
ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 407

Stack Based Buffer Overflow Assessment and

Counter measures

1Shafiqullah Khaliqyaar, 2Shaifali Sharma

1Student, 2Assistant Professor

A.P Goyal Shimla University

Abstract: This research investigates Buffer overflows attacks and its countermeasures. These attacks are very old and useful

by which malicious attackers bypass the security mechanisms. Therefore, by this attack they can cause escalation of privilege

to root level, take remote access to the victim machine and denial of service. Lack of existence of a centralized system to test

the network hosts is the motivator to have further research and find a solution for the issue. The problem of buffer overflow

is very crucial to prevent or at least mitigate them as soon as possible because the important private data of an organization

is exposed to malicious uses of attackers. The theoretical, simulation and build methodologies are utilized to assess this

vulnerability. Accordingly, by having a concept of computer memory and their related architecture (Theoretical), then

mapped and analyzed these concepts on to virtualized environment prepared by GNS3 and VirtualBox (Simulation).

Regarding the vulnerabilities and analyzing the weak points of system that expose them to Buffer Overflows, a python

Graphical User Interface is application developed that can mitigate risk of the above mentioned attack (Build). The findings

of this research shows provides a tool that enables the system administrator to have find whether his Mikrotik gateway is

vulnerable to buffer overflows or not. Then providing a patch to vulnerable router by special mechanism against attack.

Finally, this paper concludes that hosts in our network must be tested against buffer overflow to prevent unauthorized

access to critical data and patch them manually or via similar applications that developed as result of this research paper.

Keywords: Stack Overflow, Data execution prevention, Address space layout randomization, remote shellcode injection,

privilege escalation, Win box Exploit, Smashing

Introduction

Enormous attempts in promotion of network and communications caused to the connections to act as backbone of developments in

nowadays’ technology. These promotions are not only resulted in the positive way as being mentioned before but also is as traffic’s

green light for malicious people to be attracted toward these systems to continue and break them as well. Furthermore, in software

development it is vital to have necessary considerations about software architecture. Indeed, it is the implementation or coding part

of the software that leave them vulnerable or safe from different abuse and unauthorized operations. These software vulnerabilities

itself causes insecurity and instability for the system and provide hackers a good opportunity to have illegal access to the system.

One of the similar strategies which exploits such kinds of vulnerabilities in the system to bypass security mechanisms, is Buffer

Overflow. Simply buffer overflow occurs when an application tries to insert more data than the capacity of a buffer. Hackers use

this vulnerability to write on neighbor cells of the memory to cause data corruption or execution their own malicious code. Buffer

overflows are majorly performed on hosts but it can be performed on all network nodes such routers. In host based buffer overflow

the affections appear mainly into two categories: firstly, an unauthorized access to a remote system and other is extending the

existent privileges for users on the same computer. Fortunately, it is possible to detect Buffer Overflow using several approaches

and based on the analysis, prepare an appropriate preventative response to the attack for the future threat elimination. Accordingly,

in this research will be getting familiar with preliminaries of buffer management and control structures. Then it will be assessed

that how an attacker can abuse security wholes to go beyond the valid range a specific program and execute the arbitrary which is

a system. This system call brings a reverse shell from a remote system using shellcode.

However, several mechanisms developed for detection and prevention of Buffer Overflow but in this research to detect the

vulnerability, static code analysis is preferred and in order to defeat the attacker; ASLR (Address Space Layout Randomization)

defensive mechanism will be used. Moreover, optimizing mechanisms will be discussed as well bound checked function. Finally,

the results or outcomes of this research is expected to be a powerful multilayer security mechanism that can protect hosts against

stack-based Buffer Overflow attacks over networks. Therefore, security admins will be able to safeguard the network nodes such

as routers and hosts from dangers of stack-based buffer overflow attacks using the guidelines and mechanism provided in this

research. Although numerous interdicting solutions have been generated to avert the rancor access for networks but these malicious

invaders have been successful as well to bypass the security mechanisms. The programming mistakes can direct a whole system to

breakdown. Even large networks are susceptible to damages created as result of this mistakes. The proof of this claims comes in

background of internet birth. In its early days, Internet Worm (Morris Worm) acted as destructor of a huge part of the internet.

Originally Morris worm was not aimed to disrupt internet connections but instead it was supposed to gauge the size of internet.

However, a mistake cause to transform into such damaging worm. In response Michael Rabin's mantra‘s Randomization technique

recovered from that harming situation.

1. Related Work

So far we have understood that buffer overflows shape a serious vulnerability in systems, there has been a long debate among

scholars for mitigation techniques parallel to this paper. A highlighted number of papers is going to be reviewed:

http://www.ijsdr.org/

ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 408

Firstly, based on a research conducted in George Washington University of United States of America by a group of researchers, it

has been found that placing an FPGA hardware between cache and memory to protect return address from overflowing. It is inferred

that this technique provides less performance degradation. This approach does not alter processor core but instead it just adds a

piece of hardware for extra capability. (Leontie, Bloom, Gelbart, Narahari & Simha, 2005)

In addition to above another research carried out by Sidiroglou, Giovanidis, and Keromytis expresses that a honeypot like

configuration of a stand-alone tool called DYBOC can effectively respond to worm signatures and unknown threats however, it

suffers from a little performance degradation. (Sidiroglou, Giovanidis, &Keromytis, 2005)

In parallel to what have been mentioned above with a slightly difference another solution for mitigation of buffer overflow attacks

is presented by Lee, Chiu, and Chang. On their research, it has been argued that contemporary solutions terminating service being

attacked, in return they are offering a lightweight Buffer Overflow Protection Mechanism Failure Oblivious capability. This solution

can cause persistence on life program by reconfiguring of vulnerable function. (Lee, Chiu, & Chang, 2009)

These mitigation techniques are effective in its place but they carry high complexity for defense mechanisms, they are hard to setup

and some suffer from performance degradation. Consequently, a proper solution would be using python programming language

combine the power of existing defense mechanism and adding buffer overflow mitigating factors.

2. Proposed Methodology

So far, up to now the conception framework of buffer overflow attack have been understood. In this chapter, it is intended to put all

these concepts into action and performing several attacks into virtualized environment. Detection and mitigation of perfumed attacks

via python application which is developed for this purpose in this research. In this paper, in order to implement and analyze the

hypothesis of this research a sample topology derived from real network of JRS organization is utilized. A virtual lab is prepared

for this purpose via GNS3 network simulator in coordination with VirtualBox hypervisor. For testing purpose, first an example

attack scenario is crafted along with their corresponding defense approaches embedded in a GUI python application developed in

this research.

3.1 Attack Scenario

Attack #1: Local buffer overflow or privilege escalation attack on server-1

Attack #2: remote shellcode injection and exploiting Admin

Attack #3: exploiting Mikrotik router.

Figure 2 JRS network topology marked with attack targets

http://www.ijsdr.org/

ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 409

Figure 2 Adding new user

In the above code, the stack based buffer overflow occurs on the line which calls a C built in function of strcpy because it simply

does not perform range checking. It stores whatever given as argument to it. This will be the vulnerable program on which attack

is performed.

Figure 3 Source code of vulnerable program

Compilation process without defense mechanisms.

Figure 4 Disabling stack canaries

Setting ownership and permission to only root and test user for execution of the program.

Figure 5 Defining privilege for vulnerable program

Disabling ASLR defensive mechanism.

http://www.ijsdr.org/

ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 410

Figure 6 Disabling ASLR

Login into ordinary which has just been created.

Figure 7 Entering into test

The assembly code of func function in the vulnerable program. checking via gdb debugger. The target buffer for injection is specified

with lea -0x64(%ebp), %eax command. Therefore, the buffer length can be calculated or by try and failure method the total length

of payload size can be determined for attack. In this example, 0x64 hexadecimal value is equal to 100 in decimal. Since it is 32-bit

system, so %ebp register is 4 bytes and 4 bytes for %eip which totally makes the payload size to be 108.

Figure 8 Displaying and evaluating assembly of code

Stopping execution and setting a breakpoint at func function.

Figure 9 Setting breakpoint at func

Overwriting the return address with ‘A’ character with a payload of 108 bytes as we have already calculated its size.

Figure 10 Overwriting EIP

Brute forcing the length of payload and controlling the EIP content. Injecting A character 108 times overwrite EIP. Equivalent

ANSI code for A character is 41.

http://www.ijsdr.org/

ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 411

Figure 11 Exact overwrite of EIP with A which equals 41 in ANSI code

Displaying the location of %ebp and start of buffer which is located with the offset of 0x64 in hexadecimal system and 100 bytes

in decimal.

Figure 12 Specifying location of ebp and offset from ebp

So far we have found the proper location of payload injection which is local variable in the func function. In addition, the length of

payload has been determined via brute forcing (108 bytes). The final payload is constructed something like following:

./vuln $(python -c 'print "\x90"*40 +

"\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x89\xe2\x53\x89\xe1\xb0\x0b\xcd\x80" + "A"*35 +

"\x6c\xef\xff\xbf"')

The above payload input has four parts. First part is \x90 which simply means NOP slide instruction and it is constant hexadecimal

instruction on intel CPU. The second part is 25 bytes’ shellcode. The above payload is constructed via the following assembly code

which have been passed to assembler. Then the output of the assembly code has been return via objdump.

http://www.ijsdr.org/

ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 412

Figure 13 Generating shellcode

The green rounded rectangle in above figure shows that exact bytes of shellcode which is used in the payload that have been used.

In the third part of the payload input is 35 cells of padding with A character. Using A is not obligatory. A can be replaced with any

character.

The fourth part is an address which will be placed into EIP (return address). Indeed, it is 0xbfffef6c. This is an address which points

within the NOP slide range of addresses which will be skipped until it faces shellcode. The shellcode is the next instruction after

the NOP Slides and get executed once of a pointer points to a NOP slide address.

Finally, after injecting the above mentioned payload into stack part of the vulnerable program, the root access has been acquired as

it is observed in the picture.

Figure 14 Attacker got remote access

3. Result

Since Mikrotik routers provide much valuable capabilities with fewer cost, majority of organization tend to use Mikrotik routers as

the gateway for the network. The problem lies that these routers are not regularly updated the renders them to newly discovered

attacks. Mikrotik routers which has lower version than 6.41 is completely vulnerable to buffer overflow attacks. Having complexity

in configuration environment makes responsible people to commit laziness and not set defensive policies.

C programming language is popular for its amazing in accessing hardware resources and overall performance. However, it leaves

some vulnerabilities unpatched. This is the programmer’s job to handle these vulnerabilities. A great example of such vulnerabilities

are buffer overflow. When the source code complexity grows high handling such vulnerabilities is a difficult affair.

Accordingly, in order to protect our organization from a possible buffer overflow attacker, a great solution for above mentioned

threats for a system is multi-level security mechanisms which have been implemented as an application earlier in this paper.

Therefore, by this application A powerful tool has been acquired that can not only mitigate the risk of buffer overflows but it can

prevent, detect and response to buffer overflow attempt very efficiently. Consequently, the network nodes can be test for penetration

of buffer overflows. So, if one day an ill-minded attacker invaded to our network it is possible to defeat him by using this application.

http://www.ijsdr.org/

ISSN: 2455-2631 May 2022 IJSDR | Volume 7 Issue 5

IJSDR2205078 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 413

Conclusion

So far, in this paper the offered solution has been multi-level security mechanisms. The strengths and weaknesses of this approach

has been evaluated. This research can be further completed and prevent even more dangerous buffer overflow attacks if it has a

beneficial technique is added to it. The further steps can be:

 Developing dynamic analyzer for runtime buffer overflow attacks

 developing a python program which detects shellcodes injections and embedding a null pointer

 Avoiding Smart-Install buffer overflow attacks on cisco layer 3 switch.

References

1. Ahmad, D. and Russell, R. (2002). Hack proofing your network. Rockland, MA: Syngress.

2. aka, A. M. (2018). remote-buffer-overflow-exploits.php. Retrieved from securityxploded.com:

https://securityxploded.com/remote-buffer-overflow-exploits.php

3. Cole, E. (2002). Hackers beware:. Indianapolis, IN: New Riders.

4. cs-jump. (2018). M77_0240_protected_diagram.htm. Retrieved from cs-jump.com: http://www.c-

jump.com/CIS77/ASM/Memory/M77_0240_protected_diagram.htm

5. Definitions, K., & Hope, C. (2018). What is a Kernel?. Computerhope.com. Retrieved 6 November 2018, from

https://www.computerhope.com/jargon/k/kernel.htm

6. Du, W. (2017). Computer security: A hands-on approach. Lieu de publication non identifié: CreateSpace.

7. El, S. (n.d). Buffer overflow. Retrieved Nov 23, 2018, from elsherei.com: http://www.elsherei.com/buffer overflow

8. Foster, J. C., & Liu, V. T. (2006). Writing Security Tools and Exploits. Syngress Publishing, Inc.

9. Foster, J. C., Osipov, v., Bhalla, N., & Heinen, N. (2005). Buffer Overflow Attacks: Detect, Exploit, Prevent. Syngress.

10. Hyde, R. (2010). THE ART OF ASSEMBLY L ANGUAGE. San Francisco: no starch press.

11. infosecinstitute. (2014, July 29). shellcode-detection-emulation-libemu. Retrieved 11 13, 2018, from

infosecinstitute.com: https://resources.infosecinstitute.com/shellcode-detection-emulation-libemu/

12. In-Memory Layout of a Program (Process). (2013). Gabriele Tolomei. Retrieved 6 November 2018, from

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

13. Insinuator.net. (2018). Untrusted code or why exploit code should only be executed by professionals. [online] Available

at: https://insinuator.net/2012/04/untrusted-code-or-why-exploit-code-should-only-be-executed-by-professionals/ [Accessed 13

Nov. 2018].

14. Kim, J. S. (2018). Buffer Overflow. Retrieved Nov 17, 2018, from technodocbox.com:

http://technodocbox.com/C_and_CPP/71825272-Buffer-overflow-jin-soo-kim-computer-systems-laboratory-sungkyunkwan-

university.html

15. Lee, T., Chiu, K., & Chang, D. (2009). A Lightweight Buffer Overflow Protection Mechanism with Failure-Oblivious

Capability. Algorithms and Architectures for Parallel Processing Lecture Notes in Computer Science, 661-672. doi:10.1007/978-

3-642-03095-6_62

16. Leontie, E., Bloom, G., Gelbart, O., Narahari, B., & Simha, R. (2010). A compiler-hardware technique for protecting

against buffer overflow attacks. Journal of Information Assurance and Security, 5, 1-8.

17. McClure, S., Scambray, J., & Kurtz, G. (2012). Hacking exposed: Network security secrets and solutions. Emeryville,

CA: McGraw-Hill/Osborne.

18. Poulsen, K. L. (2000). Hack Proofing Your Network: Internet Tradecraft. Syngress.

19. Sidiroglou, S., Giovanidis, G., & Keromytis, A. D. (2005). A Dynamic Mechanism for Recovering from Buffer

Overflow Attacks. Lecture Notes in Computer Science Information Security, 1-15. doi:10.1007/11556992_1

http://www.ijsdr.org/

