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Abstract: 

Background/Purpose: The improvement in technology made the smart phone more familiar to common people and also 

the current situation demands it. Most of the services are digitalized nowadays. This opened up a wide field for the hackers 

or intruders and the rate of cyber-attacks and cyber-crimes are high. The malware has turned into a major industry as 

hackers grow more sophisticated and professional. The defenders and hackers are in a race to defeat each other. Machine 

learning based techniques has shown a higher rate in successful malware detection. In this paper discusses about Hindroid, 

an intelligent android malware detection system based on structured heterogeneous information network, which uses a 

static analysis method to identify malware. It analyses the various relationships in API calls and creates higher level 

semantics. 

Design/Methodology/Approach: SWOT framework is being used to analyse and display the information gathered from 

scholarly articles, web articles, journals and other sources.  

Findings/Results:  Compared with other detection methods, Hindroid claims to outperform with 98.6% accuracy. It claims 

99.01% detection rate compared to other security products like clean master, lookout, Norton etc 

Originality/Value: This study gives an overview of Android Malware Analysis based on the various data collected.  

Paper Type: Research Analysis based on Case Study 

 

Keywords: Malware, Hindroid, API  

 

1. INTRODUCTION:  

With the improvements in hardware and software technology, there is a rapid increase in the usage of smart phones. Android mobile 

phones are widely used. New statistics says that by 2027 the smartphones will account 76.9% market share (Fig.1). Almost all 

services like bill payments, recharging, online shopping etc.  are digitalized. It opened a new field of thefts for hackers, thereby the 

number of cybercrimes and criminals has increased rapidly. Malware attacks are at its peak during the pandemic as most of the 

services were online like online education for the students, work from home for employees, bill payments, online shopping,etc. 

Android has always been the main target of hackers as it is an opensource software. They use malicious code for transmitting the 

confidential information, to take up the control of the device, for financial gain, political interest, revenge etc. The malwares create 

various threats like stealing user’s credentials, pushing unwanted apps or advertisements etc, to the smartphone users. Due to the 

immense growth in the variety of Android malware, the researchers divide the malwares into various families to assist the malware 

analysis. Malwares are classified based on their similarities in behaviour. The malware defenders need to be more vigilant as the 

capabilities and knowledge of attackers increases faster. 

 
Fig.1: shows number of Smartphone users from 2016-2027. (Source: statistica.com) 

2. OBJECTIVES OF THE CASE STUDY:  

http://www.ijsdr.org/
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The main objectives/aim of this study are: 

1. To understand the android malware analysis methods. 

2. To study the malware detection method using Hindroid 

3. To study the effectiveness of heterogeneous graphs in malware analysis. 

4. To identify the research gap 

3. RELATED WORKS :  
Numerous studies have been conducted to evaluate malware attacks.. In order to accelerate the malware analysis, the researchers 

divide the malwares into various families, based on the similarities in behaviour, to assist the analysis. For example, some silently 

transmits the confidential information to the remote server, some allows the hackers to control the device remotely. Table 1 

summarises relevant research on android malware analysis based on the API Calls and apps, as well as the field, subject, and 

citations of the work. The following table 1 shows the related works: 

 Table 1: Related Works  

Sl. 

No.  

Work  Type of Analysis Features Used Reference  
  

1.  DroidDolphin Dynamic  APE 

 

[7] 

2.  CrowDroid Dynamic  API System Calls  [9] 

3.  CopperDroid Dynamic  Operating system interactions & 

intra and inter process 

communication 

[ 5] 

4.  CopperDroid Static  Analysis of internal components 

of an App. 

[5] 

5.  DroidMat Static API Calls, Permission intent 

messages 

[8] 

6.  DroidMiner Static  API Calls (associative 

classifier) 

[6] 

7.  αCyber Static API Calls [18] 

8. DroidDelver Static  API Calls [4] 

9. AiDroid Static  API Calls [23] 

10. IntDroid  Static API Calls [24] 

4. METHODOLOGY :  
Journals, conference papers, media articles and various public records were used to gather materials and data for this case study. 

5. ANDROID MALWARE ANALYSIS– AN OVERVIEW:  

http://www.ijsdr.org/
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Android is an open-source mobile operation system. It is based on a Linux kernel. The applications are written in Java and are 

transformed into a slightly different format known as Dalvik. The apps are then run in the Dalvik virtual machine which provides 

a layer of abstraction over the real hardware. Android applications are packed in the format .apk, which is a ZIP archive 

containing the AndroidManifest.xml, resources like media files, the actual code as classes.dex and some other optional files.[25] 

Malware is any piece of software that is harmful to the systems- worms, trojans, viruses etc. Malware analysis is the practical 

way of understanding the behaviour and purpose of malicious code or suspicious URLs. 

Android malware analysis can be classified as: 

1. Static analysis 

2. Dynamic analysis 

3. Hybrid analysis 

 5.1 Static Analysis 

 Static analysis is also called Code analysis. It is performed by viewing the software code of the malware and walking through 

it, instructions by instructions. It examines the files for signs of malicious intent without running the code.  It can be useful to 

identify malicious infrastructure, libraries, or packed files. Static analysis is signature -based analysis. It is also similar to 

statistical based analysis. It involves virus scanning, fingerprinting etc. Reverse engineering is used for static analysis. 

 

5.2 Dynamic Analysis 

Dynamic analysis improves the static analysis in terms of result delivery. Dynamic analysis also known as behavioural analysis. 

In dynamic analysis, the malicious code is executed in a safe and controlled environment called sandbox and studies how the 

malware behaves when executed. It is more difficult to perform dynamic analysis as they may do unexpected changes to the 

system and also most of the malware can hide their run time activities to an extent. 

5.3 Hybrid Analysis 
Hybrid analysis combines the techniques of both static and dynamic analysis and thereby covers each other’s drawbacks. In 

other words, it analyses the signature of the malware and then continue the analysis by combining with various behavioural 

patterns. Hybrid analysis helps to overcome the shortcomings of both static and dynamic analysis. 

Android Malware Analysis Tools: 

There are various android malware analysis tools. They are classified based on the techniques used for the analysis like static 

analysis, dynamic analysis, reverse engineering, etc. Most popular ones are classified and listed below:[26] 

a) Static Analysis 

 Tool Description  

ClassyShark Standalone android apps binary inspection tool 

StaCoAn Mobile application static code analysis tool 

SmaliSCA Smali  static code analysis 

maldrolyzer Simple framework to extract “actionable” data from Android malware 

(C & Cs, phone numbers, etc) 

Argus-SAF Andrid application static analysis framework 

DroidRA Taming reflection to support whole-program analysis of android apps 

Androwarn Static code analyzer for malicious Android applications 

PScout Android permission mapping tool 

APK-MiTM CLI application that automatically prepares Android APK files for 

HTTPS inspection 

Super Android Analyzer Secure, unified ,Powerful, and Extensible Rust Android Analyze 

b) Dynamic Analysis 

Tool  Description  

AppMon Automated framework for monitoring and tampering system API calls 

based on Frida 

DroidBox Dynamic analysis of Android apps 

ConDroid Execute specific code locations with no app manual interaction 

Wireshark Network analysis tool 

tcpdump Network analysis tool 

MiTMProxy An interactive SSL/TLS-capable intercepting HTTP proxy (great for 

HTTPS inspection) 

Burp Suite The free web proxy for any browser, system, or platform 

INetSim Internet Services Simulation Suite 

c) Reverse Engineering 

Tool Description  

smali/baksmali  DEX disassembler 

AndroGuard Python-based tool for Android application reverse engineering 

Apktool Tool for disassembling, rebuilding, and reversing in an automated 

matter 

Dex2Jar  DEX to JAR conversion tool 

JD-GUI Graphical utility that displays Java sources from CLASS files 

http://www.ijsdr.org/
https://github.com/vincentcox/StaCoAn
https://github.com/dorneanu/smalisca
https://github.com/serval-snt-uni-lu/DroidRA
https://github.com/maaaaz/androwarn/
https://security.csl.toronto.edu/pscout/
https://github.com/JesusFreke/smali
https://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
https://github.com/java-decompiler/jd-gui
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JadX Dex to Java decompiler (command line and GUI) 

Krakatau Python-based decompiler and disassembler 

Procyon Command-line Java-based decompilation tool 

CFR Command-line Java-based decompiler and disassembler 

ndk-gdb GDB Android debugging 

Frida Dynamic instrumentation framework 

Dwarf Full-featured multi-arch/os debugger built on top of PyQt5 and Frida 

JEB Decompiler Android decompiler 

IDA Free/Pro Disassembler and debugger 

radare2 Free and open source disassembler and debugger 

Cutter GUI for radare2 

Binary Ninja A New Type of Reversing Platform 

d) Unpacking & Deobfuscation 

Tool  Description  

Quark Engine Obfuscation-Neglect Android malware scoring system 

DeGuard  Online Android deobfuscation tool 

Simplify Generic Android deobfuscator 

e) Forensics 

Tool  Description  

Andriller Utility with a collection of forensic tools for smartphones 

Mem  Android process memory dumper 

dd  Hard drive and SD card forensics acquisition tool 

Autopsy  Hard drive and SD card forensics analysis tool 

LiME Memory acquisition tool 

dwarfdump  Linux profile creation for Volatility 

Volatility Memory forensics analysis framework 

f) Other 

Tool  Description  

MobSF (Mobile Security 

Framework) 

Malware analysis and security assessment framework capable of 

performing static and dynamic analysis. 

MARA_Framework  Tool that puts together commonly used mobile application reverse 

engineering and analysis tools. 

Cuckoo Sandbox Free and open-source automated malware analysis sandbox. 

Cuckoo-Droid Cuckoo Sandbox extension for automated Android malware analysis 

Android Tamer VM/Live OS for Android security research and analysis 

Vezir-Project VM/Live OS for mobile security research and analysis 

Some popular malwares are:-[27] 

1. Viruses-- A virus is a type of malware that, when executed, self-replicates by modifying other computer programs and 

inserting their own code. 

2. Trojan Horse-- A trojan horse or trojan is any malware that misleads users of its true intent by pretending to be a legitimate 

program. 

3. Worms -- A computer worm is a self-replicating malware program whose primary purpose is to infect other computers by 

duplicating itself while remaining active on infected systems.  

4. Rootkit-- A rootkit is a collection of malware designed to give unauthorized access to a computer or area of its software 

and often masks its existence or the existence of other software.   

5. Ransomware-- Ransomware is a form of malware, designed to deny access to a computer system or data until ransom is 

paid. 

6. Keylogger--Keyloggers, keystroke loggers or system monitoring are a type of malware used to monitor and record each 

keystroke typed on a specific computer's keyboard. 

7. Grayware—The term grayware describes unwanted applications or files that aren't malware but worsen the performance 

of the computer and can cause cybersecurity risk.  

8. Fileless malware-- Fileless malware is a type of malware that uses legitimate programs to infect a computer. 

9. Adware-- Adware is a type of grayware designed to put advertisements on screen, often in a web browser or popup. It is 

the most popular malware for mobile phones and least harmful malware. 

10. Malvertising—It uses advertisements to spread malware. They inject malicious or malware-laden advertisements into 

legitimate advertising networks and webpages.  

11. Spyware--It is malware that gathers information about a person or organization, with or without their knowledge, and sends 

the information to the attacker without the victim's consent.  

12. Bots/botnets-- A bot is a computer that is infected with malware that allows it to be remotely controlled by an 

attacker. Botnet is the collection of bots. It is popular in spreading malwares like ransomware, keylogging etc.  

13. Wiper—A wiper malware is a type of malware which erases the user’s data and ensure that it can’t recover it. 

http://www.ijsdr.org/
https://github.com/skylot/jadx
https://github.com/Storyyeller/Krakatau
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
http://www.benf.org/other/cfr/
https://developer.android.com/ndk/guides/ndk-gdb
https://frida.re/
https://github.com/iGio90/Dwarf
https://www.pnfsoftware.com/jeb/android
https://www.hex-rays.com/products/ida/support/download.shtml
https://rada.re/r/
https://github.com/radareorg/cutter
https://binary.ninja/
https://github.com/quark-engine/quark-engine
http://apk-deguard.com/
https://github.com/CalebFenton/simplify
https://www.andriller.com/
https://github.com/MobileForensicsResearch/mem
http://man7.org/linux/man-pages/man1/dd.1.html
http://www.sleuthkit.org/autopsy/download.php
https://github.com/504ensicsLabs/LiME
https://manpages.ubuntu.com/manpages/trusty/man1/dwarfdump.1.html
https://github.com/volatilityfoundation/volatility
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/xtiankisutsa/MARA_Framework
https://cuckoosandbox.org/
https://github.com/idanr1986/cuckoo-droid
https://androidtamer.com/
https://github.com/oguzhantopgul/Vezir-Project
https://www.upguard.com/blog/computer-worm
https://www.upguard.com/blog/ransomware
https://www.upguard.com/blog/what-is-a-keylogger
https://www.upguard.com/blog/cybersecurity-risk
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14. TrickBot—It is banking trojan which steals the credentials, data and personal information. It deactivates the antivirus tools 

and cybersecurity measures. 

7. DIFFERENT TYPES OF MALWARE ATTACKS:  
a) Vulnerabilities: A software security flaw can be exploited by malware to obtain unauthorised access to the computer, device, 

or network. 

b) Backdoors: a security vulnerability, whether intentional or accidental, in networks, software, hardware, or systems. 

c) Drive-by downloads: Unintentional software downloads can happen with or without the end user's knowledge. 

d) Homogeneity: The likelihood of a successful worm spreading to further computers increases if every system is using the same 

operating system and is linked to the same network. 

e) Privilege escalation: An instance where a hacker gains elevated access to a computer or network and then makes use of it to 

launch an attack. 

f) Blended threats: Malware packages that contain traits from other malware types are more difficult to identify and stop because 

they can take use of a variety of vulnerabilities. 

8. HINDROID IN MALWARE ANALYSIS [2] :  
The malware program also does not need to be run for it to be detected. By analysing its opcode sequences and control flow graphs, 

we can determine whether it looks like known malware. Machine learning techniques are very successful in identifying the 

malwares. The defenders and research use different features like API calls, permissions etc for classification of malicious and benign 

apps. 

The HinDroid uses a static analysis method to identify malware. It employs heterogeneous graphs for the analysis. It only analyses 

the code instead of running a more dangerous dynamic analysis method to monitor the app's behaviour. In essence, we have to take 

the code out of an Android app. The .apk (Android Application Package) file extension is used for packaging and distributing 

Android programmes. The unreadable dex code files contained in this package can be decompiled into smali code, which ApkTool 

can then read and handle. To determine whether an app is malicious or not, parse the smali codes to obtain helpful information. 

This paper is focused on is API calls in smali codes. They are a layer of function calls that are abstract and can be inserted into code 

to perform any task the developer desires. Even though there are low-level APIs for string concatenation and string to integer 

conversion, the APIs that should alert us are those that require system rights or send HTTP queries to a suspicious IP address. 

 
Fig.1: System Architecture of Hindroid. 

Interpretation: 

The android apps are unzipped and decompiled initially to get the smali code. From this smali code the needed information is 

extracted to construct a Heterogeneous Information Network with a graph representation. The graph consists of two types of nodes 

and four types of edges. Every node inside the HIN represents either an App or an API. Every app node must not directly connect 

to other app nodes and is only allowed to connect to API nodes. The related APIs can be located inside the smali code of the App, 

according to this sort of edge. Other types of edges only exist between APIs. These edges are characteristics of smali code. 

http://www.ijsdr.org/
https://www.upguard.com/blog/privilege-escalation
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This model calculates similarities between apps and feeds the similarities to a SVM to form a decision boundary between two data 

classes. It constructs a Heterogeneous Information Network (HIN) to capture the relationships between apps and between APIs.  

The network consists of two node types and four edge types.  

 Edge type A connects apps to APIs if the API is used by that app.  

 Edge type B connects every pair of APIs that are co-appeared inside the same code block in every app.  

 Edge type P connects every pair of APIs that are from the same library (package).  

 Edge type I connects every pair of APIs that are using the same invoke method for present in every app.  

Every pair of APIs that co-occur in a code block within an application are connected by edge type B. Every pair of APIs from the 

same library (package) in every app is connected by an edge type P. Every pair of APIs that each use the identical invoke method 

and are present in every app are connected by edge type I. 

Each type of these edges will be represented by an adjacency matrix. To calculate the similarity, we formalize it as the number of 

common features that are both present in the HIN. If the similarity between two apps is high, there may be something to be said for 

it. We define this common feature as the number of metapaths between apps. A metapath starts from an app and ends with an app 

and it goes through a symmetric node path in the HIN.  

For example, 

 A-A means how many APIs are common within a pair of apps. 

 A-P-A means how many pairs of APIs (one API from a<sub>i</sub>, one API from a<sub>j</sub>) that use a common library.  

To generate the A adjacency matrix, we used a unique ID finder (src.utils.UniqueIdAssigner) that assigns an unique integer ID to 

each unique API. We then keep a set of API IDs that appear in an app for each app and save these sets as a sparse matrix. The table 

of the one-to-one association between API and ID is also saved. 

The number of meta-paths between the apps can then be calculated by multiplying the A matrix to other adjacency matrices and 

their appropriate inverses.  

Each time the prediction job is run, a new copy of the whole HIN graph is created. Later, we will divide the graph into four 

adjacency matrices that represent the four different kinds of edges. A matrix of adjacencies will serve as a representation for each 

type of these edges. The number of shared features that are both present in the HIN is how we formalise the similarity and calculate 

it. There might be a case for it if two apps have a lot of similarities to one another. The number of meta routes between apps is how 

we determine this common characteristic. A meta path traverses a symmetric node path in the HIN as it travels from an app to an 

app and back again.  

HinDroid considers that these meta routes signify a special characteristic shared by all programmes. The functionality or aim of 

two apps should be identical if they both contacted the same exact APIs within a block of source code, like in the case of the meta 

route A-B-A. Using this insight, we can observe that if an app is more similar to malware in terms of high similarity, we can be 

more certain that the mystery software should also be malware. In order to create these meta pathways, adjacency matrices are 

multiplied, and the resulting matrix is employed as a Gram matrix by the SVM method to determine the boundary between the two 

classes. 

9. SWOT ANALYSIS:  

a Strengths:  

 Hindroid analyses the relationships between the apps and API calls ,and also the relationship among the 

API calls.  

 Heterogeneous graphs used to represent the relationships. 

 

 It uses PathSim an extension to Dot product to represent the similarity defined on HIN. To identify the crucial 

pathways for entity grouping, PathSim is employed. 

b Weaknesses:  

 Improvements must be made to the classification's generalisation property. 

 It uses the supervised learning approach for the meta path weighting mechanism. 

 It fails for the malware familial classification. 

c Opportunities:   
We can improve the quality of Hindroid by improving the generalization property and by using 

unsupervised learning for metapath weighting. 

d Threats: 

 Malware detection becomes more complex as the style of attacks changes rapidly. 

 It needs to defend the HG Data from adversarial attack to enhance the HG based classifiers. 

10. CONCLUSION:  
The defenders and attackers are in a race as the style of attacks varies fastly.The capabilities and knowledge of the attackers 

improves and increases rapidly [18].The Hindroid uses HIN(Heterogeneous information network) to represent the relationships 

between Apps and APIs and metapaths are used to link the apps. Multikernel learning is used to aggregate the similarities. The 

experimental results promises that Hindroid outperforms the other detecting techniques and mobile security products. Hindroid 

has been incorporated into the Comodo Mobile Security product's scanning feature. [2]. The malware familial classification is 

lacking using Hindroid. Further studies are going on the basis of heterogeneous graphs and shows it success in detecting 

malwares. 
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