Isolation of bioactive compounds of *Taxus baccata* and *Swertia chirata* plants of Uttarakhand region by GC-MS

Bindu Sati¹, Vijaykant purohit², Sanjay Bhatt³, Harish Chandra Andola⁴

Ph.D Scholar, Department of Biotechnology, IFTM University, Moradabad, UP¹
Senior Scientific officer, H APP RC, H.N.B. Garhwal University Uttarakhand²
Associate Professor, Department of Biochemistry, SRMSIMS, Bareilly, UP³
Technical Officer, Harish Chandra Andola, Doon University, Dehradun, Uttarakhand⁴

Abstract: Present study was focused on evaluating bioactive compounds of *Taxus baccata* and *Swertia chirata* using GC-MS. The bioactive components of methanol extract of fruit of *Taxus baccata* and leaves of *Swertia chirata* were investigated by Perkin-Elmer Gas chromatography-mass spectrometry. GC-MS analysis of methanol extract of *Swertia chirata* leaves and *Taxus baccata* fruit revealed the presence of twenty three and nineteen compounds respectively. It can be concluded that *T. baccata* and *S. chirata* plant parts have higher concentration of various terpenoids, tri-terpenoids, and fatty acids compounds and their derivatives that may be responsible for its promising antibacterial activities.

Keywords: GC-MS

Corresponding author

Bindu Sati
Ph.D Scholar, IFTM University, Moradabad,UP

Introduction

Swertia chirata is a medicinal herbs of traditional of Indian system of Medicine. In Vedas and Samhitas. Among the different species of *Swertia* reported in India, *Swertia chirata* is considered the most important for its medicinal properties. The bitterness, anthelmintic, hypoglycemic and antipyretic properties are attributed to various constituents like amarogentin, swerchirin, swertiamarin and other active principles of the herb. This plant indigenous to temperate Himalaya, consist of 180 species having various medicinal properties and belongs to family Gentianaceae. The trade name *Swertia chirata* is chirretta. It is found at an altitude of 1200-3000 m (Pradhan and Badola 2010). This plant is effective against gastrointestinal infection (Mukherji 1953), used as antipyretic, hypoglycemic (Bhargava et al. 2009), antifungal, (Rehman et al. 2001), hepatoprotective, anti-inflammatory (Banerjee et al. 2000), antibacterial (Joshi and Dhawan 2005), antioxidative (Scartezzini and Speroni 2000) and used to treat malaria and diabetes (Kumar and Staden 2016).

Taxus baccata (English yew) belongs to family “taxaceae” is an evergreen tree. This plant has been used in the Ayurvedic system for the treatment of cancer, diarrhea and asthma. *T. baccata* leaves are reported to be used in traditional medicine as abortifient, antimalarial, antiinflammatory and for bronchitis and dried leaves are used against asthma, Anticancer, anti-inflammatory and antinociceptive, antifungal, antimycobacterial, activity of *T. baccata* has been reported. (Brown 1932, Sing 1995, Jennewein et al. 2001, Erdemoglu et al. 2001). As both plant are richest source of various medicinal properties, present study was focused to identify various phytoconstituents by GC-MS method.

Experimental

Collection of Plant Material

Fresh Plant material were collected from Uttarakhand region, India (Institute of Biotechnology, G. B. Pant University of Agriculture and Technology. After washing under running tap water, plant material (leaves and fruits) were air dried at room temperature for about 15 days. The dried plant material were powdered by using electrical blenders and stored in air tight container in the refrigerator at 4°C for further analysis.

Preparation of Extract

Dried powder (50 gm) of *Taxus baccata* fruit and *Swertia chirata* leaves were placed inside two different porous cellulose thimbles and placed in an extraction chamber. Extraction was done by using 750 ml methanol filled in the collection flask up to 72 hours. Extracts were concentrated and evaporated to complete dryness using a rotary evaporator under reduced pressure at 40°C. The dried extracts were stored at -4°C for further studies.

Gas chromatography –Mass Spectrometry (GC-MS)

HP 6890 gas chromatograph equipped with a FID detector and a HP-5 fused silica column (30 m x 032 mm x 0.21 film thickness), using nitrogen as a carrier gas was used for GC-MS analysis of the *T. baccata* and *S. chirata* plant parts. The temperature of injector and detector were preserved at 210 and 230°C respectively following the column oven temperature from 60 to 220°C with an increase in rate of 3°C/min.
Mass spectrometry was performed on a Perkin Elmer mass spectrometer (Model Claurus 500) linked to a Perkin Elmer Claurus 500 gas chromatograph with a 60 m x 0.32 mm x 0.2 μm film thickness fused silica column (Rtx-5). Carrier gas was helium at flow rate 1.0 ml/min and the mass range was scanned from 40 to 600 Daltons. Temperature programme range of oven was 60-220°C having an increase in rate of 3°C/mm. The bioactive phytocompounds of the plants methanolic extract were identified on the basis of GC retention indices and by comparing their 70 eV mass spectra with spectrum of known components stored in the NIST & WILEY libraries or reported in literature (Adams 1995, Adams 2007).

Identification of phytocompounds
The identification and characterization of chemical compounds in methanolic extracts was based on GC retention time. Interpretation on mass-spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. Various compounds were identified by their retention time and based on NIST library. The spectrum of the unknown components was compared with the spectrum of known components stored in the NIST library. The name, molecular weight and structure of the compounds of the test materials were ascertained.

Result and discussion
The studies on the active principles in the *Swertia chirata* leaf and *Taxus baccata* fruit methanol extract done by GC-MS analysis indicated the presence of 23 compounds and 19 compounds respectively (Table 1). Identified active compounds with their Retention index and concentration (peak area %) are presented in Table 1. Tri-terpenoids, terpenoids, and fatty acids such as AR-curcumene, Linalyl acetate, Cymene, Umbellulone, Limonene, α- Pinene, Sabinene and Caryophyllene oxide were the major phytochemicals identified in *Swertia chirata*. The antibacterial activity of terpenoids is known out of these phytochemicals (Jing et al. 2013, Das et al. 2006).

Terpenoids components that were detected in *Taxus baccata* are α- Pinene, δ-3 carene, Sabinene, Cymene, Limonene, Umbellulone, cis –piperitol, Alpha-Terpinenyl acetate, Caryophyllene oxide etc. These valuable phytocomponents are potential bioresources for phytopharmaceutics. Through analyzing the characteristics in *Taxus baccata* and *Swertia chirata*, the researchers showed that there were several Terpenoids in methanol extract. The antimicrobial, anti-inflammatory, chemo-protective, antioxidant and hepatoprotective activities are well known in Umbellulone, Sabinene, Limonene and α- Pinene.

The result of GC-MS conclude that both the plants are richest source of various bioactive phytoconstituents that may be responsible for its antibacterial activities.

Table 1: Phytochemical compounds identified in leaves of *Swertia chirata* and fruits of *Taxus baccata* through GC-MS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Components</th>
<th>RI<sub>Lit</sub></th>
<th>RI<sub>Exp</sub></th>
<th>Peak area % of A</th>
<th>Peak area % of B</th>
<th>Mode of Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tricyclene</td>
<td>927</td>
<td>925</td>
<td>tr</td>
<td>tr</td>
<td>RI,MS- Co- inj</td>
</tr>
<tr>
<td>2</td>
<td>α-Thujene</td>
<td>929</td>
<td>927</td>
<td>1.6</td>
<td>1.09</td>
<td>RI,MS</td>
</tr>
<tr>
<td>3</td>
<td>α- Pinene</td>
<td>935</td>
<td>932</td>
<td>8.0</td>
<td>7.14</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>4</td>
<td>α- Phellandrene</td>
<td>1008</td>
<td>1006</td>
<td>0.56</td>
<td>0.14</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>5</td>
<td>Sabinene</td>
<td>1065</td>
<td>1065</td>
<td>7.01</td>
<td>6.64</td>
<td>RI,MS</td>
</tr>
<tr>
<td>6</td>
<td>β- Pinene</td>
<td>981</td>
<td>975</td>
<td>0.43</td>
<td>0.46</td>
<td>RI,MS</td>
</tr>
<tr>
<td>7</td>
<td>Mycenes</td>
<td>991</td>
<td>989</td>
<td>3.12</td>
<td>1.98</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>8</td>
<td>δ-3 carene</td>
<td>1013</td>
<td>1010</td>
<td>2.23</td>
<td>5.02</td>
<td>RI,MS</td>
</tr>
<tr>
<td>9</td>
<td>α- Terpinene</td>
<td>1019</td>
<td>1015</td>
<td>tr</td>
<td>0.16</td>
<td>RI,MS</td>
</tr>
<tr>
<td>10</td>
<td>Cymene</td>
<td>1020</td>
<td>1018</td>
<td>3.20</td>
<td>5.97</td>
<td>RI,MS</td>
</tr>
<tr>
<td>11</td>
<td>Limonene</td>
<td>1024</td>
<td>1020</td>
<td>16.86</td>
<td>13.96</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>12</td>
<td>1,8. Cineole</td>
<td>1034</td>
<td>1030</td>
<td>-</td>
<td>-</td>
<td>RI,MS</td>
</tr>
<tr>
<td>13</td>
<td>γ- terpinene</td>
<td>1050</td>
<td>1042</td>
<td>3.01</td>
<td>0.46</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>14</td>
<td>α-terpinolene</td>
<td>1084</td>
<td>1078</td>
<td>1.96</td>
<td>-</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>15</td>
<td>Linalool</td>
<td>1094</td>
<td>1090</td>
<td>1.62</td>
<td>-</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>16</td>
<td>Umbellulone</td>
<td>1170</td>
<td>1176</td>
<td>26.85</td>
<td>32.65</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>17</td>
<td>4-Terpineol</td>
<td>1177</td>
<td>1178</td>
<td>5.06</td>
<td>1.44</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>18</td>
<td>α- Terpineol</td>
<td>1184</td>
<td>1182</td>
<td>-</td>
<td>-</td>
<td>RI,MS, Co- inj</td>
</tr>
<tr>
<td>19</td>
<td>cis -piperitol</td>
<td>1201</td>
<td>1199</td>
<td>-</td>
<td>2.16</td>
<td>RI,MS, Co- inj</td>
</tr>
</tbody>
</table>
Aberrations used: A = Leaves of *Swertia chirata* B = Fruits of *Taxus baccata*

RI: Retention index on the HP-5 column; RIlit: retention indices literature (Adams, 2009); RIexp: retention indices (experiment); --: absent

Conclusion and recommendation

Data obtained through GC-MS analysis showed that *T. baccata* and *S. chirata* plant parts have higher concentration of various terpenoids, tri-terpenoids and fatty acids compounds and their derivatives that may be responsible for its promising medicinal and antibacterial activities. Finally, recommendations can be made for further investigation to be done for different plant parts fractionates for their antibacterial and various medicinal properties. The plant parts extraction should be done with other solvent types also in order to evaluate enough quality and quantity of bioactive compounds.

Conflict of interest

There is no conflict of interest.

Acknowledgement

Bindu Sati is thankful to HAPPRC for providing laboratory facilities.

References

