ISSN: 2455-2631

DyMnO₃, GdMnO₃, HoMnO₃, TbMnO₃ and YMnO₃ Multiferroic Materials and its Applications: A Review

¹Y. A. Chaudhari

Assistant Professor, Department of Physics, Shri Pancham Khemraj Mahavidyalaya, Sawantwadi – 416 510 (M.S.) India

Abstract: The multiferroic material combines the electrical and magnetic phases in a single phase. Due to the fact that there is a coupling between two phases, these materials are the materials of choice for the development of new technologies. This article outlines the applications of this class of materials along with the fundamentals of the materials like DyMnO₃, GdMnO₃, HoMnO₃ and YMnO₃.

Keywords: Multiferroics, DyMnO₃, GdMnO₃, HoMnO₃, TbMnO₃, YMnO₃, Applications

I. INTRODUCTION

In a specific temperature range, multiferroic materials show ferroelectric, ferromagnetic, and ferroelasticity properties jointly [1]. A new phenomenon known as the magnetoelectric effect, in which an external magnetic field causes polarisation and an electric field induces magnetization in the substance, due to the combination of ferroelectric and magnetic structuring [2]. The multiferroic materials and multiferroic nanomaterials have number of useful applications in various fields such as less power consumption devices [3], microwave devices [4], switching devices [5], telecommunications, data storage [6], storage and sensors [7], for drug delivery in medical sector [8].

These materials have attracted enormous attention because of their probability in number of device formulation and applications. II. MULTIFERROIC MATERIALS:

The $DyMnO_3$, $GdMnO_3$, $HoMnO_3$, $TbMnO_3$ and $YMnO_3$ materials shows multiferroic properties in which both electric and magnetic parameters exist together in a single phase.

2.1 DyMnO₃

The DyMnO₃ is a multiferroic material. At room temperature, the multiferroic DyMnO₃ crystallizes in an orthorhombic perovskite phase [9]. Bhoi et.al. [10] reported the formulation of DyMnO₃ single phase sample using acrylamide polymer gel template technique and observed that, the obtained sample crystallizes in an orthorhombic phase. Tripathy et. al. [11] reported the formulation of nanoceramics (1-x)BiFeO₃-xD_yMnO₃ using auto-combustion method and observed that, with increasing doping level the magnetization also increases at room temperature. Harikrishnan et.al. [12] used the optical floating zone method for the formulation of DyMnO₃ as well as Sr doped DyMnO₃ materials. Magesh et.al. [13] reported the formulation of pure and doped DyMnO₃ samples via solid state reaction. Dyakonov et.al. [14] reported the synthesis of DyMnO₃ polycrystalline materials using solid-state reaction and observed that, the orthorhombic structure of samples. Semenov et.al. [15] reported the formulation of Dy_{1-x}Ho_xMnO₃ samples at different doping concentrations by applying flux technique. Wang et.al. [16] reported the preparation of HoMnO₃ and DyMnO₃ samples via hydrothermal method and observed that, the samples were crystallized in an orthorhombic phase.

2.2 GdMnO₃

The GdMnO₃ is another multiferroic material. At room temperature, bulk GdMnO₃ possesses an orthorhombic phase [17]. Ibrahim et.al. [18] reported preparation of Eu incorporated GdMnO₃ ceramics by employing solid state reaction technique. Negi et.al. [19] reported the nanoparticle formulation of GdMnO₃ material using sol gel method and this powder is carried out for pellet formation and finally the pellets are used as target for thin film deposition using pulse laser deposition. Wang et.al. [20] reported the formulation of GdMnO₃ nanoparticles using polymerized complex method and observed that, the prepared nanoparticle has an orthorhombic structure. Andreev et.al. [21] reported the GdMnO₃ targets synthesis using solid state reaction, thereafter, deposition of GdMnO₃ films by employing magnetron sputtering. Sarkar et.al. [22] reported the preparation of Li doped GdMnO₃ materials using solid state reaction. Solanki et.al. [23] reported the nanoparticles preparation of GdMnO₃, HoMnO₃ by employing sol gel technique and observed that, the GdMnO₃ have orthorhombic phase as well as HoMnO₃ have hexagonal crystal structure. Modi et. al. [24] reported the preparation of GdMnO₃ ceramics by solid-state reaction method. Yang-Hsiang Tung et.al. [25] reported the nonfoods formulation of GdMn₂O₅ by hydrothermal method.

2.3 HoMnO₃

The HoMnO₃ is also an multiferroic material. In the hexagonal HoMnO₃ the order parameters are naturally related via Ho–Mn exchange and anisotropy couplings [26]. Dubourdieu et.al. [27] reported the formulation of YMnO₃ as well as ReMnO₃ (Re = Tb, Dy, Ho) thin films on a substrate by metal organic chemical vapour deposition. Murugavel et. al. [28] reported the preparation of HoMnO₃ thin films via pulse laser deposition over Pt(111)/Al₂O₃(0001) and yttrium stabilized zirconia (111) substrates. Ibrahim et.al. [29] reported formulation of Cr doped HoMnO₃ samples using solid state reaction and observed that, the samples crystallizes in an orthorhombic phase. Dong et.al. [30] reported the h-HoMnO₃ powder formulation using solid state reaction. Tsai et.al. [31] reported the formulation of LuMnO₃ and HoMnO₃ pellets via solid state reaction and these pellets were carried out as a target material for thin film deposition using pulsed laser deposition. Lorenz et.al. [32] reported the samples preparation of HoMnO₃ and YMnO₃ by using high-pressure conditions.

2.4 TbMnO₃

The TbMnO₃ also exhibits a multiferroic properties. The compound TbMnO₃ at room temperature possesses a distorted perovskite crystal structure having orthorhombic symmetry [33]. Dias et.al. [34] reported the preparation of nanostructured TbMnO₃ samples using high-energy ball milling. Xu et.al. [35] reported the synthesis of pure, Bi doped TbMnO₃, as well as Bi and Fe codoped TbMnO₃ samples using solid state reaction. Hu et.al. [36] reported the formulation of TbMnO₃ thin films by pulsed laser deposition. Lee et.al. [37] reported the deposition of hexagonal TbMnO₃ films by applying pulsed laser deposition (PLD) technique.

Kirby et.al. [38] reported the synthesis of TbMnO₃ thin film using pulsed laser deposition technique. Venkatesan et.al. [39] reported the preparation of TbMnO₃ thin films by pulsed laser deposition. Gupta et.al. [40] reported the formulation of pure BiFeO₃, TbMnO₃ as well as BiFeO₃-TbMnO₃ composite materials using solid-state reaction. Acharya et.al. [41] reported the synthesis of TbMnO₃ nanorods using microwave-assisted chemical route. Acharya et.al. [42] reported the formulation of TbMnO₃ samples using hydrothermal synthesis.

2.5 YMnO₃

The YMnO₃ also exhibits a multiferroic properties. The multiferroic YMnO₃ manifests a hexagonal structure having ferroelectric transition temperature around 900 K as well as the antiferromagnetic transition around 90 K [43]. Kumar et.al. [44] reported the formulation of YMnO₃ samples using solid state reaction through microwave assisted radiant heating. Nie et.al. [45] reported the preparation of (1-x)BiFeO_{3-x}YMnO₃ targets via solid state method and the thin films deposition by pulse laser deposition. Han et.al. [46] reported the formulation of YMnO₃ nanoscale materials via modified Pechini approach. Bogusz et.al. [47] reported the synthesis of YMnO₃ thin films using pulse laser deposition.

CONCLUSION: The present article reports the basics about the different fundamental multiferroic materials such as DyMnO₃, GdMnO₃,

HoMnO₃, TbMnO₃ and YMnO₃ materials. These material displays both electric and magnetic interaction simultaneously. This article also describes the numerous applications of these materials as well as the present research on this class of materials.

ACKNOWLEDGEMENT:

The author is thankful to the Principal and Head, Department of Physics for the constant encouragement.

REFERENCES

- 1. Alima Bai, Shifeng Zhao, Jieyu Chen, Improved Ferroelectric and Leakage Properties of Ce Doped in BiFeO₃ Thin Films, Journal of Nanomaterials, Volume 2014, Article ID 509408, 7 pages.
- 2. Yogesh A. Chaudhari, Subhash T. Bendre, Effect of Processing Parameters on the Improvement of Ferroelectric and Dielectric Investigations in BiFeO₃ Multiferroic Ceramics, Invertis Journal of Renewable energy, 1 (4), 207-213 (2011).
- 3. Nan Wang, Xudong Luo, Lu Han, Zhiqiang Zhang, Renyun Zhang, Hakan Olin, Ya Yang, Structure, Performance, and Application of BiFeO₃ Nanomaterials, Nano-Micro Lett., 12:81, 1-23 (2020).
- 4. M. Alguero, J.A. Quintana-Cilleruelo, O. Pena, A. Castro, Magnetic properties across the YMnO₃-BiFeO₃ system designed for phase-change magnetoelectric response, Materials Science and Engineering B, 266, 115055 (2021).
- 5. Venkata Sreenivas Puli, Dhiren Kumar Pradhan, Gollapudi Sreenivasulu, Simhachalam Narendra Babu, Nandiraju Venkata Prasad, Kalpana Madgula, Douglas B. Chrisey, Ram S. Katiyar, Magnetoelectric and Multiferroic Properties of BaTiO₃/NiFe₂O₄/BaTiO₃ Heterostructured Thin Films Grown by Pulsed Laser Deposition Technique, Crystals, 11, 1192 (2021).
- 6. Meng Wang, Ting Wang, Shenhua Song, Muchakayala Ravi, Renchen Liu, Shishan Ji, Enhanced Multiferroic Properties of YMnO₃ Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction, Materials, 10, 474 (2017).
- 7. Shuai Dong, Hongjun Xiang, Elbio Dagotto, Special Topic: Multiferroic Physics and Materials, Magnetoelectricity in multiferroics: a theoretical perspective, National Science Review, 6, 629–641 (2019).
- 8. Irfan Hussain Lone, Jeenat Aslam, Nagi R. E. Radwan, Ali Habib Bashal, Amin F. A. Ajlouni, Arifa Akhter, Multiferroic ABO₃ Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism, Nanoscale Research Letters, 14, 142 (2019).
- 9. Chengliang Lu, Jun-Ming Liu, DyMnO₃: A model system of type-II multiferroics, Journal of Materiomics, 2, 213-224 (2016).
- 10. Krishnamayee Bhoi, Tapabrata Dam, S.R. Mohapatra, Manju Mishra Patidar, Durgesh Singh, A.K. Singh, P.N. Vishwakarma, P.D. Babu, V. Siruguri, Dillip. K. Pradhan, Studies of magnetic phase transitions in orthorhombic DyMnO₃ ceramics prepared by acrylamide polymer gel template method, Journal of Magnetism and Magnetic Materials, 480, 138-149 (2019).
- 11. Satya N. Tripathy, Dhiren K. Pradhan, Karuna K. Mishra, Shrabanee Sen, Ratnakar Palai, Marian Paulch, James F. Scott, Ram S. Katiyar, Dillip K. Pradhan, Phase transition and enhanced magneto-dielectric response in BiFeO₃-DyMnO₃ multiferroics, Journal of Applied Physics, 117, 144103 (2015).
- 12. S. Harikrishnan, C. M. Naveen Kumar, S. S. Rao, H. L. Bhat, S. V. Bhat, Suja Elizabeth, Electron paramagnetic resonance studies on multiferroic DyMnO₃ and Dy_{0.5}Sr_{0.5}MnO₃, Journal of Applied Physics, 104, 023902 (2008).
- 13. J. Magesh, P. Murugavel, R. V. K. Mangalam, K. Singh, Ch. Simon, W. Prellier, Ferroelectric ordering and magnetoelectric effect of pristine and Ho-doped orthorhombic DyMnO₃ by dielectric studies, Journal of Applied Physics, 118, 074102 (2015).
- 14. V. Dyakonov, A. Szytuła, S. Baran, Z. Kravchenko, E. Zubov, O. Iessenchuk, W. Bazela, M. Dul, A. Zarzycki, H. Szymczak, Magnetic Properties of the Nanocrystalline DyMnO₃ Compound, Proceedings of the VI National Conference of Neutron Scattering, Chlewiska, Poland, June 14–18, 2009, Acta Physica Polonica A, 117, 607-610 (2010).
- 15. S. V. Semenov, M. I. Kolkov, K. Yu Terent'ev, N. S. Pavlovskiy, M. S. Pavlovskiy, A. D. Vasiliev, A. V. Shabanov, K. A. Shaykhutdinov, D. A. Balaev, Synthesis of the orthorhombic Dy_{1-x}Ho_xMnO₃ Single Crystals and Study of Their Magnetic Properties, Journal of Superconductivity and Novel Magnetism, 32, 3315-3320 (2019).
- 16. Yongwei Wang, Xiaoying Lu, Yan Chen, Fangli Chi, Shouhua Feng, Xiaoyang Liu, Hydrothermal synthesis of two perovskite rare-earth manganites, HoMnO₃ and DyMnO₃, Journal of Solid State Chemistry, 178, 1317-1320 (2005).

- 17. N. Andreev, V. Chichkov, T. Sviridova, N. Tabachkova, A. Volodin, C. Van Haesendonck, Ya. Mukovskii, Growth, structure, surface topography and magnetic properties of GdMnO₃ multiferroic epitaxial thin films, EPJ Web of Conferences, 40, 15014 (2013).
- 18. J. F. M. Ibrahim, A. Mergen, E. İlhan Sahin, H. S. Basheer, The Effect of Europium Doping on the Structural and Magnetic Properties of GdMnO₃ Multiferroic Ceramics, ACERP, 3 (4), 1-5 (2017).
- 19. Puneet Negi, H. M. Agrawal, R. C. Srivastava, K. Asokan, Fabrication of Multiferroic GdMnO₃ Thin Film by Pulsed Laser Deposition Technique, Indian Vacuum Society Symposium on Thin Films: Science and Technology, AIP Conf. Proc. 1451, 169-171 (2012).
- 20. X. L. Wang, D. Li, T. Y. Cui, P. Kharel, W. Liu, Z. D. Zhang, Magnetic and optical properties of multiferroic GdMnO₃ nanoparticles, Journal of Applied Physics 107, 09B510 (2010).
- 21. N. Andreev, N. Abramov, V. Chichkov, A. Pestun, T. Sviridova, Ya. Mukovskii, Fabrication and Study of GdMnO₃ Multiferroic Thin Films, Proceedings of the International Workshop "Oxide Materials for Electronic Engineering" (OMEE-2009), Lviv 2009, Acta Physica Polonica A, 117, 218-220 (2010).
- 22. Rinku Sarkar, Bidyut Sarkar, Sudipta Pal, Monovalent (Li⁺¹) doping effect in multiferroic GdMnO₃, Bull. Mater. Sci., 43:64 (2020).
- 23. Solanki Sapana, Davit Dhruv, Zalak Joshi, Keval Gadani, K.N. Rathod, Hetal Boricha, V.G. Shrimali, R.K. Trivedi, A.D. Joshi, D.D. Pandya, P.S. Solanki, N.A. Shah, Studies on Structural and Electrical Properties of Nanostructured RMnO₃ (R = Gd & Ho), Functional Oxides and Nanomaterials, AIP Conference Proceedings 1837, 040029 (2017).
- 24. Anchit Modi, Rajesh K. Thakur, Rasna Thakur, N.K.Gaur, N. Kaurav, G. S. Okram, Structural and Transport Properties of Orthorhombic GdMnO₃, Proceeding of International Conference on Recent Trends in Applied Physics and Material Science, AIP Conf. Proc. 1536, 813 814 (2013).
- 25. Yang-Hsiang Tung, Yi-Jung Chen, Chun-Chuen Yang, Cheng-Yu Weng, Yen-Kai Huang, Yang-Yuan Chen, Maw-Kuen Wu, Size effect on multiferroicity of GdMn₂O₅ nanorods, Chinese Journal of Physics, 70, 336-342 (2021).
- 26. E Galstyan, B Lorenz, K S Martirosyan, F Yen, Y Y Sun, M M Gospodinov, C W Chu, Magnetic hysteretic phenomena in multiferroic HoMnO₃ single crystals and polycrystals with nano- and micrometer particle size, J. Phys.: Condens. Matter, 20, 325241 (2008).
- 27. C. Dubourdieu, G. Huot, I. Gelard, H. Roussel, O.I. Lebedev, G. Van Tendeloo, Thin films and superlattices of multiferroic hexagonal rare earth manganites, Philosophical Magazine Letters, 87 (3–4), 203-210 (2007).
- 28. P. Murugavel, J. H. Lee, D. Lee, T. W. Noh, Younghun Jo, Myung-Hwa Jung, Yoon Seok Oh, Kee Hoon Kim, Physical properties of multiferroic hexagonal HoMnO₃ thin films, Applied Physics Letters 90, 142902 (2007).
- 29. J. F. M. Ibrahim, A. Mergen, Umut Parlak, Emese Kurovics, The Influence of Cr doping on the Structural and Magnetic Properties of HoMnO₃ Multiferroic Ceramics, IOP Conf. Series: Materials Science and Engineering, 613, 012009 (2019).
- 30. Chao Dong, Rui Chen, Yongjie Liu, Congbin Liu, Haipeng Zhu, Jiezun Ke, Wanxin Liu, Ming Yang, Junfeng Wang, Field-Induced Magnetic Phase Transitions and Rich Phase Diagram of HoMnO₃ Single Crystal, Crystals, 9, 419 (2019).
- 31. T Y Tsai, T H Lin, S Slowry, C W Luo, K H Wu, J-Y Lin, T M Uen, J Y Juang, Magnetic transition anisotropies in orthorhombic LuMnO₃ and HoMnO₃ multiferroic thin films, International Conference on Magnetism (ICM 2009), Journal of Physics: Conference Series, 200, 012210 (2010).
- 32. Bernd Lorenz, Ya-Qi Wang, Ching-Wu Chu, Ferroelectricity in perovskite HoMnO₃ and YMnO₃, Physical Review B 76, 104405 (2007).
- 33. V. A. Trepakov, O. E. Kvyatkovskii, M. E. Savinov, A. Dejneka, X. Wang, S.W. Cheong, Features of the Low-Frequency Polarization Response in the Region of the Ferroelectric Phase Transition in Multiferroic TbMnO₃, Physics of the Solid State, 58 (10), 2021-2026 (2016).
- 34. Gustavo S. Dias, Luiz Gustavo D. Silveira, Luiz F. Cotica, Ivair A. Santos, Adelino A. Coelho, Ducinei Garcia, Jose A. Eiras, Juraci A. Sampaio, Effect of the synthesis atmosphere on the magnetic and structural properties of TbMnO₃ multiferroic polycrystals, Scripta Materialia, 89, 65-68 (2014).
- 35. Jianxun Xu, Yimin Cui, Huaizhe Xu, Dielectric properties of TbMnO₃ ceramics doped with Bi and Fe ions, Results in Physics 6, 811-816 (2016).
- 36. Ni Hu, Chengliang Lu, Zhengcai Xia, Rui Xiong, Pengfei Fang, Jing Shi, Jun Ming Liu, Multiferroicity and Magnetoelectric Coupling in TbMnO₃ Thin Films, ACS Applied Materials & Interfaces, 7 (48), 26603–26607 (2015).
- 37. Jung-Hyuk Lee, Daesu Lee, Tae Won Noh, Pattukkannu Murugavel, Jae Wook Kim, Kee Hoon Kim, Younghun Jo, Myung-Hwa Jung, Jong-Gul Yoon, Jin-Seok Chung, Formation of hexagonal phase of TbMnO₃ thin film and its multiferroic properties, Journal of Materials Research 22(8), 2156 2162 (2007).
- 38. B. J. Kirby, D. Kan, A. Luykx, M. Murakami, D. Kundaliya, I. Takeuchi, Anomalous ferromagnetism in TbMnO₃ thin films, Journal of Applied Physics 105, 07D917 (2009).
- 39. Sriram Venkatesan, Christophe Daumont, Bart J. Kooi, Beatriz Noheda, Jeff. Th. M. De Hosson, Nanoscale domain evolution in thin films of multiferroic TbMnO₃, Physical Review B 80, 214111 (2009).
- 40. Prince K. Gupta, Surajit Ghosh, Arkadeb Pal, Somnath Roy, Amish G. Joshi, A. K. Ghosh, Sandip Chatterjee, Study of band structure, transport and magnetic properties of BiFeO₃–TbMnO₃ composite, SN Applied Sciences, 1:1607 (2019).
- 41. S. A. Acharya, S. M. Khule, A multiferroic behavior of TbMnO₃ nanorods prepared by microwave-assisted chemical route, Appl. Nanosci. 2: 31–34 (2012).
- 42. S. A. Acharya, S. M. Khule, V. M. Gaikwad, Investigation of multiferroic behaviour of TbMnO₃ nanoplates, Materials Research

- Bulletin, 67, 111-117 (2015).
- 43. Gavin Lawes, Optical properties of magnetoelectric multiferroics, Journal of Nanophotonics, 2, 020306 (2008).
- 44. Manish Kumar, D.M. Phase, R.J. Choudhary, Structural, ferroelectric and dielectric properties of multiferroic YMnO₃ synthesized via microwave assisted radiant hybrid sintering, Heliyon, 5, e01691 (2019).
- 45. Peng-Xiao Nie, Yi-Ping Wang, Ying Yang, Guo-Liang Yuan, Wei Li, Xue-Ting Ren, Epitaxial Growth and Multiferroic Properties of (001)-Oriented BiFeO₃-YMnO₃ Films, Energy Harvesting and Systems, 2 (3-4), 157–162 (2015).
- 46. Tai-Chun Han, Wei-Lun Hsu, Wei-Da Lee, Grain size-dependent magnetic and electric properties in nanosized YMnO₃ multiferroic ceramics, Nanoscale Research Letters, 6:201, 1-8 (2011).
- 47. A. Bogusz, A. D. Müller, D. Blaschke, I. Skorupa, D. Burger, A. Scholz, O. G. Schmidt, H. Schmidt, Resistive switching in polycrystalline $YMnO_3$ thin films, AIP Advances 4, 107135 (2014).