SECONDARY CHANNEL STUDY OF WAY METEN IRRIGATION AREA, WAY APU SUB-DISTRICT, BURU DISTRICT, MALUKU PROVINCE

¹Rudi Serang, ²Edison Hukom, ³Willem Gaspersz, ⁴Delvia R. Apalem

Construction Project Management Ambon State Polytechnic Indonesia.

Abstract- Performance is a description of the level of achievement of the implementation of a program of activities or policies in realizing the objectives. The purpose of this study is to determine the physical condition of the secondary channel, obtain the performance of the secondary irrigation channel building function and obtain the amount of maintenance implementation costs for the Way Way Meten irrigation secondary channel in Way Apu District, Buru Regency. Based on the results of research and analysis of calculations there is damage to the walls and floor of the channel Left Section Section (BA.Ki) 4 with Left Section Section (BA.Ki) 6, and the results of the Assessment of the performance index of the physical infrastructure of the carrier channel using the Regulation of the Minister of PUPR Number 12 / PRT / 2015 concerning Exploitation and Maintenance of Irrigation Networks, obtaining an assessment result of 59.80% in section Ba.Ki.4 and obtaining an assessment result of 57.05% in section Ba.Ki.6 with the predicate Physical Infrastructure of Carrier Channels (Secondary Channels) DI. Way Way Meten is a bad condition, so heavy repairs or replacements are needed on secondary channels that are damaged. budget needs Way meten irrigation secondary channel with a length of 1,033 m which is damaged with a budget cost of Rp. 2,486,731,000.00, - (Two Billion Four Hundred Eighty Six Million Seven Hundred Thirty One Thousand Rupiah).

Index Terms: Breakdown, Performance, Repair.

I. INTRODUCTION

Irrigation is a means of utilizing water resources that has a function as a provider, regulator and distributor of water to support agricultural land, especially in the dry season. Irrigation is organized with the aim of realizing comprehensive, integrated, and environmentally sound water benefits. One of the problems that commonly occur in the irrigation sector is the problem of water distribution, this problem can be caused by water discharge factors that do not meet the irrigation of irrigation areas which can be caused by small upstream discharge or caused by technical factors in the field such as the physical infrastructure of irrigation problems that can hamper the performance of the irrigation itself.

According to Moeheriono (2012), performance is a description of the level of achievement of the implementation of an activity program or policy in realizing the goals, objectives, vision, and mission of the organization as outlined in an organization's strategic planning. Irrigation networks according to the Regulation of the Minister of Public Works and Public Housing of the Republic of Indonesia Number 12/PRT/M/2015 are channels, buildings, and their appurtenant buildings which are a single unit required for the provision, distribution, provision, use, and disposal of irrigation water. Way Metan Irrigation Network is an irrigation network of Buru Regency so that management is in the Maluku Irrigation Service. With a total area of Irrigation Area served of 2220 Ha. Irrigation building

Way Meten Irrigation Network with an efficient and effective irrigation management system greatly affects the maximum agricultural production in the context of national food security. In maintaining optimal irrigation water, of course, good maintenance effort management is needed, maintenance efforts and assessment of the irrigation area must always be improved and supervised in its operation. Currently, the Secondary channel of Way Meten irrigation that has been built is inadequate in its service, and also the way apu dam construction program, it is necessary to rehabilitate the Way Meten Irrigation Area. Problems with the physical infrastructure, of course, can cause the irrigation function to be ineffective and efficient and not as expected due to a decrease in the quality of the physical infrastructure. Please note, irrigation physical infrastructure certainly has a very vital role in the irrigation sector itself. So by analyzing the maintenance of the physical infrastructure of this Irrigation Area, the condition and function of each existing physical infrastructure can be known so that maintenance can be carried out to maintain the function of the water network in an Irrigation Area to remain optimal. Based on the above, the author took research on the Study of Secondary Irrigation Channel Way Meten Way Apu District Buru Regency.

II. METHODS

Research Location

The location of this research is in the Secondary Channel of Way Meten Irrigation Area in the Working Area of Way Apu District Administration of Buru Regency, Maluku Province.

Figure 1 Secondary Channel Network of Way Meten Irrigation in Way Apu Sub-district

Data type

The types of data used in this study are:

a. Primary Data

Data Primary data is data obtained through surveys in the field, in the Way Meten Secondary Irrigation Canal Area consisting of :

- 1. Channel Condition
- 2. Discharge Measurement Data
- b. Secondary Data

Secondary data is obtained by coordinating with related parties, namely from the Maluku River Basin Center. Secondary data consists of:

1. Technical data.

2. Schematic of the building up to the secondary network.Data Collection Technique.

Data collection technique

a. Field survey to assess all physical infrastructure and functionality of the Way Meten Irrigation Secondary Canal.

b. Secondary data collection obtained through coordination with the Maluku River Basin Center.

c. Literature study by conducting a study of books, literature, notes and reports that have to do with the analysis of the performance of Irrigation Areas.

Data source

Data sources from this research were obtained by coordinating with related parties, namely from the Maluku River Basin. Where the data needed is technical data, network schemes, and as built drawings, where the data is supporting data or references in the field when collecting data.

Metode analisis

The method that will be used for this assessment is quantitative. The types of data used are primary data and secondary data. The following are the research steps taken:

a. After ensuring that the formulation of the problem is clear enough, and the literature study is deemed to have met the needs of the research, primary and secondary data collection is then carried out.

b. Primary data collection consists of: Technical Data of Irrigation Area, Irrigation Area Network Scheme, Irrigation Area Building Scheme, and As Built Drawing of Irrigation Area. Primary data is needed for supporting data during primary data collection in the field.

c. Primary data collection is done by conducting field surveys to assess the condition and function of each existing physical infrastructure. Data collection is done by recording the condition and function of physical infrastructure in the field.

d. Recapitulating the primary data that has been obtained and processing the data before the data obtained is ready to be analyzed.

e. Analyzing the data and determining the recommendation value for the physical infrastructure that has been studied.

f. Calculating Volume and Cost, consisting of: Inventory of Irrigation Network Recapitulation of Performance Value Index Assessment Final Performance Value Index Assessment

Table 1 Carrier Channel Irrigation Network Performance Index Assessment Form

				SECON	DAF	RY CHAN	INEI	L CONDI	TIO	N	
Description		Weight value	BP	Very goo	bd	Good		Medium (60 < 80)%		Ugly	
		standard	standard))%	(80 < 90))%			(< 60)%	
				Bobot	%	Bobot	%	Bobot	%	Bobot	%
	1	2	3	12		13		14		15	
2	Carrier Channel	10	10								
2,1	channel capacity is sufficient to carry the maximum demand / plan discharge (primary & secondary)										
2,2	Embankment height sufficient to avoid overflow at all times during operation										
2,3	Implementation of channel repair & or maintenance has been completed										

Diagram alir

Gambar 1 Diagram Alir Penelitian

III. ANALYSIS AND DISCUSSION

Physical Condition of Way Meten Channel

For the condition and function of the Way Meten irrigation network is generally good, but there are several things that reduce the performance of the channel such as overgrown channels, several points of the channel experiencing damage / cracks and faults. The table below shows the results of the inventory carried out by the author, on the Way Meten Secondary channel, Way Apu District

			<i>j</i> 10 5 and 01 () a <i>j</i> 10 200 a	, en annei
No	Bu	ilding / Section	Conditions	Documentation
1	Ca	rrier Channel		
	Wa	ay Meten Secondary Char	nnel	
	-	Left Section (BA.Ki) 1	a. The condition of the Couple is generally good	
	-	Left Section (BA.Ki) 2	b. The condition of the Couple is generally good	

Table 2 Inventory	Results of Wa	av Meten Second	ary Channel
2		2	2

-	Left Section (BA.Ki) 3	c. The condition of the Couple is generally good	
-	Left Section (BA.Ki) 5	d. The condition of the Couple is generally good	
-	Left Section (BA.Ki) 7	e. The condition of the Couple is generally good	
	Left Section (BA.Ki) 4	f. Some spots There is damage to the channel walls and floor	
	Left Section (BA.Ki) 4		
	Left Section (BA.Ki) 4		
	Left Section (BA.Ki) 4		
	Left Section (BA.Ki) 6	g. There are cracks, longitudinal fractures on the floor and walls, growls (large holes), dry moss on the wall surface	
	Left Section (BA.Ki) 6		

	Left Section (BA.Ki) 6	
	Left Section (BA.Ki) 6	
	Left Section (BA.Ki) 6	
	Left Section (BA.Ki) 6	

Calculation of Way Meten Secondary Channel Discharge

a. Calculation to determine the discharge in the Way Meten Irrigation Area in the secondary channel on the left Section (BA.Ki) 4.

Figure 3 Upstream Secondary Channel

A (Wet Cross-Sectional Area) $A_{upstream} = (b+ m.h)h$ $A_{upstream} = (1,6+1.0,8)0,8$ $A_{upstream} = 1,92 m^2$

 $A_{downstream} = (b + m.h)h$ $A_{downstream} = (1,6 + 1.0,8)0,8$ $A_{downstream} = 1,92 m^2$ $\frac{\left(A_{upstream} + A_{downstream}\right)}{\left(1,92 \ m^2 + 1,92 \ m^2\right)}$ 2 $A = 1,92 m^2$ V (Flow Velocity in the Channel) by doing 3 trials distance $V_1 =$ time 10 m $V_1 =$ 26,2 sec $V_1 = 0,381 \, m/sec$ distance $V_{2} =$ time 10 m $V_2 = \frac{1}{26,9 det}$ $V_2 = 0,371 \, m/sec$ distance $V_{3} =$ time 10 m $V_3 = \frac{1}{26,5 \ sec}$ $V_3 = 0,377 m/sec$ V average = $\frac{(V_1 + V_2 + V_3)}{3}$ V average = $\frac{(0,381 \text{ m/sec} + 0,371 \text{ m/sec} + 0,377 \text{ m/sec})}{(0,381 \text{ m/sec} + 0,371 \text{ m/sec} + 0,377 \text{ m/sec})}$ 3 V average = 0,376 m/secSo the Discharge (Q) flowing in the Secondary Channel is : O = A x V $Q = 1,92 m^2 x 0,376 m/sec$

 $\tilde{Q} = 0.721 \text{ m}^3/\text{sec}$

From the results of the above calculations, the Q obtained is 0.721 m3/sec and the plan Q is 1.287 m3/sec. The current Q does not meet the plan Q.

b. Calculation to determine the discharge in the Way Meten Irrigation Area in the secondary channel on the left section (BA.Ki) 6.

known := 567,60 HaIrrigated Area (A)= 567,60 HaDischarge Plan (Qr)= 1,119 m3/dtChannel Length (L)= 1.522,17 mUpstream Water Level (h1)= 0,35 mDownstream Water Level (h2)= 0,35 mChannel Bottom Width (b)= 1,60 mChannel wall slope (m)= 1

From the results of the above calculations, the Q obtained is $0.257 \text{ m}^{3/\text{sec}}$ and the plan Q is $1.119 \text{ m}^{3/\text{sec}}$. The current Q does not meet the plan Q.

Criteria and Weighting for Assessment of Secondary Channel Function and Condition

Assessment of the weight of the function and condition of the Secondary Channel is carried out based on the Regulation of the Minister of Public Works and Public Housing Number 12/PRT/M/2015. The assessment of the Way Meten Secondary Channel adjusts the conditions from observations in the field. Weighting is carried out on the Left Section Section (BA.Ki) 4 and Left Section Section (BA.Ki) 6 of the Way Meten secondary channel after comparing the weight obtained with the standard weight determined in the Index (IKSI) method.

a. Way Meten Secondary Channel Left Section (BA.Ki) 4

weight excellent kondisi Good poor value NO/B Descripti (80no Description condition baik condition condition standa Р on (<60)% (90-100)% <90)% (60-<80)% rd (%) 10 1 Carrier Channel 1. Capacity profile The profile of of 5 1 profile The profile of of on 1 each (50)each channel some some each section channel meets channels changes and the sections each plan capacity underwent changed and the capacity the capacity is reduced by channel is minor sufficient to changes was reduced more than carry the resulting in by more than 40% of the discharge to 20% 40% of the planned а the reduction in planned capacity. maximum capacity capacity. demand / plan (secondary) There There 2 Along the is There are are (40)illegal channel illegal several many tapping and section there illegal taps and taps are no illegal relatively and leaks that leaks that tapping and small leaks affect the affect the no leaks, the that channel plan capacity have efficiency little effect capacity. in quantity. Efficiency Efficiency meets the on channel between 60% below requirements. capacity, 60% efficiency is - 70% there there is one between 8% is one illegal illegal take 90%. take for every for every 50 There is one m of channel 100 m of channel illegal intake length. for length. every 200 m of channel length .. 3 There is Sediment or Erosion Sediment or no (10)sediment erosion has deposits erosion has a or affect erosion that little effect major effect affects on channel channel the channel on capacity 20% channel capacity capacity capacity between - 40% of the >40% of planned the planned 10% - 20% channel channel of planned

Table 3 Assessment Data and Weighting of Secondary Channel Way Meten Left Section (BA.Ki) 4

				capacity.	channel	capacity		
					capacity			
1.	Embankmen	2	1	Embankment	The	The	Unstable	
2	t height		(90)	has good	embankment	embankment	embankment,	
	sufficient to			stability, safe	has good	has poor	unsafe height	
	avoid			height to	stability, the	stability, the	for maximum	
	overflow at			prevent	guard height	guard height	water	
	all times			overtopping	is still safe	is still safe	elevation	
	during			during	enough for	enough for	during	
	operation			operation and	the	the maximum	operation and	
				rainy season	maximum	water	rainy season,	
				(remaining	elevation	elevation	(remaining	
				height):	during	during	height):	
				- Earth	operation	operation and	- Earth	
				en channel	and rainy	rainy season	en channel	
				>30cm	season,	(remaining	<10 cm	
				- Maso	(remaining	guard	- Maso	
				nry channel	guard	height):	nry channel	
				>20%	height):	- Earth	<15 cm or	
					- Eart	en channel	overflowing	
					hen channel	10-20 cm		
					20-30 cm	- Maso		
					- Cros	nry channel		
					s-section	10-15 CIII		
					20 cm			
			2	The	Slopes /	Slopes/extern	Slope/externa	
			(10)	slope/externa	outer and /	al and/or	1	
			(10)	1	or inner	internal	embankment	
				embankment	embankment	embankment	wall and/or	
				wall is intact	walls have	walls have	landslide	
				and there are	landslides	landslides	>40% and	
				no weeds.	and wild	>20 - 40%	lots of wild	
					plants	and wild	plants	
					1	plants	I	
1.	Implementat	3	1	Channel	Channel	Channel	Repair of	
3	ion of		(100)	repairs in	repairs in	repairs in	channels in	
	channel			poor and	poor and	poor and	poor and	
	repair and/or			moderate	moderate	moderate	moderate	
	maintenance			condition	condition	condition	condition that	
	has been			have been	have been	have been	can be	
	completed			completed	completed	completed	completed	
				this year	this year	this year only	this year has	
				reaching 90 -	reaching	60 - <80%	not reached <	
				100%.	80% - <90%		60%	

no	Description	weight value standar d (%)	NO/B P	excellent condition (90- 100)%	kondisi baik (80- <90)%	Good condition (60- <80)%	poor conditio n (<60)%	Description
1	Carrier	10						
	Channel							
1.	Capacity of	5	1				The	Damaged
1	each channel		(50)				profile	condition, if
	each channel						of each	the condition is
	is sufficient						section	<60% of the
	to carry the						changes	initial

	discharge to the maximum demand / plan (secondary)						and the capacity is reduced by more than 40% of the planned capacity.	condition of the building/chann el and heavy repair or replacement is required.
			2 (40)			There are several illegal taps and leaks that affect the channel capacity. Efficiency between 60% - 70% there is one illegal take for every 100 m of channel length.		Moderate condition, if the condition is 60 - <80% of the initial condition of the building / channel and maintenance is required which is repair in nature
			3 (10)		Sediment or erosion has little effect on channel capacity between 10% - 20% of planned channel capacity			Good condition, if the condition is 80 - <90% of the initial condition of the building/chann el; and periodic maintenance is required.
1. 2	Embankment height sufficient to avoid overflow at all times during operation	2	1 (90)	Embankment has good stability, safe height to prevent overtopping during operation and rainy season (remaining height): - Earthe n channel >30cm - Mason ry channel >20%				Very good condition, if the condition is 90 - 100% of the initial condition of the building / channel and routine maintenance is required

			2 (10)	Slopes / outer and / or inner embankme nt walls have landslides and wild plants		Good condition, if the initial condition of the building/chann el; and periodic maintenance is required.
1. 3	Implementati on of channel repair and/or maintenance has been completed	3	1 (100)		Repair of channels in poor and moderate conditio n that can be complete d this year has not reached < 60%	Damaged condition, if the condition is <60% of the initial condition of the building / heavy repair or replacement

Based on the assessment of the weight of the function and condition of the secondary channel, the calculation of the average weight is obtained based on table 3 assessment data and the weight of the secondary channel way meten Left Section (BA.Ki) 4 as follows :

Calculation 1. = (Average condition 1 x 50) + (Average condition 2 x 40) + (Average condition 3 x 10) Capacity Condition = (55% x 50) + (70% x 40) + (85% x 10)= 27,5% + 28% + 8,5% = 64% (Medium Condition) Calculation 2. = (Average condition 1 x 90) + (Average condition 2x 10) Embankment Height Condition = (95% x 90) + (85% x 10)= 85,5% + 8,5% = 94% (Excellent Condition) Calculation 3. = (Average condition 1 x 100) Improvement Implementation Condition = (30% x 100)= 30% (Poor Condition)

b. Secondary Channel Way Meten Left Section (BA.Ki) 6

no	Description	weight value standa rd (%)	NO/B P	excellent condition (90-100)%	kondisi baik (80- <90)%	Good condition (60-<80)%	poor condition (<60)%	Descripti on
1	Carrier	10						
	Channel							
1.	Capacity of	5	1	profile of	profile on	The profile of	The profile of	
1	each		(50)	each channel	some	some	each section	
	channel			meets the	sections	channels	changes and	
	each			plan capacity	underwent	changed and	the capacity	
	channel is				minor	the capacity	is reduced by	
	sufficient to				changes	was reduced	more than	
	carry the				resulting in	by more than	40% of the	
	discharge to				a 20%	40% of the	planned	

Table 4 Assessment Data and Weighting of Secondary Channel Way Meten Left Section (BA.Ki) 6

	the maximum demand / plan (secondary)				reduction in capacity	planned capacity.	capacity.	
			2 (40)	Along the channel section there are no illegal tapping and no leaks, the efficiency meets the requirements.	There is illegal tapping and relatively small leaks that have little effect on channel capacity, efficiency is between 8% - 90%. There is one illegal intake for every 200 m of channel length	There are several illegal taps and leaks that affect the channel capacity. Efficiency between 60% - 70% there is one illegal take for every 100 m of channel length.	There are many illegal taps and leaks that affect the plan capacity in quantity. Efficiency below 60% there is one illegal take for every 50 m of channel length.	
			3 (10)	There is no sediment or erosion that affects the channel capacity of the planned channel capacity.	Sediment or erosion has little effect on channel capacity between 10% - 20% of planned channel capacity	Erosion deposits affect channel capacity 20% - 40% of the planned channel capacity	Sediment or erosion has a major effect on channel capacity >40%	
1. 2	Embankmen t height sufficient to avoid overflow at all times during operation	2	1 (90)	Embankment has good stability, safe height to prevent overtopping during operation and rainy season (remaining height): - Earth en channel >30cm - Maso nry channel >20%	The embankment has good stability, the guard height is still safe enough for the maximum elevation during operation and rainy season, (remaining guard height): - Eart hen channel 20-30 cm - Cros s-section channel 15- 20 cm	The embankment has poor stability, the guard height is still safe enough for the maximum water elevation during operation and rainy season (remaining guard height): - Earth en channel 10-20 cm - Maso nry channel 10-15 cm	Unstable embankment, unsafe height for maximum water elevation during operation and rainy season, (remaining height): - Earth en channel <10 cm - Maso nry channel <15 cm or overflowing	

			2	The	Slopes /	Slopes/extern	Slope/externa
			(10)	slope/externa	outer and /	al and/or	1
				1	or inner	internal	embankment
				embankment	embankment	embankment	wall and/or
				wall is intact	walls have	walls have	landslide
				and there are	landslides	landslides	>40% and
				no weeds.	and wild	>20 - 40%	lots of wild
					plants	and wild	plants
						plants	
1.	Implementat	3	1	Channel	Channel	Channel	Repair of
3	ion of		(100)	repairs in	repairs in	repairs in	channels in
	channel			poor and	poor and	poor and	poor and
	repair and/or			moderate	moderate	moderate	moderate
	maintenance			condition	condition	condition	condition that
	has been			have been	have been	have been	can be
	completed			completed	completed	completed	completed
				this year	this year	this year only	this year has
				reaching 90 -	reaching	60 - <80%	not reached <
				100%.	80% - <90%		60%

no	Description	weight value standar d (%)	NO/B P	excellent condition (90- 100)%	kondisi baik (80- <90)%	Good condition (60- <80)%	poor conditio n (<60)%	Description
1	Carrier Channel	10						
1. 1	Capacity of each channel each channel is sufficient to carry the discharge to the maximum demand / plan (secondary)	5	1 (50)				The profile of each section changes and the capacity is reduced by more than 40% of the planned capacity.	Damaged condition, if the condition is <60% of the initial condition of the building/chann el and heavy repair or replacement is required.
			2 (40)			There are several illegal taps and leaks that affect the channel capacity. Efficiency between 60% - 70% there is one illegal take for		Moderate condition, if the condition is 60 - <80% of the initial condition of the building / channel and maintenance is required which is repair in nature

			3 (10)			m of channel length. Erosion deposits affect channel capacity 20% - 40% of the planned capacity		Moderate condition, if the condition is 60 - <80% of the initial condition of the building / channel and maintenance is required which is repair in
1. 2	Embankment height sufficient to avoid overflow at all times during operation	2	1 (90)	Embankmenthasgoodstability,safeheighttopreventovertoppingduringoperationoperationandrainyseason(remainingheight):Earthenchannel>30cm-Masonrychannel>20%				Very good condition, if the condition is 90 - 100% of the initial condition of the building / channel and routine maintenance is required
			2 (10)		Slopes / outer and / or inner embankme nt walls have landslides and wild plants			Good condition, if the initial condition of the building/chann el; and periodic maintenance is required.
1. 3	Implementati on of channel repair and/or maintenance has been completed	3	1 (100)				Repair of channels in poor and moderate conditio n that can be complete d this year has not reached < 60%	Damaged condition, if the condition is <60% of the initial condition of the building / heavy repair or replacement

Based on the assessment of the weight of the function and condition of the secondary channel, the calculation of the average weight of table 4 assessment data and the weight of the secondary channel way meten Left Section (BA.Ki) 6 is obtained as follows :

Calculations 1. = (Average condition 1 x 50) + (Average condition 2 x 40) + (Average condition 3 x 10) Capacity Condition = (55% x 50) + (70% x 40) + 70% x 10)= 27,5% + 28% + 7% = 62,5% (Medium Condition) Calculations 2. = (Average condition 1 x 90) + (Average condition 2x 10) Embankment Height Condition = (95% x 90) + (85% x 10)= 85,5% + 8,5% = 94% (Excellent Condition) Calculations 3. = (Average condition 1 x 100) Improvement Implementation Condition = (30% x 100)= 30% (Poor Condition)

Performance of Way Meten Secondary Channel

a. Secondary Channel Performance Index Assessment Left Section (BA.Ki) 4

From the results of the Secondary network performance index assessment, a performance index value of 5.98% of the maximum 10% assessment weight has been determined in the IKSI method. The following table calculates the secondary channel performance index.

Table of enormance index of way whethis secondary channel							
	weight	value	index valu	ie			
Description	final	section	Existing	Maximum	Description		
	%	%	%	100%			
1	2	3	4	5	6		
1 Carrier Channel	5,98	100		10,00			
the capacity of each channel is 1.1 sufficient to carry the maximum required / planned discharge	3,20	50	64,00	5,00			
Embankment height sufficient to 1.2 avoid overflow at all times during operation	1,88	20	94,00	2,00			
1.3 All sewer repairs have been completed.	0,9	30	30	3,00			

Table 6 Performance Index of Way Meten Secondary Channel

The Way Meten Secondary Channel Performance Index uses the following calculation: Final Weight = Existing Condition Index x Section Value x Carrier channel Maximum Condition Index.

Final weight = Existing Condition index x Section value x Carrier channel Maximum Condition in

b. Secondary Channel Performance Index Assessment Left Section (BA.Ki) 6

From the results of the Secondary network performance index assessment, a performance index value of 5.91% of the maximum 10% assessment weight has been determined in the IKSI method. The following table calculates the secondary channel performance index

	weight	value	index valu	ie			
Description	final	section	Existing	Maximum	Description		
-	%	%	%	100%	_		
1	2	3	4	5	6		
1 Carrier Channel	5,91	100		10,00			
the capacity of each channel is 1.1 sufficient to carry the maximum required / planned discharge	3,13	50	62,50	5,00			
Embankment height sufficient to 1.2 avoid overflow at all times during operation	1,88	20	94,00	2,00			
1.3 All sewer repairs have been completed.	0,9	30	30	3,00			

Table 7 Performance Index of Way Meten Secondary Channel

RAB calculation

a. Channel Volume Calculation

Figure 7 Secondary Channel

Concrete grade, f'c = 19,3 MPa (K225), slump (12 \pm 2) cm, w/c = 0,58 Left Wall Volume(m³) = Wall Width (m) x Wall Thickness (m) x Long(m) V. D. Ki (m^3) = 1,41 m x 0,10 m x 1.033 m V. D. Ki (m^3) $= 145,65 \text{ m}^3$ Right Wall Volume(m³) = Wall Width (m) x Wall Thickness (m) x Long(m) V. D. Ka (m^3) $= 1,41 \text{ m} \ge 0,10 \text{ m} \ge 1.033 \text{ m}$ V. D. Ka (m³) $= 145.65 \text{ m}^3$ Channel Floor Volume (m^3) = Wall Width (m) x Wall Thickness (m) x Long(m)= 1,60 m x 0,10 m x 1.033 m V. L. Sa (m^3) $= 165.28 \text{ m}^3$ V.L.Sa (m^3) Total Volumes (m^3) = Left Wall (m^3) + Right Wall (m^3) + Channel Floor (m^3) Total Volumes $(m^3) = 145,65 m^3 + 145,65 m^3 + 165,28 m^3$ Total Volumes $(m^3) = 456,58 m^3$

Imported borrow area stockpiles

(Upper Width(m) + Lower Width(m)) x Height(m) x Length(m) Left Backfill Volume (m^3) 2 $=\frac{(1.00\ m+3.00)}{2}\ x\ 1.00\ m\ x\ 1.033\ m$ Left Backfill Volume (m³) $= 2.066 m^3$ Left Backfill Volume (m³) (Upper Width (m) + Lower Width (m))x Height (m) x Length (m)Right Backfill Volume (m^3) 2 $\frac{(1.00\ m+3.00\ m)}{x\ 1.00\ m\ x\ 1.033\ m}$ Right Backfill Volume $(m^3) =$ 2 Right Backfill Volume $(m^3) = 2.066 m^3$ Total Volume of Backfill (m^3) = Right Backfill (m^3) + Left Backfill (m^3) *Total Volume of Backfill* $(m^3) = 2.066 m^3 + 2.066 m^3$ Total Volume of Backfill $(m^3) = 4.132 m^3$ Striping Striping area (m^2) = Width (m)x Long(m)Striping area (m^2) = 3 m + 1.033 m $= 3.099 m^2$ Striping area (m^2)

Excavation

Excavation Volume (m^3) = Width x High (m) x Long (m)Excavation Volume (m^3) = 1,60 x 0,11 m x 1.033 m Excavation Volume (m^3) = 181,8 m^3

b. Unit Price Analysis

Unit price analysis using the regulation of the minister of public works and public housing of the Republic of Indonesia Number 28/prt/m/2016 concerning Guidelines for analyzing the unit price of work in the field of public works and the price of wages and materials taken from the 2021 Basic Price of the Maluku Province Public Works Office..

Table 8 Unit	price analysis	to calculate 1-	⊐ m3 quality	f'c = 193 MPa	(K225) slumr	(12+2) cm	w/c = 0.58
rubie o o mit	price analysis	to curculate 1	· mo quanty,	10 - 17.5 MII u	(1x223), stuning	(12 ± 2) cm,	w/c = 0.50.

No	Description	Unit	Coefficient	Unit Price (Rp)	Amount (Rp)
Ι	MATERIALS				
1	Cement	kg	371,00	2.100,00	779.100,00
2	Gravel	kg	1.047,00	375,00	392.625,00
3	Concrete Sand	kg	698,00	350,00	244.300,00
4	Water	Liters	215,00	500,00	107.500,00
II	POWER				
1	Workers	Person/Day	1,3230	100.000,00	132.300,00
2	Stonemason	Person/Day	0,1890	125.000,00	23.625,00
3	Head Builder	Person/Day	0,0190	135.000,00	2.565,00
4	Foreman	Person/Day	0,1320	150.000,00	19.800,00
III	TOOLS				
1	Concrete Mixer	Day	0,2500	130.897,75	32.724,44
IV	Sub Total			Rp.	1.734.539,44
V	Indirect Costs (15%)			Rp.	260,100,02
				•	200.180,92
VI	Total Price			Rp.	1.994.720,35

Table 9 Unit price analysis to calculate 1¬ m3 of imported borrow area embankment

No		Description	Unit	Coefficient	Unit Price (Rn)	Amount
110			° mit	countrient		(R p)
Ι		MATERIALS				
	1	Borrow Area Urugan Land	m3	1,0000	150.000	150.000,00
II		POWER				
	1	Foreman	Person/Day	0,0166	150.000	2.490,00
	2	Workers	Person/Day	0,1660	100.000	16.600,00
III		TOOLS				
	1	Excavator Operating Cost	Hours	0.0277	612 828 35	16 954 92
	1	(Standard)	nouis	0,0277	012.020,00	10.00 1,02
	2	Dump Truck Operating Cost	Hours	0,2176	358.721,92	78.057,89
	3	Vibro Roller Operation Cost	Hours	0,0178	429.435,87	7.634,42
IV		Sub Total			Rp.	271.737,23
v		Indirect Costs (15%)			Rn	
					L.	40.760,58
VI		Total Price			Rp.	212 407 81
					_	512.497,81
1						

Table 10 Unit price analysis for calculating 17 m2 Striping

No	Description	Unit	Coefficient	Unit Price (Rp)	Amount (Rp)
----	-------------	------	-------------	-----------------	----------------

Ι		MATERIALS				
Π		POWER				
	1	Workers	Person/Day	0,0600	100.000,00	6.000,00
	2	Foreman	Person/Day	0,0060	150.000,00	900,00
III		TOOLS				
IV		Sub Total			Rp.	6.900,00
v		Indirect Costs (15%)			Rp.	1
						1.035,00
VI		Total Price			Rp.	7 025 00
					1	7.935,00

Table 11 Unit price analysis to calculate 1¬ m3 Earth Excavation

No		Description	Unit	Coefficient	Unit Price (Rp)	Amount (Rp)
Ι		MATERIALS				
II		POWER				
	1	Workers	Person/Day	0,5630	100.000,00	56.300,00
	2	Foreman	Person/Day	0,0563	150.000,00	8.445,00
III		TOOLS				
IV		Sub Total			Rp.	64.745,00
v		Indirect Costs (15%)			Rn	
						9.711,75
VI		Total Price			Rp.	74.456,75

c. RAB Calculation

Based on the volume calculation with the unit price analysis, the cost budget plan for the work of the Way Meten Secondary Irrigation Canal in Way Apu District is obtained as follows:

EN	ENGINEERING ESTIMATE								
Jobs	Jobs : Way Meten Secondary Irrigation Canal								
Job	Job Location : Way Apu Sub-district, Buru Regency								
No	Work items	Unit	Volume	Unit price	Total price				
1	Concrete grade, f [*] c = 19,3 MPa (K225), slump (12±2) cm, w/c = 0,58	М3	456,58	1.994.720,35	910.749.417,40				
2	Imported borrow area stockpiles	M3	4132	312.497,81	449.996.840,93				
3	Striping	M2	3099	7.935,00	3.547.738,50				
4	Excavation	M3	181,8	75.456,75	202.420.277,55				
			А	Total Quantity	2.240.298.954,77				
			В	Contingency (11%) x A	246.432.885,02				
			С	Total A+B	2.486.731.839,79				

		D	Rounded	2.486.731.000,00
Retrieved	Two Bil Thirty O	lion Four H ne Thousa	Hundred Eighty Six Milli nd Rupiahs	on Seven Hundred

IV. CLOSING Conclusion

In general, the physical condition of the channel and the function of the irrigation canal of the Way Meten irrigation area is generally still good to drain the flow of water to the rice fields in sections BA.Ki.1,2,3,5 And the assessment of the performance index of the physical infrastructure of the carrier channel using the Regulation of the Minister of PUPR Number 12 / PRT / 2015 concerning Exploitation and Maintenance of Irrigation Networks, obtained an assessment result of 59.80% in section Ba.Ki.4 and obtained an assessment result of 57.05% in section Ba.Ki.6 with the title Physical Infrastructure of Carrier Channels (Secondary Channels) DI. Way Meten is in poor condition and requires heavy repair or replacement of damaged secondary channels and budget requirements Way Meten irrigation secondary channels with a length of 1,033 m that are damaged, costing a budget of Rp. 2,486,731,000.00, - (Two Billion Four Hundred Eighty Six Million Seven Hundred Thirty One Thousand Rupiah).

REFERENCES:

- 1. Anonymous. 2010. "Irrigation Planning Standard Planning Criteria (KP 01-04)". Department of Public Works, Jakarta.
- 2. Mustapa Alihasmi Siregar1, Ivan Indrawan2, Performance Evaluation of Ujung Gurap Irrigation Network to Improve the Effectiveness and Efficiency of Irrigation Water Treatment.
- 3. Ministry of Public Works and Public Housing (2020). "Basic Irrigation Network Performance Module". Ministry of Public Works and Housing, Jakarta.
- 4. Ministry of Public Works and Housing (2016). "Basic Knowledge of PAI, IKSI and Aknop". Ministry of Public Works and Housing, Jakarta.
- 5. Ministry of Public Works and Housing (2015). "Regulation of the Minister of PUPR No. 12/PRT/M/2015: Exploitation and Maintenance of Irrigation Networks". Ministry of Public Works and Housing, Jakarta.
- 6. Ministry of Public Works and Housing (2012). "Regulation of the Minister of PUPR No. 13/PRT/M/2012: "Guidelines for Irrigation Asset Management". Ministry of Public Works and Housing, Jakarta.
- Ministry of Public Works and Housing (2007). "Regulation of the Minister of PUPR No.32/PRT/M/2007: "Guidelines for Operation and Maintenance of Irrigation Networks". Ministry of Public Works and Housing, Jakarta.
- 8. Sudjarwadi, 1990. Theory and Practice of Irrigation. Yogyakarta. Gajah Mada University..
- 9. Rosany A. Nomleni1), Judi K. Nasjono2), Rosmiyati A. Bella2), "Calculation of Simulated Discharge with Measured Discharge at Das Manikin", Journal of Civil Engineering, Vol. VIII, No. 2, September 2019
- Yulasni Astri1), Manyuk Fauzi2), Rinaldi2), "Performance Assessment of Irrigation Area Facilities and Infrastructure (DI) Muara Jalai Village, Kampar Regency", Jom Fak. Engineering, Volume 5 Edition 1 January to June 2018