
ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 739

A Case Study on Android Malware Analysis using

Hindroid

Anu Varghese.1,2,Jagadeesha S.N.3

1 Research Scholar, College of Computer Science & Information Science, Srinivas University, Mangalore, India.
2Assistant Professor, Department of Computer Science, MES M K Mackar Pillay College for Advanced Studies, Aluva ,

(Mahatma Gandhi University), Aluva, Kerala, India.

ORCIDID: 0000-0001-7779-5436;
3Research Professor, College of Computer Science and Information Science, Srinivas University, Mangalore, Karnataka,

India. ORCIDID: 0000-0002-5185-2233;

Abstract:

Background/Purpose: The improvement in technology made the smart phone more familiar to common people and also

the current situation demands it. Most of the services are digitalized nowadays. This opened up a wide field for the hackers

or intruders and the rate of cyber-attacks and cyber-crimes are high. The malware has turned into a major industry as

hackers grow more sophisticated and professional. The defenders and hackers are in a race to defeat each other. Machine

learning based techniques has shown a higher rate in successful malware detection. In this paper discusses about Hindroid,

an intelligent android malware detection system based on structured heterogeneous information network, which uses a

static analysis method to identify malware. It analyses the various relationships in API calls and creates higher level

semantics.

Design/Methodology/Approach: SWOT framework is being used to analyse and display the information gathered from

scholarly articles, web articles, journals and other sources.

Findings/Results: Compared with other detection methods, Hindroid claims to outperform with 98.6% accuracy. It claims

99.01% detection rate compared to other security products like clean master, lookout, Norton etc

Originality/Value: This study gives an overview of Android Malware Analysis based on the various data collected.

Paper Type: Research Analysis based on Case Study

Keywords: Malware, Hindroid, API

1. INTRODUCTION:

With the improvements in hardware and software technology, there is a rapid increase in the usage of smart phones. Android mobile

phones are widely used. New statistics says that by 2027 the smartphones will account 76.9% market share (Fig.1). Almost all

services like bill payments, recharging, online shopping etc. are digitalized. It opened a new field of thefts for hackers, thereby the

number of cybercrimes and criminals has increased rapidly. Malware attacks are at its peak during the pandemic as most of the

services were online like online education for the students, work from home for employees, bill payments, online shopping,etc.

Android has always been the main target of hackers as it is an opensource software. They use malicious code for transmitting the

confidential information, to take up the control of the device, for financial gain, political interest, revenge etc. The malwares create

various threats like stealing user’s credentials, pushing unwanted apps or advertisements etc, to the smartphone users. Due to the

immense growth in the variety of Android malware, the researchers divide the malwares into various families to assist the malware

analysis. Malwares are classified based on their similarities in behaviour. The malware defenders need to be more vigilant as the

capabilities and knowledge of attackers increases faster.

Fig.1: shows number of Smartphone users from 2016-2027. (Source: statistica.com)

2. OBJECTIVES OF THE CASE STUDY:

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 740

The main objectives/aim of this study are:

1. To understand the android malware analysis methods.

2. To study the malware detection method using Hindroid

3. To study the effectiveness of heterogeneous graphs in malware analysis.

4. To identify the research gap

3. RELATED WORKS :
Numerous studies have been conducted to evaluate malware attacks.. In order to accelerate the malware analysis, the researchers

divide the malwares into various families, based on the similarities in behaviour, to assist the analysis. For example, some silently

transmits the confidential information to the remote server, some allows the hackers to control the device remotely. Table 1

summarises relevant research on android malware analysis based on the API Calls and apps, as well as the field, subject, and

citations of the work. The following table 1 shows the related works:

 Table 1: Related Works

Sl.

No.

Work Type of Analysis Features Used Reference

1. DroidDolphin Dynamic APE

[7]

2. CrowDroid Dynamic API System Calls [9]

3. CopperDroid Dynamic Operating system interactions &

intra and inter process

communication

[5]

4. CopperDroid Static Analysis of internal components

of an App.

[5]

5. DroidMat Static API Calls, Permission intent

messages

[8]

6. DroidMiner Static API Calls (associative

classifier)

[6]

7. αCyber Static API Calls [18]

8. DroidDelver Static API Calls [4]

9. AiDroid Static API Calls [23]

10. IntDroid Static API Calls [24]

4. METHODOLOGY :
Journals, conference papers, media articles and various public records were used to gather materials and data for this case study.

5. ANDROID MALWARE ANALYSIS– AN OVERVIEW:

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 741

Android is an open-source mobile operation system. It is based on a Linux kernel. The applications are written in Java and are

transformed into a slightly different format known as Dalvik. The apps are then run in the Dalvik virtual machine which provides

a layer of abstraction over the real hardware. Android applications are packed in the format .apk, which is a ZIP archive

containing the AndroidManifest.xml, resources like media files, the actual code as classes.dex and some other optional files.[25]

Malware is any piece of software that is harmful to the systems- worms, trojans, viruses etc. Malware analysis is the practical

way of understanding the behaviour and purpose of malicious code or suspicious URLs.

Android malware analysis can be classified as:

1. Static analysis

2. Dynamic analysis

3. Hybrid analysis

 5.1 Static Analysis

 Static analysis is also called Code analysis. It is performed by viewing the software code of the malware and walking through

it, instructions by instructions. It examines the files for signs of malicious intent without running the code. It can be useful to

identify malicious infrastructure, libraries, or packed files. Static analysis is signature -based analysis. It is also similar to

statistical based analysis. It involves virus scanning, fingerprinting etc. Reverse engineering is used for static analysis.

5.2 Dynamic Analysis

Dynamic analysis improves the static analysis in terms of result delivery. Dynamic analysis also known as behavioural analysis.

In dynamic analysis, the malicious code is executed in a safe and controlled environment called sandbox and studies how the

malware behaves when executed. It is more difficult to perform dynamic analysis as they may do unexpected changes to the

system and also most of the malware can hide their run time activities to an extent.

5.3 Hybrid Analysis
Hybrid analysis combines the techniques of both static and dynamic analysis and thereby covers each other’s drawbacks. In

other words, it analyses the signature of the malware and then continue the analysis by combining with various behavioural

patterns. Hybrid analysis helps to overcome the shortcomings of both static and dynamic analysis.

Android Malware Analysis Tools:

There are various android malware analysis tools. They are classified based on the techniques used for the analysis like static

analysis, dynamic analysis, reverse engineering, etc. Most popular ones are classified and listed below:[26]

a) Static Analysis

 Tool Description

ClassyShark Standalone android apps binary inspection tool

StaCoAn Mobile application static code analysis tool

SmaliSCA Smali static code analysis

maldrolyzer Simple framework to extract “actionable” data from Android malware

(C & Cs, phone numbers, etc)

Argus-SAF Andrid application static analysis framework

DroidRA Taming reflection to support whole-program analysis of android apps

Androwarn Static code analyzer for malicious Android applications

PScout Android permission mapping tool

APK-MiTM CLI application that automatically prepares Android APK files for

HTTPS inspection

Super Android Analyzer Secure, unified ,Powerful, and Extensible Rust Android Analyze

b) Dynamic Analysis

Tool Description

AppMon Automated framework for monitoring and tampering system API calls

based on Frida

DroidBox Dynamic analysis of Android apps

ConDroid Execute specific code locations with no app manual interaction

Wireshark Network analysis tool

tcpdump Network analysis tool

MiTMProxy An interactive SSL/TLS-capable intercepting HTTP proxy (great for

HTTPS inspection)

Burp Suite The free web proxy for any browser, system, or platform

INetSim Internet Services Simulation Suite

c) Reverse Engineering

Tool Description

smali/baksmali DEX disassembler

AndroGuard Python-based tool for Android application reverse engineering

Apktool Tool for disassembling, rebuilding, and reversing in an automated

matter

Dex2Jar DEX to JAR conversion tool

JD-GUI Graphical utility that displays Java sources from CLASS files

http://www.ijsdr.org/
https://github.com/vincentcox/StaCoAn
https://github.com/dorneanu/smalisca
https://github.com/serval-snt-uni-lu/DroidRA
https://github.com/maaaaz/androwarn/
https://security.csl.toronto.edu/pscout/
https://github.com/JesusFreke/smali
https://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
https://github.com/java-decompiler/jd-gui

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 742

JadX Dex to Java decompiler (command line and GUI)

Krakatau Python-based decompiler and disassembler

Procyon Command-line Java-based decompilation tool

CFR Command-line Java-based decompiler and disassembler

ndk-gdb GDB Android debugging

Frida Dynamic instrumentation framework

Dwarf Full-featured multi-arch/os debugger built on top of PyQt5 and Frida

JEB Decompiler Android decompiler

IDA Free/Pro Disassembler and debugger

radare2 Free and open source disassembler and debugger

Cutter GUI for radare2

Binary Ninja A New Type of Reversing Platform

d) Unpacking & Deobfuscation

Tool Description

Quark Engine Obfuscation-Neglect Android malware scoring system

DeGuard Online Android deobfuscation tool

Simplify Generic Android deobfuscator

e) Forensics

Tool Description

Andriller Utility with a collection of forensic tools for smartphones

Mem Android process memory dumper

dd Hard drive and SD card forensics acquisition tool

Autopsy Hard drive and SD card forensics analysis tool

LiME Memory acquisition tool

dwarfdump Linux profile creation for Volatility

Volatility Memory forensics analysis framework

f) Other

Tool Description

MobSF (Mobile Security

Framework)

Malware analysis and security assessment framework capable of

performing static and dynamic analysis.

MARA_Framework Tool that puts together commonly used mobile application reverse

engineering and analysis tools.

Cuckoo Sandbox Free and open-source automated malware analysis sandbox.

Cuckoo-Droid Cuckoo Sandbox extension for automated Android malware analysis

Android Tamer VM/Live OS for Android security research and analysis

Vezir-Project VM/Live OS for mobile security research and analysis

Some popular malwares are:-[27]

1. Viruses-- A virus is a type of malware that, when executed, self-replicates by modifying other computer programs and

inserting their own code.

2. Trojan Horse-- A trojan horse or trojan is any malware that misleads users of its true intent by pretending to be a legitimate

program.

3. Worms -- A computer worm is a self-replicating malware program whose primary purpose is to infect other computers by

duplicating itself while remaining active on infected systems.

4. Rootkit-- A rootkit is a collection of malware designed to give unauthorized access to a computer or area of its software

and often masks its existence or the existence of other software.

5. Ransomware-- Ransomware is a form of malware, designed to deny access to a computer system or data until ransom is

paid.

6. Keylogger--Keyloggers, keystroke loggers or system monitoring are a type of malware used to monitor and record each

keystroke typed on a specific computer's keyboard.

7. Grayware—The term grayware describes unwanted applications or files that aren't malware but worsen the performance

of the computer and can cause cybersecurity risk.

8. Fileless malware-- Fileless malware is a type of malware that uses legitimate programs to infect a computer.

9. Adware-- Adware is a type of grayware designed to put advertisements on screen, often in a web browser or popup. It is

the most popular malware for mobile phones and least harmful malware.

10. Malvertising—It uses advertisements to spread malware. They inject malicious or malware-laden advertisements into

legitimate advertising networks and webpages.

11. Spyware--It is malware that gathers information about a person or organization, with or without their knowledge, and sends

the information to the attacker without the victim's consent.

12. Bots/botnets-- A bot is a computer that is infected with malware that allows it to be remotely controlled by an

attacker. Botnet is the collection of bots. It is popular in spreading malwares like ransomware, keylogging etc.

13. Wiper—A wiper malware is a type of malware which erases the user’s data and ensure that it can’t recover it.

http://www.ijsdr.org/
https://github.com/skylot/jadx
https://github.com/Storyyeller/Krakatau
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
http://www.benf.org/other/cfr/
https://developer.android.com/ndk/guides/ndk-gdb
https://frida.re/
https://github.com/iGio90/Dwarf
https://www.pnfsoftware.com/jeb/android
https://www.hex-rays.com/products/ida/support/download.shtml
https://rada.re/r/
https://github.com/radareorg/cutter
https://binary.ninja/
https://github.com/quark-engine/quark-engine
http://apk-deguard.com/
https://github.com/CalebFenton/simplify
https://www.andriller.com/
https://github.com/MobileForensicsResearch/mem
http://man7.org/linux/man-pages/man1/dd.1.html
http://www.sleuthkit.org/autopsy/download.php
https://github.com/504ensicsLabs/LiME
https://manpages.ubuntu.com/manpages/trusty/man1/dwarfdump.1.html
https://github.com/volatilityfoundation/volatility
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/xtiankisutsa/MARA_Framework
https://cuckoosandbox.org/
https://github.com/idanr1986/cuckoo-droid
https://androidtamer.com/
https://github.com/oguzhantopgul/Vezir-Project
https://www.upguard.com/blog/computer-worm
https://www.upguard.com/blog/ransomware
https://www.upguard.com/blog/what-is-a-keylogger
https://www.upguard.com/blog/cybersecurity-risk

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 743

14. TrickBot—It is banking trojan which steals the credentials, data and personal information. It deactivates the antivirus tools

and cybersecurity measures.

7. DIFFERENT TYPES OF MALWARE ATTACKS:
a) Vulnerabilities: A software security flaw can be exploited by malware to obtain unauthorised access to the computer, device,

or network.

b) Backdoors: a security vulnerability, whether intentional or accidental, in networks, software, hardware, or systems.

c) Drive-by downloads: Unintentional software downloads can happen with or without the end user's knowledge.

d) Homogeneity: The likelihood of a successful worm spreading to further computers increases if every system is using the same

operating system and is linked to the same network.

e) Privilege escalation: An instance where a hacker gains elevated access to a computer or network and then makes use of it to

launch an attack.

f) Blended threats: Malware packages that contain traits from other malware types are more difficult to identify and stop because

they can take use of a variety of vulnerabilities.

8. HINDROID IN MALWARE ANALYSIS [2] :
The malware program also does not need to be run for it to be detected. By analysing its opcode sequences and control flow graphs,

we can determine whether it looks like known malware. Machine learning techniques are very successful in identifying the

malwares. The defenders and research use different features like API calls, permissions etc for classification of malicious and benign

apps.

The HinDroid uses a static analysis method to identify malware. It employs heterogeneous graphs for the analysis. It only analyses

the code instead of running a more dangerous dynamic analysis method to monitor the app's behaviour. In essence, we have to take

the code out of an Android app. The .apk (Android Application Package) file extension is used for packaging and distributing

Android programmes. The unreadable dex code files contained in this package can be decompiled into smali code, which ApkTool

can then read and handle. To determine whether an app is malicious or not, parse the smali codes to obtain helpful information.

This paper is focused on is API calls in smali codes. They are a layer of function calls that are abstract and can be inserted into code

to perform any task the developer desires. Even though there are low-level APIs for string concatenation and string to integer

conversion, the APIs that should alert us are those that require system rights or send HTTP queries to a suspicious IP address.

Fig.1: System Architecture of Hindroid.

Interpretation:

The android apps are unzipped and decompiled initially to get the smali code. From this smali code the needed information is

extracted to construct a Heterogeneous Information Network with a graph representation. The graph consists of two types of nodes

and four types of edges. Every node inside the HIN represents either an App or an API. Every app node must not directly connect

to other app nodes and is only allowed to connect to API nodes. The related APIs can be located inside the smali code of the App,

according to this sort of edge. Other types of edges only exist between APIs. These edges are characteristics of smali code.

http://www.ijsdr.org/
https://www.upguard.com/blog/privilege-escalation

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 744

This model calculates similarities between apps and feeds the similarities to a SVM to form a decision boundary between two data

classes. It constructs a Heterogeneous Information Network (HIN) to capture the relationships between apps and between APIs.

The network consists of two node types and four edge types.

 Edge type A connects apps to APIs if the API is used by that app.

 Edge type B connects every pair of APIs that are co-appeared inside the same code block in every app.

 Edge type P connects every pair of APIs that are from the same library (package).

 Edge type I connects every pair of APIs that are using the same invoke method for present in every app.

Every pair of APIs that co-occur in a code block within an application are connected by edge type B. Every pair of APIs from the

same library (package) in every app is connected by an edge type P. Every pair of APIs that each use the identical invoke method

and are present in every app are connected by edge type I.

Each type of these edges will be represented by an adjacency matrix. To calculate the similarity, we formalize it as the number of

common features that are both present in the HIN. If the similarity between two apps is high, there may be something to be said for

it. We define this common feature as the number of metapaths between apps. A metapath starts from an app and ends with an app

and it goes through a symmetric node path in the HIN.

For example,

 A-A means how many APIs are common within a pair of apps.

 A-P-A means how many pairs of APIs (one API from a_i, one API from a_j) that use a common library.

To generate the A adjacency matrix, we used a unique ID finder (src.utils.UniqueIdAssigner) that assigns an unique integer ID to

each unique API. We then keep a set of API IDs that appear in an app for each app and save these sets as a sparse matrix. The table

of the one-to-one association between API and ID is also saved.

The number of meta-paths between the apps can then be calculated by multiplying the A matrix to other adjacency matrices and

their appropriate inverses.

Each time the prediction job is run, a new copy of the whole HIN graph is created. Later, we will divide the graph into four

adjacency matrices that represent the four different kinds of edges. A matrix of adjacencies will serve as a representation for each

type of these edges. The number of shared features that are both present in the HIN is how we formalise the similarity and calculate

it. There might be a case for it if two apps have a lot of similarities to one another. The number of meta routes between apps is how

we determine this common characteristic. A meta path traverses a symmetric node path in the HIN as it travels from an app to an

app and back again.

HinDroid considers that these meta routes signify a special characteristic shared by all programmes. The functionality or aim of

two apps should be identical if they both contacted the same exact APIs within a block of source code, like in the case of the meta

route A-B-A. Using this insight, we can observe that if an app is more similar to malware in terms of high similarity, we can be

more certain that the mystery software should also be malware. In order to create these meta pathways, adjacency matrices are

multiplied, and the resulting matrix is employed as a Gram matrix by the SVM method to determine the boundary between the two

classes.

9. SWOT ANALYSIS:

a Strengths:

 Hindroid analyses the relationships between the apps and API calls ,and also the relationship among the

API calls.

 Heterogeneous graphs used to represent the relationships.

 It uses PathSim an extension to Dot product to represent the similarity defined on HIN. To identify the crucial

pathways for entity grouping, PathSim is employed.

b Weaknesses:

 Improvements must be made to the classification's generalisation property.

 It uses the supervised learning approach for the meta path weighting mechanism.

 It fails for the malware familial classification.

c Opportunities:
We can improve the quality of Hindroid by improving the generalization property and by using

unsupervised learning for metapath weighting.

d Threats:

 Malware detection becomes more complex as the style of attacks changes rapidly.

 It needs to defend the HG Data from adversarial attack to enhance the HG based classifiers.

10. CONCLUSION:
The defenders and attackers are in a race as the style of attacks varies fastly.The capabilities and knowledge of the attackers

improves and increases rapidly [18].The Hindroid uses HIN(Heterogeneous information network) to represent the relationships

between Apps and APIs and metapaths are used to link the apps. Multikernel learning is used to aggregate the similarities. The

experimental results promises that Hindroid outperforms the other detecting techniques and mobile security products. Hindroid

has been incorporated into the Comodo Mobile Security product's scanning feature. [2]. The malware familial classification is

lacking using Hindroid. Further studies are going on the basis of heterogeneous graphs and shows it success in detecting

malwares.

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 745

REFERENCES:
1. Droid Box. https://github.com/pjlantz/droidbox

2. Shibu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hindroid: An intelligent android malware detection system

based on structured heterogeneous information network.

https://www.kdd.org/kdd2017/papers/view/hindroid-an-intelligent-android-malware-detection-system-based-on-structure

3. Android malware analysis tools https://malwareanalysis.co/resources/tools/android

4. Shifu Hou, Aaron Saas, Yanfang Ye, and Lifei Chen. 2016. DroidDelver: An Android Malware Detection System Using Deep

Belief Network Based on API Call Blocks.

https://www.researchgate.net/publication/309173157_DroidDelver_An_Android_Malware_Detection_System_Using_Deep

_Belief_Network_Based_on_API_Call_Blocks

5. K. Tam, S. Khan, A. Fa‹ ori, and L. Cavallaro. 2015. CopperDroid: Automatic Reconstruction of Android Malware Behaviors.

https://www.ndss-symposium.org/wp-content/uploads/2017/09/02_4_1.pdf

6. Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. 2014. DroidMiner: Automated Mining and

Characterization of Fine-grained Malicious Behaviors in Android Applications

https://link.springer.com/chapter/10.1007/978-3-319-11203-9_10

7. Wen-Chieh Wu and Shih-Hao Hung. 2014. DroidDolphin: A Dynamic Android Malware Detection Framework Using Big

Data and Machine Learning.

https://doi.org/10.1145/2663761.2664223

8. D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu. 2012. DroidMat: Android Malware Detection through Manifest

and API Calls Tracing

https://scholar.google.com/citations?user=ZTqt02EAAAAJ&hl=en

9. Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid: Behavior-based Malware Detection System for

Android.

https://www.researchgate.net/publication/245022829_Crowdroid_Behavior-

Based_Malware_Detection_System_for_Android

10. N. Peiravian and X. Zhu. 2013. Machine Learning for Android Malware Detection Using Permission and API Calls.

https://www.researchgate.net/publication/262221913_Machine_Learning_for_Android_Malware_Detection_Using_Permissi

on_and_API_Calls

11. Lingwei Chen, Shifu Hou, and Yanfang Ye. Securedroid: Enhancing security of machine learningbased detection against

adversarial android malware attacks

https://www.researchgate.net/publication/321505502_SecureDroid_Enhancing_Security_of_Machine_Learning-

based_Detection_against_Adversarial_Android_Malware_Attacks

12. Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen, and Xue Li. Pme: Projected metric

embedding on heterogeneous networks for link prediction

https://www.kdd.org/kdd2018/accepted-papers/view/pme-projected-metric-embedding-on-heterogeneous-networks-for-link-

prediction

13. Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, and Melih Abdulhayoglu. Gotcha-sly malware!: Scorpion a metagraph2vec

based malware detection system

https://www.kdd.org/kdd2018/accepted-papers/view/gotcha-sly-malware-scorpion-a-metagraph2vec-based-malware-

detection-system

14. Tao-Yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in heterogeneous information networks for

representation learning.

https://www.researchgate.net/publication/320883245_HIN2Vec_Explore_Meta-

paths_in_Heterogeneous_Information_Networks_for_Representation_Learning

15. Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A survey on malware detection using data mining techniques.

https://www.researchgate.net/publication/318072021_A_Survey_on_Malware_Detection_Using_Data_Mining_Techniques

16. Yanfang Ye, Tao Li, Shenghuo Zhu, Weiwei Zhuang, Egemen Tas, Umesh Gupta, and Melih Abdulhayoglu. Combining file

content and file relations for cloud based malware detection.

https://www.researchgate.net/scientific-contributions/Melih-Abdulhayoglu-2081899254

17. Deqing Zou, Yueming Wu, Siru Yang, Anki Chauhan, Wei Yang, Jiangying Zhong, Shihan Dou, and Hai Jin. 2021. IntDroid:

Android Malware Detection Based on API Intimacy Analysis.

https://dl.acm.org/doi/abs/10.1145/3442588

18. Shifu Hou, Yujie Fan, Yiming Zhang, Yanfang Ye, Jingwei Lei, Wenqiang Wan, and Jiabin Wang, Qi Xiong, Fudong Shao.

2019. αCyber: Enhancing Robustness of Android Malware Detection System against Adversarial Attacks on Heterogeneous

Graph based Model

https://dl.acm.org/doi/10.1145/3357384.3357875

19. Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. PathSim: Meta Path-Based Top-K Similarity Search

in Heterogeneous Information Networks.

https://www.researchgate.net/publication/220538331_PathSim_Meta_Path-Based_Top-

K_Similarity_Search_in_Heterogeneous_Information_Networks

20. Aleksandar Bojcheski and Stephan Günnemann. 2019. Adversarial attacks on node embeddings.

https://www.researchgate.net/publication/330008793_Adversarial_Attack_and_Defense_on_Graph_Data_A_Survey

http://www.ijsdr.org/
https://github.com/pjlantz/droidbox
https://www.kdd.org/kdd2017/papers/view/hindroid-an-intelligent-android-malware-detection-system-based-on-structure
https://malwareanalysis.co/resources/tools/android
https://www.researchgate.net/publication/309173157_DroidDelver_An_Android_Malware_Detection_System_Using_Deep_Belief_Network_Based_on_API_Call_Blocks
https://www.researchgate.net/publication/309173157_DroidDelver_An_Android_Malware_Detection_System_Using_Deep_Belief_Network_Based_on_API_Call_Blocks
https://www.ndss-symposium.org/wp-content/uploads/2017/09/02_4_1.pdf
https://link.springer.com/chapter/10.1007/978-3-319-11203-9_10
https://doi.org/10.1145/2663761.2664223
https://scholar.google.com/citations?user=ZTqt02EAAAAJ&hl=en
https://www.researchgate.net/publication/245022829_Crowdroid_Behavior-Based_Malware_Detection_System_for_Android
https://www.researchgate.net/publication/245022829_Crowdroid_Behavior-Based_Malware_Detection_System_for_Android
https://www.researchgate.net/publication/262221913_Machine_Learning_for_Android_Malware_Detection_Using_Permission_and_API_Calls
https://www.researchgate.net/publication/262221913_Machine_Learning_for_Android_Malware_Detection_Using_Permission_and_API_Calls
https://www.researchgate.net/publication/321505502_SecureDroid_Enhancing_Security_of_Machine_Learning-based_Detection_against_Adversarial_Android_Malware_Attacks
https://www.researchgate.net/publication/321505502_SecureDroid_Enhancing_Security_of_Machine_Learning-based_Detection_against_Adversarial_Android_Malware_Attacks
https://www.kdd.org/kdd2018/accepted-papers/view/pme-projected-metric-embedding-on-heterogeneous-networks-for-link-prediction
https://www.kdd.org/kdd2018/accepted-papers/view/pme-projected-metric-embedding-on-heterogeneous-networks-for-link-prediction
https://www.kdd.org/kdd2018/accepted-papers/view/gotcha-sly-malware-scorpion-a-metagraph2vec-based-malware-detection-system
https://www.kdd.org/kdd2018/accepted-papers/view/gotcha-sly-malware-scorpion-a-metagraph2vec-based-malware-detection-system
https://www.researchgate.net/publication/320883245_HIN2Vec_Explore_Meta-paths_in_Heterogeneous_Information_Networks_for_Representation_Learning
https://www.researchgate.net/publication/320883245_HIN2Vec_Explore_Meta-paths_in_Heterogeneous_Information_Networks_for_Representation_Learning
https://www.researchgate.net/publication/318072021_A_Survey_on_Malware_Detection_Using_Data_Mining_Techniques
https://www.researchgate.net/scientific-contributions/Melih-Abdulhayoglu-2081899254
https://dl.acm.org/doi/abs/10.1145/3442588
https://dl.acm.org/doi/10.1145/3357384.3357875
https://www.researchgate.net/publication/220538331_PathSim_Meta_Path-Based_Top-K_Similarity_Search_in_Heterogeneous_Information_Networks
https://www.researchgate.net/publication/220538331_PathSim_Meta_Path-Based_Top-K_Similarity_Search_in_Heterogeneous_Information_Networks
https://www.researchgate.net/publication/330008793_Adversarial_Attack_and_Defense_on_Graph_Data_A_Survey

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 746

21. Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2019. Droidcat: Effective android malware detection and

categorization via app-level profiling.

https://ieeexplore.ieee.org/document/8519742

22. Lingwei Chen, Shifu Hou, Yanfang Ye, and Shouhuai Xu. 2018. Droideye: Fortifying security of learning-based classifier

against adversarial android malware attacks

https://www.researchgate.net/publication/328525416_DroidEye_Fortifying_Security_of_Learning-

Based_Classifier_Against_Adversarial_Android_Malware_Attacks

23. Yanfang Ye, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin Wang, Qi Xiong, and Fudong Shao. 2019. Out-

of-sample Node Representation Learning for Heterogeneous Graph in Real-time Android Malware Detection

https://www.ijcai.org/proceedings/2019/576

24. https://tsumarios.github.io/blog/2022/09/24/android-malware-analysis-lab

25. https://malwareanalysis.co/resources/tools/android

26. https://www.upguard.com/blog/types-of-malware

http://www.ijsdr.org/
https://ieeexplore.ieee.org/document/8519742
https://www.researchgate.net/publication/328525416_DroidEye_Fortifying_Security_of_Learning-Based_Classifier_Against_Adversarial_Android_Malware_Attacks
https://www.researchgate.net/publication/328525416_DroidEye_Fortifying_Security_of_Learning-Based_Classifier_Against_Adversarial_Android_Malware_Attacks
https://www.ijcai.org/proceedings/2019/576
https://tsumarios.github.io/blog/2022/09/24/android-malware-analysis-lab
https://malwareanalysis.co/resources/tools/android
https://www.upguard.com/blog/types-of-malware

