GAN Implemented for Image Monitoring

1Hasan Tashif, 2Vanashri Kulkarni, 3Dylan Felix, 4Deeksha Suresh, 5Thyagaraj Tanjavur

1,2,3,4B.E.Students, 5Assistant Professor
Department of Electronics and Communication,
B.M.S Institute of Technology and Management, Bangalore, Karnataka, India

Abstract: This project aims to deliver a distraction monitoring system for the logistic company to keep track of the driver’s performance and give rating on a regular basis accordingly. Every year, many car accidents due to driver fatigue and distraction occur around the world and cause many casualties and injuries. Driver face monitoring systems is one of the main approaches for driver fatigue or distraction detection and accident prevention. Driver face monitoring systems capture the images from driver face and extract the symptoms of fatigue and distraction from eyes, mouth and head. These symptoms are usually percentage of eyelid closure over time (PERCLOS), eyelid distance, eye blink rate, blink speed, gaze direction, eyesaccadic movement, yawning, head nodding and head orientation. The system estimates driver alertness based on extracted symptoms and alarms if needed. In this paper, after an introduction to driver face monitoring systems, the general structure of these systems is discussed. Then a comprehensive review on driver face monitoring systems for fatigue.

Index Terms: driver drowsiness, GAN, Machine Learning Model, python, openCV

I. INTRODUCTION
This project aims to deliver a distraction monitoring system for the logistic company to keep track of the driver’s performance and give rating on a regular basis accordingly. With online shopping and many logistics in the rising, A single accident can incur heavy losses to the supply chain, so this project will target the logistics company that can monitor their driver’s performance in real time. Our project proposes a solution to monitor the drivers of the logistics company on a real-time basis. It is done by analyzing facial and cognitive distraction experienced by the driver which is explained in the first few chapters and how his driving performance affects several factors within the company. We will also be providing driver performance data on the cloud and the data is parallelly stored on the database. This processed data is visualized via mobile application and is explained in detail in the last few chapters. The driver data can be used for allotting performance-based salary for drivers in the logistic department or another use case is for insurance companies to assess their clients if the client is a good driver for insurance to be provided to the client.

II. OBJECTIVES
With online shopping and many logistic companies on the rise, a single accident can incur heavy loss to the supply chain department and not only disrupts the flow of the supply chain, but also causes injury to life and damage to property. These accidents occur primarily due to driving while feeling distracted or drowsy and it is paramount to monitor such behavior to avoid drastic outcomes in case of driving heavy duty vehicles. Therefore, it is natural for logistic companies to invest in securing their goods and ensuring that there is safe transportation of goods.

The objective of our project is to provide a novel solution to handle the aforementioned problems by monitoring the driver’s performance by analyzing the facial features of the driver in real-time while storing the event-triggered data in the cloud and using the cloud services to send mobile alerts when the driver is drowsy or distracted via a mobile application in a cost-effective and in an efficient manner.

III. PROBLEM STATEMENT
Driver Fatigue is often caused by four main factors: sleep, work, time of day, and physical.

• Often people try to do much in a day and they lose precious sleep due to this.
• Often by taking caffeine or other stimulants people continue to stay awake. The lack of sleep builds up over a number of days and the next thing that happens is the body finally collapses and the person falls asleep.
• To solve this problem we used this to detect the GAN Implemented for Image Monitoring.

IV. LITERATURE SURVEY
To understand the concepts and the work that has already been carried out, it is important to do a literature survey on the existing work in this field. Several research has been done in this field or related to this field that supports as a base to undertake this project. We found out certain limitations in the previous existing system. Few of them are:-

• If car technologies are going to prevent or at least warn of driver fatigue, what symptoms does the driver give off that can be detected.
• According to research, there are multiple categories of technologies that can detect driver fatigue. The first is the use of cameras to monitor a person’s behaviour. This includes monitoring their pupils, mouth for yawning, head position, and a variety of other factors.
• The next of these technologies is voice recognition. Often a person’s voice can give off clues on how fatigued they are. The detail explanation of the underlying techniques of drowsiness detection that are mostly used for the detection purpose.
V. METHODOLOGY
1. SYSTEM REQUIREMENTS
 1.1 SOFTWARE REQUIREMENTS
 • Python IDE
 • Open CV
 • DLib
 • SolvePnP

 1.2 HARDWARE REQUIREMENTS
 • Raspberry Pi
 • RPi Camera

2. SYSTEM ANALYSIS & IMPLEMENTATION
 2.1 SYSTEM ANALYSIS
 This project gives sole emphasis on the topic of distraction detection using computer vision, cloud storage and Database Management System. The onboard driver monitoring will be used to check the state of the driver to see if he is feeling drowsy or is experiencing any form of distraction while driving. This is done through Computer Vision using a Deep Learning Technique called Convolutional Neural Network (CNN) which is used in the majority of the research nowadays due to its high efficiency and accuracy. The OpenCV libraries that are used for facial recognition and processing of the captured image from Raspberry Pi (RPi) cameras are DLib and SolvePnP. The RPi camera which captures the image is also processed on the Raspberry Pi which acts as an edge device.

 The semi-processed data is sent to the IBM Watson IoT cloud which comes under WIoTP and is stored in a database with help of NodeRED which is a programming tool used for wiring hardware devices, APIs and online services together.

 The triggered event, which is sent to the cloud, is then sent as a notification to the administrator of the logistics company via messaging application named Telegram using NodeRED bot. The RPi does the following steps once it captures the frame:

 1) Cropping ROI

 2) Facial Landmark detection

 3) State Identification
2.2 IMPLEMENTATION
Computer vision is an interdisciplinary scientific field that deals with how computers can be made to gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
VI. RESULTS AND DISCUSSIONS

The system has been successfully tested on our laptops and also deployed in a truck which is then monitored in real-time. The project was done in two parts i.e., test phase and deployment phase. In the test phase, more emphasis was given for the literature survey on this particular use-case of our project, designing the system, selection of algorithms which can be used for facial detection and tracking, deciding on the software used that provides faster and efficient results, code finalization, integration and monitoring of data is sent.

In the deployment phase, the focus point was to deploy the hardware prototype on a truck and monitor the behavior of the driver in real-time. Also more emphasis was given to the integration of software with the hardware components, cloud monitoring, data accumulation in the database, sending the triggered event message to the administrator of the logistic company, debug any errors and incorporate improvements.

The monitoring of the behavioral patterns of the driver has been done with help of facial detection and tracking. The DLib library used for facial landmark detection is done with the help of SP68 model. By properly fine-tuning the pre-trained model of SP68 which contains 68 facial features that have been manually marked across 7764 images by researchers, it was possible to customize the detection process in such a way that satisfies the constraints of the system we are developing. Such constraints are executive speed, memory and storage consumption, overall accuracy and robustness.

Moreover, by selecting only the relevant landmarks such as eyes and lips of the person, it is possible to create specific models that localize a particular subset of landmarks, thus eliminating unnecessary points and using only the landmarks of facial features which are required.

The facial rotation detection and tracking have been monitored with help of SolvePnP library which basically creates a 3D projection of a 2D image obtained frame by frame from the camera. This is done by marking the points of the edges of the face and comparing each other with the relative distances between each point to find the facial rotation of the driver.

REFERENCES

