Physical Design of Low Power Operational Amplifier

Shanta Lakra, Sandeep Mishra

1Student, 2Assistant Professor
Department of Electronics & Communication Engineering
Kalinga University Raipur (C.G)

Abstract: A CMOS single output two stage operational amplifier is presented which operates at 3 V power supply at 0.18 micron (i.e., 180 nm) technology. It is designed to meet a set of provided specifications. The unique behavior of the MOS transistors in sub- threshold region not only allows a designer to work at low input bias current but also at low voltage. This op-amp has very low standby power consumption with a high driving capability and operates at low voltage so that the circuit operates at low power. The op-amp provides a gain of 20.4dB and a -3db bandwidth of 202 kHz and a unity gain bandwidth of 2.15MHz for a load of 5 pF capacitor. This op-amp has a PSRR (+) of 85.0 dB and a PSRR (-) of 60.0 dB. It has a CMRR (dc) of -64.4 dB, and an output slew rate of 12.465 v/μs. The power consumption for the op-amp is 1.18mW. The presented op-amp has an Input Common Mode Range(ICMR) of -1V to 2.4V. The op-amp is designed in the 180 nm technology using the umc 180 nm technology library. The layout for the above op-amp had been designed and the post layout simulations are compared with the schematic simulations.

Keywords: Scientific writing, Technical writing, Journal article, FET, MOSFET

I. INTRODUCTION

The operational amplifier is undoubtedly one of the most useful devices in analog electronic circuitry. Op-amps are built with vastly different levels of complexity to be used to realize functions ranging from a simple dc bias generation to high speed amplifications or filtering. With only a handful of external components, it can perform a wide variety of analog signal processing tasks. Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices. Operational Amplifiers, more commonly known as Op-amps, are among the most widely used building blocks in Analog Electronic Circuits. Op-amps are used equally in both analog and digital circuits.[1,2]

Op-amps are linear devices which have nearly all the properties required for not only ideal DC amplification but is used extensively for signal conditioning, filtering and for performing mathematical operations such as addition, subtraction, integration, differentiation etc. Generally an Operational Amplifier is a 3-terminal device. It consists mainly of an Inverting input denoted by a negative sign ("-"), and the other a Non-inverting input denoted by a positive sign ("+") in the symbol for op-amp. Both these inputs are very high impedance. The output signal of an Operational Amplifier is the magnified difference between the two input signals or in other words the amplified differential input. Generally the input stage of an Operational Amplifier is often a differential amplifier.[3]

1.1 System Overview

For Op-amps used in many useful applications, rather a surprisingly large number of applications, the actual amplifier performance is closely approximated by an idealized amplifier model. Indeed quite frequently circuits are designed explicitly to insure acceptability of this approximation. And in other cases where the idealization is not a sufficiently accurate approximation nevertheless it often provides a starting point for an iterative process towards a final design. Consider the 741 amplifier, an older but proven industry-standard device, which has a voltage gain exceeding 105 in normal operation. To cause an output voltage change between representative saturation voltage limits of ±15 volts. A basic op-amp consists of 4 main blocks

a. Current Mirror
b. Differential Amplifier
c. Level shift, differential to single ended gain stage
d. Output buffer

The general structure of op-amp is as shown in figure 1 below:

![Figure 1: General Structure of op-amp](image-url)
The first block is input differential amplifier, which is designed so that it provides very high input impedance, a large CMRR and PSRR, a low offset voltage, low noise and high gain. The second stage performs level shifting, added gain and differential to single ended converter. The third block is the output buffer. The output buffer may sometimes be omitted to form a high output resistance un-buffered op-amp often referred to as Operational transconductance amplifier or an OTA. Those which have the final output buffer stage have a low output resistance (Voltage operational amplifiers).[11-12]

II. LITERATURE SURVEY

Existing PLC Implementations:
The existing power line communication being implemented at various places and enumeration of standards evolved. In Europe PLC is termed as narrow band PLC because allocated frequency band for PLC is 3 KHz to 148.5 KHz, which is further divided into four sub-bands for different applications.
- CENELEC A (9 KHz to 95 KHz)
- CENELEC B (95 KHz to 125 KHz)
- CENELEC C (125 KHz to 140 KHz)
- CENELEC D (140 KHz to 148.5 KHz)

Details of operation in different bands such as type of modulation, data rate, symbol size and encoding-decoding technique are enlisted in [8]. CENELEC the controlling body of PLC mechanism in Europe, follows the Standards EN 50065 (CENELEC), IEC 61000. In China PLC operates at a single frequency band of 3 to 500 KHz. The frequency band in USA for PLC purpose is FCC band 10 KHz – 490 KHz. There is only single band with no subdivisions.

Operational Amplifiers and Linear Integrated Circuits - Theory and Application; 3rd Ed; James Fiore; Creative Commons; 589 pages; 2016.(13 MB PDF Text)(2 MB PDF Lab)

III METHODOLOGY

An operational amplifier is often called an op-amp. It is a DC-coupled differential input voltage amplifier with a rather high gain. In most general purpose op-amps there is a single ended output. Usually an op-amp produces an output voltage a million times larger than the voltage difference across its two input terminals. Thus for an ideal op-amp the input signal is almost always a differential signal and hence a differential amplifier is generally used as the input stage of an Operational Amplifier. However, the infinite gain or bandwidth that characterizes an ideal operational amplifier is seldom found in a real Operational Amplifiers like the widely used uA741. Typically the "Open Loop Gain" of a real operational amplifier is defined as the amplifiers.

A. PRINCIPAL OF OPERATION

An op-amp has a differential input and single ended output. So, if we apply two signals one at the inverting and another at the non-inverting terminal, an ideal op-amp will amplify the difference between the two applied input signals. We call this difference between two input signals as the differential input voltage. The equation below gives the output of an operational amplifier.
\[V_{\text{out}} = A_{\text{OL}}(V_1 - V_2) \]

Where, \(V_{\text{out}} \) is the voltage at the output terminal of the op-amp. \(A_{\text{OL}} \) is the open-loop gain for the given op-amp and is constant (ideally). For the IC 741 \(A_{\text{OL}} \) is \(2 \times 10^5 \).

\(V_1 \) is the voltage at the non-inverting terminal. \(V_2 \) is the voltage at the inverting terminal. \((V_1 - V_2) \) is the differential input voltage.

It is clear from the above equation that the output will be non-zero if and only if the differential input voltage is non-zero \((V_1 \text{ and } V_2 \text{ are not equal}), \) and will be zero if both \(V_1 \) and \(V_2 \) are equal. Note that this is an ideal condition, practically there are small imbalances in the op-amp. Also, it is true that if we apply small differential input voltage, the operational amplifier amplifies it to a considerable value but this significant value at the output cannot go beyond the supply voltage of the op-amp. Hence it does not violate the law of conservation of energy.

B. ANALYSIS OF NON LINEAR IMPERFECTION

Output voltage is limited to a minimum and maximum value close to the power supply voltage. The amplifier's output voltage reaches its maxim if and only if the differential input voltage is non-zero \((V_1 \text{ and } V_2 \text{ are not equal}), \) and will be zero if both \(V_1 \) and \(V_2 \) are equal. Note that this is an ideal condition, practically there are small imbalances in the op-amp. Also, it is true that if we apply small differential input voltage, the operational amplifier amplifies it to a considerable value but this significant value at the output cannot go beyond the supply voltage of the op-amp. Hence it does not violate the law of conservation of energy.

IV. OPERATIONAL AMPLIFIER

The general operational amplifier symbol is as shown in Figure 2 below:

Idealized Characteristics

(a) Voltage Gain, \((A) \) **Infinite**
(b) Input impedance \((Z_{in}) \) **Infinite**
(c) Output impedance, \((Z_{out}) \) **Zero**
(d) Bandwidth, \((BW) \) **Infinite**
(e) Offset Voltage, \((V_o) \) **Zero**
VII. RESULT & DISCUSSION

The designed op-amp was simulated to find the different characteristics of the designed op-amp. Further the layout of the designed op-amp was created and the parasitic capacitance and resistance was extracted. The extracted designs were then simulated with the parasitic values and compared with the schematic. Later in the chapter we also compare the obtained parameters of the device through simulation to the specifications for the device and with the post layout simulation results. The different results are presented here.

Offset Voltage
It is the voltage obtained at the output terminals, when the input terminals are connected to ground terminal, i.e., 0 volts. Here the offset voltage calculated for the op-amp is -603mv.

Slew Rate
It is the maximum rate of change of output voltage. Here the slope of the curve calculated as 12.5 v/µs.
Gain

It is defined as the ratio of the output to the input. Here the input voltage given as 1 volts sinewave. Hence the gain is calculated as 10.4v/v.

![Figure 6: Op-Amp Gain](image)

Bandwidth

It is the maximum allowable range of the frequencies. Here the bandwidth of this op-amp calculated as 2.16 MHz for unity gain and 202kHz at -3dB.

![Figure 7: Op-Amp bandwidth](image)
LAYOUTS AND RC–EXTRACTED VIEWS
Bias circuit for amplifier current sinks:

Figure 8: Op-Amp RC extracted view

Figure 9: Op-Amp RC extracted view
VIII. CONCLUSION

The proposed design has been able to satisfy most of the specifications provided for the op-amp. The proposed op-amp is a two stage single output op-amp. The input stage is a differential amplifier and a common source stage forms the second stage of the op-amp. The layout of the design has been made and simulated. The post layout simulations abide by the given specification. The entire design has been done in UMC 180 nm technology. The gain of the op-amp can be increased further by the use of cascade device in the input stage. The voltage swing may be increased by using a double ended output.

Table 1: Observations for low power op-amp with supply 1.8v

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Specification</th>
<th>Simulation Results before layout</th>
<th>Simulation Results after layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>10 V/V</td>
<td>12 V/V</td>
<td>10.2 V/V</td>
</tr>
<tr>
<td>3-dB Bandwidth</td>
<td>20 kHz</td>
<td>397 kHz</td>
<td>200 kHz</td>
</tr>
<tr>
<td>UGB</td>
<td>N/A</td>
<td>4.6MHz</td>
<td>2.165 MHz</td>
</tr>
<tr>
<td>CMRR</td>
<td>>50 dB</td>
<td>80dB</td>
<td>64dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>N/A</td>
<td>84dB[59dB]</td>
<td>87dB[60dB]</td>
</tr>
<tr>
<td>SLEW RATE</td>
<td>10 v/μs</td>
<td>25 v/μs</td>
<td>12.47v/μs</td>
</tr>
<tr>
<td>POWER DISSIPATION</td>
<td>1 mW</td>
<td>0.9 mW</td>
<td>0.6 Mw</td>
</tr>
<tr>
<td>Output Offset Voltage</td>
<td>N/A</td>
<td>-600 mV</td>
<td>-600 mV</td>
</tr>
</tbody>
</table>

REFERENCES

[11] Hiyuan Li; Jianguo Ma; Mingyan Yu; Yizheng Ye “Low noise operational amplifier design with current driving bulk in 0.25μm CMOS technology”, IEEE Conference 2005, Pages: 630 – 634