A Review On Various Doped TiO$_2$using Metallic And Non-Metallic Nanocrystals

R. Deepa1, V. Senthilnathan2, Haresh M Pandya3

Department of Physics
1,2,3Chikkanna Government Arts College, Tirupur 641602, TN, India

Abstract: In this study, various approaches for producing doped TiO$_2$ using metallic and non-metallic nanocrystals are examined. Due to a number of characteristics, including great physicochemical stability, low cost, and non-toxicity. In photocatalytic, photovoltaic and dye dye-sensitized solar cells applications; TiO$_2$ is one of the most often used semiconductors. TiO$_2$ has differing bang gaps in its rutile and anatase crystalline phases, respectively, of 3.0 eV and 3.2 eV.

Keywords: Co-precipitation method, Sol-gel method, hydrothermal method, doped components,

1.1 Introduction:
Fujishima et al. [1] reported that the Platinum electrodes are replaced with p-type semiconductor electrodes so that water can be electrochemically photoysis more effectively. Frank and Bard [2] have said that when compared to the doped or rutile forms, the high intensity radiation of CN$^-$ disappearance was essentially at an ignition rate. The importance of physicochemical qualities in electronic devices including water splitting devices, solar cells, gas sensors, and dye sensitised photocatalyst [3-7]. The crystalline forms of this mineral are rutile, anatase, and brookite, which are all well-known. At ambient temperature, anatase is a common and stable phase in nanomaterial’s [8–10].

TiO$_2$ has additional advantages such as non-toxicity, easy of production, and chemical stability [11]. The n-type semiconductor titanium dioxide (TiO$_2$) is well-known. Under UV light (387 nm) with an energy greater than the band gap of 3.3 eV in the anatase crystalline phase, TiO$_2$ exhibits comparatively high reactivity and chemical stability. The development of photocatalyst with high reactivity under visible light (> 400 nm) could allow the use of the majority of the solar spectrum, even in low-light environments. Metal-ion implanted TiO$_2$ (using transition metals: Cu, Co, Ni, Cr, Mn, Mo, Nb, V, Fe, Ru, Au, Ag, Pt) [12-14], reduced TiO$_2$ photocatalyst [15-16], and non-metal doped-TiO$_2$ (N, S, C, B, P, I, F) [17-20] have all been presented as methods for TiO$_2$ modification.

TiO$_2$ is a low-cost, easy-to-handle substance that is non-toxic and non-hazardous. In recent years, ceramic tiles have gotten a lot of attention for new uses and production processes, such as reduced thickness products, digital decoration, and antimicrobial activity, all of which add value to the construction materials. The method of doping TiO$_2$ with metallic and non-metallic species is described in this study. Including a variety of dopant techniques that are now accessible.

1.2 The metaland non-metal ions nanocrystalsdoped TiO$_2$using co-precipitation method:
TiO$_2$ has been doping with a many different metals such as Co, Nb$_2$O$_5$, Zn, ZnFe$_2$O$_4$ and ZnFe$_2$O$_4^+$, Li, Al,Cu,SnO$_2$, Ni, Ag, Fe and Ce. Because the Fermi levels of these metals are lower than that of TiO$_2$, photo excited electrons can be transferred from the conduction band of TiO$_2$ to metal particles deposited on the surface of TiO$_2$, while photo generated holes in the valence band remain on TiO$_2$. This greatly reduces the possibility of electron-hole recombination, resulting in efficient separation and higher photocatalytic activity [25]. To enhance the photocatalytic effect in the visible light region, many producing methods were, there are many techniques such as sol-gel, hydrothermal, spinning, co-precipitation, chemical vapour deposition, and pyrolysis and biosynthesis methods [26-27]. Among these, the co-precipitation method has several advantages such as cheap, better homogeneity, fine particle size, and time-saving. Detailed information about doped TiO$_2$ co-precipitations is shown in Table1 [28-44].

<table>
<thead>
<tr>
<th>Doped Element</th>
<th>Preparation method</th>
<th>Characterization and its applications</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>Co-precipitation method.</td>
<td>1. XRD results confirm the crystal structure and presence of anatase, brookite and rutile phase with particle size in the range of 43.63nmto 38.181nm. 2. UV spectroscopies studies band gap of cobalt doped TiO$_2$ nanoparticles was 2.59ev, 2.0ev, 1.68ev and 1.5ev respectively. 3. Wavelength was increased, bandgap shifted towards small values that’s mean photocatalyst activity can be increased.</td>
<td>[28]</td>
</tr>
<tr>
<td>Co$^{3+}$</td>
<td>Co-precipitation method.</td>
<td>According to the X-ray diffraction and Raman spectroscopy analysis, the substitution of Ti$^{4+}$ by Co$^{3+}$ creates oxygen vacancies and promotes the anatase-to-rutile transformation. The enhancement of high temperature NO$_2$ sensing performance is related to the alteration in electronic structure as well as the formation of rutile polymorph in the Co-doped TiO$_2$ sample.</td>
<td>[29]</td>
</tr>
<tr>
<td>Co</td>
<td>Co-precipitation method.</td>
<td>The XRD results of t the crystallite size of Co-doped TiO$_2$ nanoparticles decreases from 18 to 12 nm with the increase of doping concentration. The scanning electron microscopy was used to detect the morphology of</td>
<td>[30]</td>
</tr>
<tr>
<td>Element</td>
<td>Co-precipitation</td>
<td>Details</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td></td>
<td>The powders containing 5 mol% Nb₂O₅-doped TiO₂ presented similar photocatalyst activity under UV-light and higher photoactivity than P25 under visible light, with the benefit of having very small crystallite sizes, making it more suitable for glazed ceramic coatings.</td>
<td>[31]</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td>The results show that the solar cell assembled with the Zn₀.₁Tₐ₀.₉O₂·film exhibits a short circuit current density of 12.32 mA/cm², open-circuit voltage of 0.604 V, and a power conversion efficiency of 3.03%. Its power conversion efficiency is 1.5-fold higher than that of the cell assembled with the pure TiO₂ film.</td>
<td>[32]</td>
</tr>
</tbody>
</table>
| ZnFe₂O₄ₙ and ZnFe₂O₄ | Co-precipitation | 1. TEM images demonstrate that ZnFe₂O₄ₙ nanoparticles are spherical in shape (9 ± 2 nm) a ZnFe₂O₄ₙ TiO₂ nanocomposite exhibits spherical-like morphology (11 ± 3 nm).
2. HRTEM and SAED studies further confirm the phase purity of the samples and reveal the formation of core-shell in case of the composite.
3. The direct band gap of ZnFe₂O₄ₙ nanoparticles (2.11 eV) and ZnFe₂O₄ TiO₂ nanocomposite (2.30 eV).
4. Such results provide new prospects for optimizing and improving the properties and performance of semiconductor nanocomposite in photocatalyst degradation of dyes and water splitting. | [33] |
| Fe | | 1. XRD study shows the size of crystallite is attributed towards Fe³⁺ (0.64 Å) a large ionic radius than TiO₂ (0.60 Å).
2. Calculated band gap energy from the UV Visible spectra analysis is 3.35 and 3.25 eV.
3. SEM analysis reveals the average grain size is spherical in shape and porous in nature.
4. Solar cell applications. | [34] |
| Li | | 1. The XRD analysis of crystallite size of all the samples were in a range of 42 to 52nm.TiO₂ nanocrystals are predominantly in the rutile crystal phase with some traces of brookite phases.
2. The FESEM image has shown rectangular and hexagonal morphology in the form of nano particles.
3. The synthesized nanoparticles are good linearity property between the irradiation doses of 1 kGy to 10 kGy. The photocatalyst glow curves of gamma irradiated TiO₂ samples have shown increase in the photocatalystintensity with dose, annealing temperature and doping. | [35] |
| Al | | 1. According to the UV analysis band gap energies are 1.944 eV, 2.431 eV, 1.525 eV, 1.395 eV and 1.893 eV.
2. In UV result, Al doped TiO₂ wavelength is between 378 nm to 889 nm.
3. The main advantages of the proposed synthesis are its simplicity and further work on the optimization of pure TiO₂ and Al doped TiO₂ tetragonal particles growth for electronic and optoelectronic applications in progress. | [36] |
| Cu | | 1. The calculated band gap energy for ‘pure’ TiO₂ is also found to be 3.2 eV from the extrapolation of the corresponding plot.
2. Scanning electron micrographs of the catalyst samples depict the particle structures like irregular spherical of size around 20–100 nm. The size range of the dopant particles varied between 20 and 110 nm. | [37] |
| Sn | | 1. Crystallite sizes from 22.5 nm, 24.0 nm, 17.4nm, 18.9 nm and 19.8nm.
2. Band gap is 388nm | [39] |
| Ni | | 1. Crystallite size of Ni doped TiO₂ (Ni = 0.0, 0.1, 0.5, 1, 5 and 10 % wt) are 17.82 nm, 16.03nm, 13.84nm, 17.30nm, 17.47nm and 18.47nm.
2. Band gap is 448 and 840 nm. | [40] |
| Ni | | 1. The crystalline size was found to decrease significantly from 24.7 nm to 9.7 nm
2. FTIR confirmed the formation of Ti-O-Ni bonding due to sharpened and enhanced intensity of the bands in the range of 500-1000 cm⁻¹ and 910-1030 cm⁻¹. | [41] |
The DSSCs were discussed the importance of catalysts during the sol–gel and hydrothermal method of characterization and its applications. The Ag nanoparticles demonstrated increased short-circuit current density and efficiency. In comparison to the DSSCs based on FeT and ZT samples, the DSSCs based on FeT and ZT samples performed better, with conversion efficiencies of around 27 and 34 percent, respectively [48]. Yuan et al. reported the doping in TiO2 with various metal ions such as Ag2+, Al3+, Cu2+, Fe3+, Mn2+, Ni2+, V5+, and Zn2+ and investigated the photocatalytic activity. Depending on the Ag ion, valence state, and arrangement of the dopants, a significant influence of doping was seen. Among the several doped samples, Fe3+ doping at 1% concentration shown exceptional photocatalytic activity and increased toluene removal efficiency by up to 71% [49]. Yu et al. synthesized the Zn-TiO2 nanoparticles based on different Zn-doping concentrations and sintering temperatures. The role of sintering temperature and the dopant concentration demonstrated the phase transformation of TiO2 from anatase to rutile. Further, this study explored the doping mechanism of Zn2+ ions in Zn-TiO2 nanoparticles [50]. Sacco et al. discussed the importance of catalysts during the sol–gel synthesis of nanoparticles and evaluated the photocatalytic activity. They experimented with different V doping concentrations and photocatalytic activity for the removal of caffeine in water. Under UV radiation, nearly 96 percent of caffeine degradation was seen after 360 minutes of exposure [51]. Moradi et al. prepared the Fe-doped TiO2 nanoparticles by changing the doping concentration of Fe. Among the various Fe-TiO2 samples, the sample prepared with the 1 wt % doping concentration demonstrated the extraordinary photo degradation of reactive red 198 [52]. Senthil Kumar et al. synthesized and presented the study of Ag-TiO2 nanoparticles for the photo-treatment application. The Ag-TiO2 nanoparticles showed the redshift of the absorption edge, whereas the estimated band gap of 2.74 eV was reported [53]. Gaidai et al. reported the electrochemical preparation of Ag- and N-TiO2 nanoparticles by using an electrochemical process. They studied the self-cleaning capability of these nanoparticles; however, co-doped Ag-N-TiO2 nanoparticles strengthened the self-cleaning capability [54]. Gu et al. preferred the hydrothermal route to prepare the BaTiO3 nanoparticles with the controlled diameter of the nanoparticles. They explored the promising application of the prepared nanoparticles for energy storage device application [55]. Liu et al. investigated the hydrothermal synthesis of zinc magnesium co-doped TiO2 (ZnMg-TiO2) nanoparticles and evaluated the performance of a dye-sensitized solar cell. The As a result, conversion efficiency has increased to 27% compared to a solar cell based on TiO2 nanoparticles that are not doped this result was attributed to doping, which was shown to be present. Could result in positive flat-band shifting and, as a result, the quick transport carriers [56]. The Zn-Mn-TiO2 nanoparticles were made by Wattanawikram and Pecharapa using a sonochemical method. The produced sample showed single-phase anatase-TiO2 with spherical and homogeneous nanoparticle production. When compared to pure TiO2 nanoparticles, the utilisation of the co-doped sample demonstrated remarkable photo degradation of Rhoda mine B dye, with a 10 times quicker degradation rate [57]. Duane et al. investigated the

Ni	Co-precipitation	1. Decrease in the TiO2-lattice parameter due to increased Ni-addition. For the anatase polymorph, the lattice parameter a is found as 3.7874, 3.7839 and 3.7836 Å respectively.	[42]
Ag	Co-precipitation	Silver-deposited TiO2 photocatalyst enhanced the inactivation of E. coli by visible irradiation when compared to that by using TiO2. The similar 100% of high antibacterial efficiencies and six times of rate of reaction compared to the usage of TiO2 were obtained for either using visible light or UV light or even no light irradiation by the application of Ag-TiO2	[43]
Ag	Co-precipitation	Band-gap energy (2.24 eV vs. 3.20 eV) and lower electron-hole pair recombination rate due to the presence of silver. Resulting in formation of a composite with high photocatalytic capacity.	[44]
Fe	Co-precipitation	XRD Crystallite size is decreases due to 17.82nm, 15.87nm, 15.13nm, 14.43nm, 13.78nm and 13.24nm. The Fe-doped TiO2 powders possess flat band potentials suitable for artificial photosynthesis reactions. Though, FeOx is a p-type semi-conducting material, the Fe-doped TiO2 materials exhibit n-type semi-conducting.	[45]
Ce	Co-precipitation	Crystallite size is decreases due 11.21nm, 10.32nm, 9.19nm, 7.38nm and 7.25nm. Anatase Crystal phase. Ce-doped TiO2 microphers achieved an efficient visible light photocactivity in the photo degradation when reused, they might hold a good potential for application in wastewater treatment.	[46]
CeO2	Co-precipitation	The particle sizes are 23.628nm, 22.143nm, 22.005nm, 21.349nm and 17.839nm. The TEM images reveal that with the increase in the concentration of titanium, the shapes of the particles changed from angular to a spherical form, also indicating the average crystallite size was decreased. A small amount of weight loss was observed.	[47]

Table.1 The nano doped TiO2 by co-precipitation method of characterization and its applications.

1.3 metal and non-metal ions doped TiO2 nanocrystals using sol-gel and hydrothermal method:

Reghven德拉 et al. reported the doping in TiO2 with various metal ions such as Hereafter, the samples are named as PT for pure TiO2, AgT for Ag-TiO2, BT for Ba-TiO2, CoT for Co-TiO2, CrT for Cr-TiO2, CuNT for CuN-TiO2, FeT for Fe-TiO2, SnT for Sn-TiO2, ZT for Zn-TiO2, VT for V-TiO2, ZMT for Zn + Mg-TiO2, and ST for S-TiO2 and investigated the DSSCs. The DSSCs with photo anodes made from different doped TiO2 nanoparticles demonstrated increased short-circuit current density and efficiency. In comparison to the DSSCs based on FeT and ZT samples, the DSSCs based on FeT and ZT samples performed better, with conversion efficiencies of around 27 and 34 percent, respectively [48]. Yuan et al. reported the doping in TiO2 with various metal ions such as Ag2+, Al3+, Cu2+, Fe3+, Mn2+, Ni2+, V5+, and Zn2+ and investigated the photocatalytic activity. Depending on the Ag ion, valence state, and arrangement of the dopants, a significant influence of doping was seen. Among the several doped samples, Fe3+ doping at 1% concentration shown exceptional photocatalytic activity and increased toluene removal efficiency by up to 71% [49]. Yu et al. synthesized the Zn-TiO2 nanoparticles based on different Zn-doping concentrations and sintering temperatures. The role of sintering temperature and the dopant concentration demonstrated the phase transformation of TiO2 from anatase to rutile. Further, this study explored the doping mechanism of Zn2+ ions in Zn-TiO2 nanoparticles [50]. Sacco et al. discussed the importance of catalysts during the sol–gel synthesis of nanoparticles and evaluated the photocatalytic activity. They experimented with different V doping concentrations and photocatalytic activity for the removal of caffeine in water. Under UV radiation, nearly 96 percent of caffeine degradation was seen after 360 minutes of exposure [51]. Moradi et al. prepared the Fe-doped TiO2 nanoparticles by changing the doping concentration of Fe. Among the various Fe-TiO2 samples, the sample prepared with the 1 wt % doping concentration demonstrated the extraordinary photo degradation of reactive red 198 [52]. Senthil Kumar et al. synthesized and presented the study of Ag-TiO2 nanoparticles for the photo-treatment application. The Ag-TiO2 nanoparticles showed the redshift of the absorption edge, whereas the estimated band gap of 2.74 eV was reported [53]. Gaidai et al. reported the electrochemical preparation of Ag- and N-TiO2 nanoparticles by using an electrochemical process. They studied the self-cleaning capability of these nanoparticles; however, co-doped Ag-N-TiO2 nanoparticles strengthened the self-cleaning capability [54]. Gu et al. preferred the hydrothermal route to prepare the BaTiO3 nanoparticles with the controlled diameter of the nanoparticles. They explored the promising application of the prepared nanoparticles for energy storage device application [55]. Liu et al. investigated the hydrothermal synthesis of zinc magnesium co-doped TiO2 (ZnMg-TiO2) nanoparticles and evaluated the performance of a dye-sensitized solar cell. The As a result, conversion efficiency has increased to 27% compared to a solar cell based on TiO2 nanoparticles that are not doped this result was attributed to doping, which was shown to be present. Could result in positive flat-band shifting and, as a result, the quick transport carriers [56]. The Zn-Mn-TiO2 nanoparticles were made by Wattanawikram and Pecharapa using a sonochemical method. The produced sample showed single-phase anatase-TiO2 with spherical and homogeneous nanoparticle production. When compared to pure TiO2 nanoparticles, the utilisation of the co-doped sample demonstrated remarkable photo degradation of Rhoda mine B dye, with a 10 times quicker degradation rate [57]. Duane et al. investigated the
properties of tin-doped TiO$_2$ (Sn-TiO$_2$) nanocrystals synthesised using a hydrothermal technique, as well as the performance of a dye-sensitized solar cell based on Sn-TiO$_2$ nanocrystals. The crystallinity was unaffected by doping different Sn concentrations in TiO$_2$. However, the solar cell demonstrated enhanced conversion efficiency after the XRD peak shifted, indicating Sn-ion doping [58].

1.4 Conclusion:

Titanium dioxide represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of strong oxidation activity and superhydrophilicity. TiO$_2$ shows relatively high reactivity and chemical stability under ultraviolet light should allow the main part of the solar spectrum, even under poor illumination of interior lighting, to be used. Visible light-activated TiO$_2$ could be prepared by metal-ion implantation, reducing of TiO$_2$, non-metal doping or sensitizing of TiO$_2$ with dyes. This paper reviews preparation methods of doped-TiO$_2$ with metallic and non-metallic species, including various types of dopants methods currently available. TiO$_2$ is one of the most commonly used semiconductors in photocatalytic and photovoltaic applications because of its different properties, such as low cost, low toxicity, chemical stability, and so on. It is used in photovoltaic application as a semiconductor in dye-sensitized solar cells (DSSCs). Doping TiO$_2$ is an interesting strategy used to improve its properties as a semiconductor and, thus, its efficiency in many applications.

1.5 Reference:

1. FUJISHIMA, AKIRA; HONDA, KENICHI (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. , 238(5338), 37–38. doi:10.1038/238037a0
5. Taqi John Ali, Hussein; Abed Jaber, Ali; Farhan, Saba; Jabbar Fraih, Ali; Qabel Hamzah, Maytham (2019). Study the Absorption and Attenuation Coefficient to a model of Spinel Ferrite (CoFe2O4) to absorb a spectrum from (X-Band) of the Microwaves before and after irradiate it with fast neutrons. Journal of Physics: Conference Series, 1279(1), 012061– . doi:10.1088/1742-6596/1279/1/012061

31. Mohamed Saber Lassoued1, 2, 3 Abdelmajid Lassoued1 Salah Ammar1 · Abdellatif Gadr1 · Abdelhamid Ben Salah2 · Santiago García-Granda3 Synthesis and characterization of Co-doped nano-TiO2 through coprecipitation method for photocatalytic activity. 2018. https://doi.org/10.1007/s10854-018-8910-x

34. M. Chandrikaa, A.V. Ravindraab,c,d, Ch. Rajesha,e, S.D. Ramaraoa, Shaohua Juba,c,d. Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4- TiO2 composite synthesized by co-precipitation route. 2019 https://doi.org/10.1016/j.jallcom.

42. Siti Nur Fadhilah Zainudin1, a*, Masturah Markom1, b and Huda Abdullah2, c; structural behavior of ni-doped tio2 nanoparticles and its photovoltaic performance on dye-sensitized solar cell (DSSC);Advanced Materials Research Vol. 879 (2014) pp 199-205doi: www.science.net/AMR.879.199

