# STATISTICAL ANALYSIS AMONG THE ECOLOGICAL PARAMETERS OF INDUSTRIAL WASTE WATER OF U.P. INDIA

## **Mukesh Baboo**

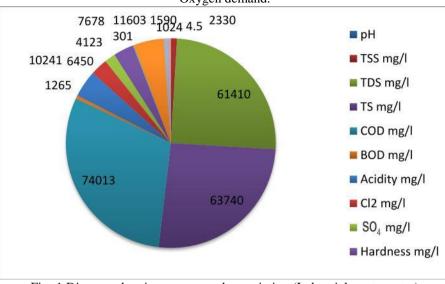
Dept. of Chemistry, Hindu College, Moradabad (U.P.) India

*Abstract-* In the present investigation the data collected on the physico-chemical characteristics of the industrial waste water have been analyzed for correlation and regression among the various parameters viz., pH, TS, TDS, TSS, COD, BOD, Acidity Hardness, Cl, SO<sub>4</sub>,Ca, Mg, Na, K, etc. This industry is located at Amroha Distt. U.P. in India, for these studies a wizard fast digital computer unit was used. Beside the above analysis standard deviation, relative standard deviation and coefficient of variation in all the parameters have also been evaluated, respectively.

#### Key words: Industrial waste, Ecology, Regression, Correlation coefficient.

#### Introduction

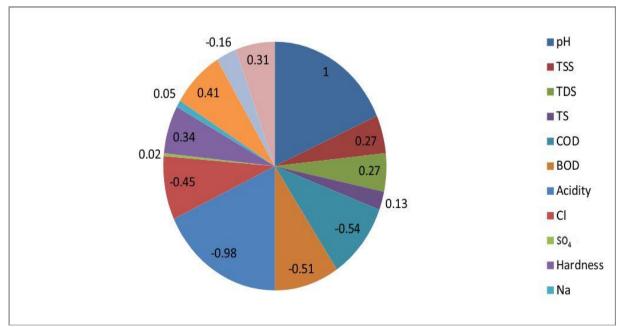
Industrial waste water is generated from a wide variety of production and processing processes. Depending on the industry, industrial waste water can be composed of various components. Besides organic compounds like oil fat, alcohol and flavorings, other substances such as heavy metals, acid and alkalis also combine with the water. This kind of waste water must be pretreated before discharging it to public sewage treatment plants or nature or reusing it for internal purposes. Insilco Ltd. Sadullapur Gajraula, Amroha (U.P.) waste water is one of the major waste of ecological concern; the plant is situated 65 Kms. west of Moradabad and manufacturing precipitated silica in different grades for rubber and various non-rubber applications. In the present manuscript the quality of industrial waste water is described according to the correlation and regression of it's physico-chemical parameters.<sup>1, 2, 3</sup> Several workers have carried out similar work for water quality parameters.<sup>4, 5, 6</sup>


## Material & Methods

All chemicals and reagents for this research work used were of AR grade of CDH, Indian Glycols and Fulka. Industrial waste water samples were collected from Insilco Ltd. Sadullapur Gajraula, Amroha (U.P.) India unit at monthly intervals from July 2009 to Feb 2010. The samples were analyzed for the physico-chemical parameters by following standard methods<sup>7.</sup>Standard deviation, relative standard deviation and coefficient of variation were calculated for various parameters.<sup>8</sup>

#### **Result and Discussion**

All results are shown in table (1-4). Table-1 reveals that average, SD (Standard variation), RSD (Relative Standard deviation) and CV (Coefficient of variation) values of the parameters analyzed for industrial waste water exhibit a declining effect. An attempt has also been made to explain the variation by fig. 1 below the table1. Table 2 and 3 demonstrated by correlation coefficient (r) and coefficient of linear regression A and B. The statistical data of the correlation coefficient between each pair of industrial waste water parameters have been presented in Table-2 and in fig.2 as well. To carry out these extensive numerical calculations a brief details are mentioned below the tables.


| Parameters           | No. of | Average | ±SD     | RSD    | CV%    |
|----------------------|--------|---------|---------|--------|--------|
|                      | Sample | Value   |         | 162    |        |
| рН                   | 8      | 4.5     | 0.330   | 0.0733 | 7.333  |
| TSS mg/l             | 8      | 2330    | 518.31  | 0.222  | 22.24  |
| TDS mg/l             | 8      | 61410   | 3415.12 | 0.0556 | 5.561  |
| TS mg/l              | 8      | 63740   | 3524.21 | 0.552  | 5.529  |
| COD mg/l             | 8      | 74013   | 3120.14 | 0.0421 | 4.215  |
| BOD mg/l             | 8      | 1265    | 401.2   | 0.079  | 7.984  |
| Acidity mg/l         | 8      | 10241   | 311.12  | 0.030  | 3.037  |
| Cl mg/l              | mg/l 8 |         | 713.12  | 0.110  | 11.056 |
| SO <sub>4</sub> mg/l | 8      | 4123    | 429.1   | 0.104  | 10.407 |
| Hardness mg/l        | 8      | 7678    | 739.63  | 0.096  | 9.633  |
| Na mg/l              | 8      | 301     | 37.03   | 0.123  | 12.302 |
| K mg/l               | 8      | 11603   | 992.28  | 0.085  | 8.551  |
| Ca mg/l              | 8      | 1590    | 401.03  | 0.252  | 2.552  |
| Mg mg/l              | 8      | 1024    | 315.25  | 0.307  | 3.078  |



TSS- Total suspended solids; TDS- Total dissolved solids, TS- Total solids COD- chemical oxygen demand, BOD - Biological Oxygen demand.

Fig.-1 Diagram showing average value variation (Industrial waste water)

| Table-2 Correlation coefficients values for industrial waste water at different ecological parameters |      |      |      |      |       |       |         |       |        |              |       |       |       |       |
|-------------------------------------------------------------------------------------------------------|------|------|------|------|-------|-------|---------|-------|--------|--------------|-------|-------|-------|-------|
| Parameter                                                                                             | pН   | TSS  | TDS  | TS   | COD   | BOD   | Acidity | Cl    | $SO_4$ | Hardn<br>ess | Na    | К     | Ca    | Mg    |
| pН                                                                                                    | 1.00 | 0.27 | 0.27 | 0.13 | -0.54 | -0.51 | -0.98   | -0.45 | 0.02   | 0.34         | 0.05  | 0.41  | -0.16 | 0.31  |
| TSS                                                                                                   |      | 1.00 | 0.98 | 0.73 | 0.24  | 0.25  | -0.33   | -0.66 | 0.48   | -0.57        | 0.03  | -0.47 | -067  | -0.14 |
| TDS                                                                                                   |      |      | 1.00 | 0.70 | 0.27  | 0.28  | -0.34   | -0.64 | 0.51   | 0.53         | -0.26 | 0.42  | -0.73 | -0.16 |
| TS                                                                                                    |      |      |      | 1.00 | 0.02  | -0.02 | -0.18   | 0.65  | -0.02  | 0.75         | -0.78 | -0.72 | 0.11  | 0.03  |
| COD                                                                                                   |      |      |      |      | 1.00  | 0.23  | 0.52    | 0.06  | 0.58   | -0.15        | 0.16  | -0.31 | -0.51 | -0.16 |
| BOD                                                                                                   |      |      |      |      |       | 1.00  | 0.32    | 0.47  | 0.01   | -0.30        | -0.04 | -0.38 | -0.19 | -0.29 |
| Acidity                                                                                               |      |      |      |      |       |       | 1.00    | 0.37  | 0.10   | 0.31         | 0.62  | 0.33  | 0.40  | -0.20 |
| Cl                                                                                                    |      |      |      |      |       |       |         | 1.00  | 0.11   | 0.14         | 0.35  | 0.18  | -0.84 | 0.05  |
| $SO_4$                                                                                                |      |      |      |      |       |       |         |       | 1.00   | 0.13         | 0.65  | 0.41  | 0.05  | 0.41  |
| Hardness                                                                                              |      |      |      |      |       |       |         |       |        | 1.00         | 0.55  | 0.75  | -0.24 | -0.28 |
| Na                                                                                                    |      |      |      |      |       |       |         |       |        |              | 1.00  | 0.59  | 0.02  | 0.18  |
| K                                                                                                     |      |      |      |      |       |       |         |       |        |              |       | 1.00  | 0.12  | 0.15  |
| Ca                                                                                                    |      |      |      |      |       |       |         |       |        |              |       |       | 1.00  | 0.12  |
| Mg                                                                                                    |      |      |      |      |       |       |         |       |        |              |       |       |       | 1.00  |



## Fig. 2 Statistical diagram of some ecological parameters.

| waste water. |                 |          |       |          |           |  |  |
|--------------|-----------------|----------|-------|----------|-----------|--|--|
| Х            |                 | Y        | r     | А        | В         |  |  |
| 1.           | pH              | Acidity  | -0.99 | -1121.71 | 15512.04  |  |  |
| 2.           | TSS             | Cl       | -0.76 | -1.053   | 8254.94   |  |  |
|              | TSS             | Hardness | -0.79 | -1.120   | 10039.33  |  |  |
|              | TSS             | Ca       | -0.79 | -0.728   | 3293.08   |  |  |
|              | TSS             | Mg       | -0.72 | -0.414   | 1863.89   |  |  |
| 3.           | TDS             | TSS      | 0.72  | -0.086   | 3030.51   |  |  |
|              | TDS             | Cl       | -0.64 | -0.23    | 13375.86  |  |  |
|              | TDS             | Na       | -0.73 | -6.653   | 612.92    |  |  |
| 4.           | TS              | TSS      | 0.99  | 1.042    | -4923     |  |  |
|              | TS              | TSS      | 0.99  | 0.079    | -3916.07  |  |  |
|              | TS              | Cl       | 0.77  | -0.134   | 14320.70  |  |  |
|              | TS              | Na       | -0.66 | -6.554   | 412146.29 |  |  |
| 5.           | Cl              | Ca       | 0.62  | 0.358    | -150.49   |  |  |
| 6.           | SO <sub>4</sub> | Na       | -0.84 | -0.069   | 484.34    |  |  |
| 7.           | Hardness        | Ca       | 0.65  | 0.406    | -1401.14  |  |  |
| 8.           | Hardness        | Mg       | 0.91  | 0.355    | -1743.51  |  |  |
|              | Са              | Mg       | 0.75  | 0.468    | 156.162   |  |  |

Table-3 Least square fitting for linear relations y = Ax + B  $(r \ge \pm 0.60 - \pm 0.99)$  between ecological parameters for industrial

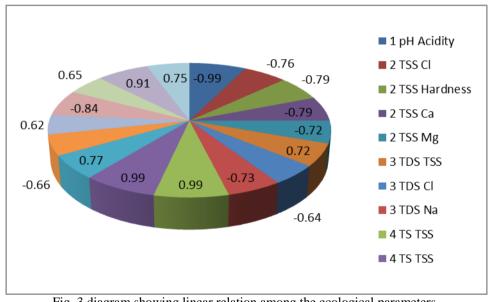



Fig. 3 diagram showing linear relation among the ecological parameters.

Correlation and regression are techniques used to analyze the relationship between two quantitative variables, while correlation measures the strength of a linear relationship between two variables, regression measures how these variables affect each other using an equation. X & Y are the two variable, r-Correlation coefficient has been calculated between each pair of 14 industrial waste water parameters by using the experimental data A & B are the constant

$$r = \frac{\sum xy}{(\sum X^2)(\sum Y^2)} \qquad \qquad x = X - \overline{X}$$
$$y = Y - \overline{Y}$$

For higher value of r between X & Y there linear relation will be Y = Ax + B

On the basis of above A & B can be calculated

$$Y - \overline{Y} = r \frac{6Y}{6X} (X - \overline{X})$$
$$\overline{X} = \frac{\sum X}{n}, \quad \overline{Y} = \frac{\sum X}{n}$$
Where

6Y- Standard deviation of Y

6X- Standard deviation of X

n= no. of observation

All data were run on the digital computer in the dept. of chemistry Hindu College, Moradabad. In the present work most of the observation of pH values was found to be (+ve) between TSS, TDS, TS, Hardness, K, Ca, and Mg etc., whereas most (-ve) values of TSS was observed against the parameters COD, BOD, Acidity, Cl, SO<sub>4</sub>, hardness, Na, Ca and Mg etc. The values of R in positive correlation lie between +0.01 to +0.99 and in case of negative correlation -0.02 to -0.99. The high (+ve) correlation value (0.99) was observed in between pH and acidity. The low (+ve) correlation value (0.01) was observed in between BOD and Cl whereas negative (-0.02) value was observed in between TSS and COD, TS & Cl, Na & K, respectively <sup>8</sup>. The value of r in the case of positive correlation nearer to +1 or in the case of negative correlation nearer -1 show that the greater probability of a definite linear relationship exists between the variable of parameters (e.g. X & Y). The values of r that tend towards zero indicate that the pair of parameters are not linearly related<sup>9</sup>.

The values of linear relation have been shown in table 3 and also discussed in diagram in fig. 3. Again to save space we have

presented the results only for those parameters which have  $r \ge \pm 0.60$  to  $\pm 0.99$ , although we have calculated the value of A & B for each possible pair of 14 parameters<sup>10</sup>. When A & B have been determined the linear relation of the type given equation (y=Ax+B) can be used to predict the value of industrial waste water quality parameters Y, when the values of the parameter X is measured experimentally. With the help of the above linear equation we have predicted the values of TSS and Cl from the experimentally measured values of TDS. The results of the predicted and observed values of TSS and Cl are being given in table 4.

The above findings show that many such positive and negative correlations do exist among these parameters. The very high positive value of  $r^2$  shows that the variation of Y is influenced by changes of X. The high positive values of coefficient of determination ( $r^2$ =0.98) of a pair pH and acidity reveals that 98% variations in acidity values are influenced by pH changes. However the possibility of resting 2% can be attributed to other causes. So our task is not only important for environmental scientists but also to the engineer's working on industrial management and research in this area.

| Table- 4 Predicted and | Observed values of                                            | TSS & Chloride as fu                                                                                  | unction of TDS                                                                                                                |  |  |
|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| TSS mg/l               |                                                               | Cl mg/l                                                                                               | Cl mg/l                                                                                                                       |  |  |
| Р                      | 0                                                             | Р                                                                                                     | 0                                                                                                                             |  |  |
| 1750                   | 1925                                                          | 5630                                                                                                  | 6610                                                                                                                          |  |  |
| 2008                   | 2483                                                          | 6181                                                                                                  | 6100                                                                                                                          |  |  |
| 1943                   | 1412                                                          | 6283                                                                                                  | 6438                                                                                                                          |  |  |
| 2140                   | 2283                                                          | 5993                                                                                                  | 6283                                                                                                                          |  |  |
| 2320                   | 2542                                                          | 5743                                                                                                  | 4435                                                                                                                          |  |  |
| 2718                   | 2743                                                          | 6172                                                                                                  | 5502                                                                                                                          |  |  |
| 2438                   | 24479                                                         | 5573                                                                                                  | 5872                                                                                                                          |  |  |
| 2224                   | 2115                                                          | 5892                                                                                                  | 6036                                                                                                                          |  |  |
|                        | TSS mg/l   P   1750   2008   1943   2140   2320   2718   2438 | TSS mg/l O   P O   1750 1925   2008 2483   1943 1412   2140 2283   2320 2542   2718 2743   2438 24479 | P O P   1750 1925 5630   2008 2483 6181   1943 1412 6283   2140 2283 5993   2320 2542 5743   2718 2743 6172   2438 24479 5573 |  |  |

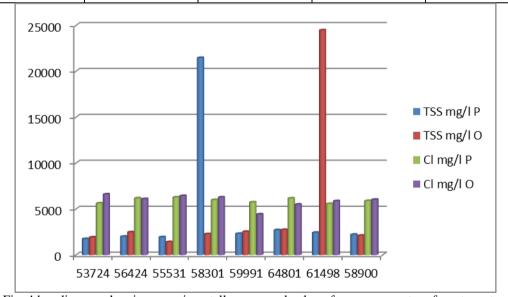



Fig. 4 bar diagram showing experimentally measured value of some parameter of waste water.

This study will provide a baseline data and help to delineate the physico-chemical characteristics of industrial waste water and correlation between them.

#### Acknowledgement

The authors are thankful to Dr. A.K. Agarwal Principal Hindu College, Moradabad for providing necessary facilities and financial assistance. Gratitude to my departmental staff and the people of the villages near industry who helped in collecting the effluents.

## **REFERENCES:**

- 1. S.N. Vaishnav and V. S. Shrivastava, Assessment of pollution status of industrial waste water, correlation and regression study. Ind. J. Environ. Protection, 27(6):554-558, 2007.
- 2. A. Bhatnagar and P. Devi, Application and regression and analysis in assessing lentic water quality; a case study at Brahma Sarovar Kurukshetra, India, Int. J. Environ, Sci. 3(2):813-820,2012.
- 3. S. Jena and K. C. Pradhan, Linear regression and correlation analysis of water qualities of Daya canal Bhubaneshwar Odisha, Poll. Res. 34(3): 127-133, 2015.
- 4. J.G. Mulla., M. Farooqui and A. Zaheer, A correlation and regression equation among water quality parameters, Int. J. Chemical Sci., 5(2): 943-952,2007.
- 5. K. Vijay Kumar et. al., correlation and regression model for physico-chemical quality of groundwater in the south India city of Gulbarga, AJEST, 6(9): 353-364, 2012.
- 6. N.S. Bhandari and K. Nayal, Correlation study on physico-chemical parameters and quality assessment of Kosi-river water, Uttarakhand, E-Journal of chemistry, 5(2): 342-346,2008.
- 7. I.A. Vogel, A text book of quantitative inorganic analysis, ELBS and Longmans & Green London, 1961.
- 8. G.W. Snedecor and W.G. Cocharan, Statistical methods, Oxford and IBM, New Delhi, 2000.
- 9. B.Tripathi, R. Pandey et.al., Studies on the physico-chemical parameters and correlation coefficient of the river Ganga at Holy place Shringverpur Allahabad. IOSR, J. Environmental Sci. Toxi. & Food Tech., 8(10): 29-36,2014.
- 10. Neeha Agarwal et al., linear regression and correlation analysis of water quality parameters. A case study of river Kosi at Distt. Rampur (U.P.), India, IJIRSET, 2(1, 2): 172-787, 2013.