Drug repurposing novel approach for treatment of rheumatoid arthritis

Ankita Gunjal, Dr. Suvarna Katti
Department of Pharmaceutical Chemistry, Mahatma Gandhi Vidyamandir’s Pharmacy College, Panchavati, Nashik, Maharashtra, India.

Abstract: The approach of using existing drugs originally developed for one disease to treat other indications has found success across medical fields. Many of drug repurposing promises faster access of drugs to patients while decreasing costs in the long and difficult process of drug development. but, the number of active drugs and diseases, in concert with the heterogeneity of patients and the diseases, notably including cancers, rheumatoid arthritis can make repurposing time consuming and inefficient. The identification drug repositioning targets through computational methods and experimental method has the potential to provide a fast, inexpensive alternative to traditional drug discovery process. Finally, challenges and opportunities in drug repositioning are discussed from multiple perspectives, including technology, commercial models, safety, patents and investment.

Keywords: Drug repurposing, Rheumatoid arthritis, Network based, Artificial intelligence.

Introduction:- Drug repurposing, also called as old drugs for new use, is an effective strategy to find new indications for existing drugs and is highly efficient, low-cost and risk less. Traditional drug development strategies usually include five stages: innovation and preclinical or the clinical investigate, safety review, and FDA post-market safety monitoring. There are four steps in drug repositioning: compound identification, development and FDA review, compound achievement.[1,2]

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint synovial tissue inflammation associated with disability of affected joints[3], the treatment of RA mainly rests on the use of disease-modifying antirheumatic drugs, and has improved outcomes in RA patients significantly. Despite significant therapeutic advances in improving the lives of RA patients, RA remains a hard clinical problem because of the accumulated and persistent disease[4,5]. The administration of RA patients needs new drugs for protective or curative therapies. In the current review article, we are focusing on cancer drugs repurposing for rheumatoid arthritis. Studies emphasizing the emerging role of cancer therapies for usage against rheumatoid arthritis is a verdict for our decision. This review provides a foundation upon which further research can be implemented on the use of cancer drugs in rheumatoid arthritis. [6]

Drug repurposing:- The main issue in drug repurposing is the detection of novel drug-disease relationships. To address this subject, a variety of approaches have been developed including three main approaches computational approaches, biological experimental approaches and mixed approaches. drug repurposing has major consideration from the pharmaceutical companies industry and research institutes. Relative to the traditional drug development process, drug repurposing repositioning replenishes the drying out drug pipelines by reusing marketed drugs and clinical candidates for new uses, such as treating another disease[7]. These repurposed drugs with identified bioavailability, safety profiles and well consider pharmacology can enter clinical trials for alternative indications more rapidly and less risk. Currently, multiple computational approaches have been established for drug repurposing. [8,9,10]
Method of drug repurposing:-
The methodologies adopted in DR can be divided into three broad groups depending on the number and quality of the pharmacological, toxicological and biological activity information available. These are mainly i) drug–oriented ii) target oriented and iii) Disease/therapy–oriented[11].

Figure No. 1: Flow plan of drug repurposing

Figure No. 2: A) Disease module identification and module enrichment:
A) The RA-associated genes are used as seen for identification of RA disease module, by using the DIAMOND module finding algorithm on the human interactome network once the RA disease module have been constructed, GO biological process is performed through DAVID for assessment of the related biological processes.

B) Overview of the network proximity data source and methodology [12].

Network-based method:
Network-based for drug repurposing that takes into account the human interactome network, proximity measures between drug targets and disease-associated genes, potential side-effects, genome-wide gene expression and disease modules that emerge through pertinent analysis. Use of disease omics data, available signal or metabolic ways, and protein interaction networks to reconstruct disease-specific path-ways that provide the key targets for repositioned drugs. The significance of these methods is that they can slight down general signal networks from a large number of proteins to a specific network with a few proteins [11].

Drugs used in this study:
Methotrexate, Rituinab, hydroxychloroquine, celecoxib, prednisolone, sulindac, Azathioprine.
Strategies for accelerating drug repurposing:

Figure No.4: Flow chart of strategies for Accelerating drug repurposing [13,14,15,16]

Approaches of drug repurposing:
Drug repurposing important the two approaches, first one is Activity-based approach is also known as experimental –based approach and second one in silico-based approach [11].

Figure No.5: A) Activity-based approach:

Figure No.6: B) In silico-based approach:

List of drug with potential repurposing capabilities:
The list of potential drugs includes Methotrexate, Rituximab, hydroxychloroquine, celecoxib, Prednisolone, sulindac, Azathioprine.
1. Methotrexate:

Methotrexate is useful for the treatment of rheumatoid arthritis in adults. It is also used to treat active polyarticular-onset juvenile rheumatoid arthritis (JRA) in children. Methotrexate may cause injury or death to the baby and should not be used during pregnancy to treat arthritis or psoriasis.

Methotrexate is a dihydrofolate reductase inhibitor with prominent immunosuppressant and anti-inflammatory properties. In RA, it increases adenosine levels and enhances the extracellular receptors, activating an intracellular flow that promotes an overall anti-inflammatory response.

On the other hand, the efficacy of methotrexate in RA patients is not affected by the administration of folic acid and is almost invariably part of the RA medication regimen to minimize the unwanted side effects.[17,18,19]

2. Rituximab:

Rituximab is an intravenous drug used to treat rheumatoid arthritis and B-cell non-Hodgkin's lymphoma. It belongs to a class of drugs called monoclonal antibodies. The effectiveness of rituximab is due to its ability to deplete the number of B-cells, cells of the immune system that promote inflammation in rheumatoid arthritis. The most common side effect of rituximab is a collection of symptoms (fever, chills, and rigors) that occur during the first dose. Rituximab depletes mature B cells and pre-B cells throughout memory B cell stage, but stem cells, pro-B cells, terminally differentiated plasma cells, and plasma blasts do not express CD20 and are not depleted.[20,21,22,23]

3. Hydroxychloroquine:

Hydroxychloroquine is further used to treat symptoms of rheumatoid arthritis and discoid or systemic lupus erythematosus. For the treatment of acute and chronic rheumatoid arthritis, the mechanism of action of antimalarials in the treatment of patients with rheumatoid arthritis is unknown but is thought to involve changes in antigen production or effects on the innate immune system. Antigen processing may be interfered with. Lysosomal stabilization and free radical scavenging are other proposed mechanisms. The most important toxicities are on the eyes: corneal deposits, extraocular muscular weakness.[24,25]
4. Celecoxib:

![Celecoxib molecule]

The COX-2 selectivity of celecoxib is modest and similar to that of diclofenac. Nonsteroidal anti-inflammatory drugs (NSAIDs) can be used to treat citizens with rheumatoid arthritis. Celecoxib is a selective NSAID which may help to reduce symptoms of rheumatoid arthritis [26]. The mechanism of action of celecoxib is suitable for selective inhibition of COX-2 cyclooxygenase-2, which is responsible for prostaglandin synthesis, an integral fraction of the pain and inflammation path [27]. This action gives celecoxib its analgesic, anti-inflammatory, anti-cancer, and antipyretic action. Side effects include stomach upset or gas, and a rise in blood pressure, severe headache, symptoms of kidney problems, symptoms of heart failure, allergic reaction, some edema, rash, fever [28,29,30].

5. Prednisolone:

![Prednisolone molecule]

They help decrease the inflammation levels in the body to make your joints swollen, stiff, and painful. In case with single or a few joint involvement with severe symptoms, intra-articular injection of a soluble glucocorticoid affords release for numerous weeks, joint damage may be slow [31]. Side effects include risk of bacterial and viral infection, weight loss, hyperglycemia, high blood pressure [32]. To decrease RA symptoms while a person is waiting for disease-modulating anti-rheumatic drugs (DMARDs) or biologics to reduce pain and discomfort [33,34].

6. Sulindac:

![Sulindac molecule]

Sulindac trade name Clinoril and marketed name also. Sulindac blocks the enzyme to make prostaglandins (cyclooxygenase), consequential in lower concentrations of prostaglandins. As inflammation, pain and fever are reduced. It is used to reduce pain, swelling, and joint stiffness from arthritis. It is also used to treat arthritis [34]. This medication is known as a non-steroidal anti-inflammatory drug (NSAID) and aryl alkanoic acid class. Side effects include drug upset stomach, nausea, vomiting, dizziness, or headache. Sulindac is contraindicated in hypersensitivity to sulindac or the excipients [35,36,37,38].
7. Azathioprine:

This purine synthase inhibitor act after getting converted to 6- mercaptopurine through enzyme thiopurine methyl transferase (TPMT) induced in small fraction of RA it is less commonly use and mostly in autoimmune diseases rheumatoid arthritis, ulcerative colitis as well as an organ transplantation. side effect vomiting, nausea, mouth and throat ulcer.[39,40,41]

Advantages of drug repurposing:-
1. Already passed a number of toxicity and other tests in drug repurposing.
2. Its safety
3. The risk of failure for reasons of adverse toxicology are decrease[42].

Benefits of Drug Repurposing:-
1) Reduction in Cost
2) Reduction in Time
3) A number of drugs are being repurposed for rare diseases or conditions which leads to many developers being attracted by the incentives associated with obtaining orphan drug designation. Both the FDA and EMA supply incentives to encourage research into these conditions as, without these incentives, the small numbers of potential patients would mean that they would be less commercially viable.
4) Lower cost of clinical trials and a shorter development time, drug repurposing is associated with a higher success rate from Phase II to launch [43,44,45].

Conclusion:-
In this study, predicted several drugs for RA treatment repurposing . When repurposed therapy improved efficacy, safety and cost over the standard treatment of care, most of the benefit included this articles. Drug Repurposing is use future of modern medicine. Proper strategies and techniques its beneficial.

Reference:-

[16] H. Sarah, Beachy, G. Samuel. Johnson, Steve Olson, and Adam C. Berger, Rapporteurs; Drug Repurposing and Repositioning: Workshop Summary; Roundtable on Translating Genomic-Based Research for Health; Board on Health Sciences Policy; Institute of Medicine National Academy of Science

[22] https://www.unboundmedicine.com/medline/citation/16611321/

[26] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481589/

[27] https://www.ncbi.nlm.nih.gov/books/NBK535359

[29] https://www.webmd.com/drugs/2-drug-16849/celebrex-oral/details

[33] https://www.medicalnewstoday.com/articles/325247
[34] https://pubchem.ncbi.nlm.nih.gov/compound/Prednisolone
[36] https://ard.bmj.com/content/annrheumdis/37/1/89.full.pdf
[37] https://www.medicinenet.com/sulindac/article.htm
[40] https://www.hopkinsarthritis.org/patient-corner/drug-information/azathioprine
[42] https://www.slideshare.net/biswaikalitaka1/old-drug-new-uses