Kg	4.02±3.33**

AETE - *Alcoholic Extract of Terminalia elliptica* **P<0.001, *P<0.05, compared with control

Effect of AETE on Glutathione in NSAID induced Ulcer model

S.No	Treatment	Dose	Glutathione(mcg/gm)
1	Control(water)		0.93±0.012
2	Famotidine	3mg/kg	1.14±0.19*
3	AETE	100mg/kg	0.88±0.065
4	AETE	200mg/kg	1.22±0.094
5	AETE	400mg/kg	1.41±0.024*

Table No 9: Effect of AETE on Glutathione in NSAID induced Ulcermodel

AETE - *Alcoholic Extract of Terminalia elliptica* **P<0.001, *P<0.05, compared with control

Effect of AETE on Total Protein in NSAID induced Ulcer

Table No 10: Effect of AETE on Total Protein in NSAID induced Ulcer

S.NO	Treatment	Dose	Totel ptoteingm/dl
1	Control(water)	-	0.842±0.02

2	Famotidine	3mg/kg	0.720±0.03*
3	AETE	100mg/kg	0.740±0.09
4	AETE	200mg/kg	$0.672 \pm 0.05^{*}$
5	AETE	400mg/kg	0.650±0.02*

AETE - Alcoholic Extract of Terminalia elliptica

**P<0.001, *P<0.05, compared with control

CONCLUSION

This research looked at how well AETE worked as an antioxidant and an antiulcer agent. Evidence from this study suggests that AETE can protect against aspirin-induced ulcers and act as an antioxidant.

The presence of alkaloids, carbohydrates, glycosides, tannins, proteins, and amino acids was detected in the early phytochemical screening of whole plant extracts. Reduced amounts of glutathione (g-glutamylcysteinylglycine, GSH) were discovered in the tissues of gastric ulcers. A decrease in cysteine concentration, which mediates the release of glutathione (GSH), is caused by the aspirin-induced generation of free radical concentration. This study's values are associated with the production of gastric lesions in rats and the depletion of gastric GSH. As a tripeptide with superoxide radical scavenging capabilities, GSH safeguards the thiol protein levels necessary for tissue integrity release from oxidation reactions. An increase in glutathione content was seen in my present investigation following AETE treatment. The AETE may have beneficial antioxidant and anti-ulcer effects, according to all these data. Future study should focus on establishing the mechanism of action and treatment necessity.

REFERENCES:

- 1. Alkofahi A, Atta AH. Pharmacological screening of the anti-ulcerogenic effects of some Jordanian medicinal plants in rats. J Ethnopharmacol. 1999;67:341–5. [PubMed] [Google Scholar]
- 2. Peskar BM, Maricic N. Role of prostaglandins in gastroprotection. Dig Dis Sci. 1998;43(9 Suppl):23S–9S. [PubMed] [Google Scholar]
- 3. Siriwatanametanon N, Fiebich BL, Efferth T, Prieto JM, Heinrich M. Traditionally used Thai medicinal plants: In vitro anti-inflammatory, anticancer and antioxidant activities. J Ethnopharmacol. 2010;130:196–207. [PubMed] [Google Scholar]
- 4. Cerutti PA. Oxidative stress and carcinogenesis. Eur J Clin Invest. 1991;21:1–11. [PubMed] [Google Scholar]
- 5. Farombi EO, Fakoya A. Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of Hibiscus sabdariffa L. Mol Nutr Food Res. 2005;49:1120–8. [PubMed] [Google Scholar]
- 6. Park HS, Kim SR, Kim JO, Lee YC. The roles of phytochemicals in bronchial asthma. Molecules. 2010;15:6810–34. [PMC free article] [PubMed] [Google Scholar]
- 7. Rice-Evans C. Flavonoid antioxidants. Curr Med Chem. 2001;8:797-807. [PubMed] [Google Scholar]