Safety, Tolerability, And Pharmacokinetics of Casimersen In Patients With Duchenne Muscular Dystrophy

Kalyani Madhukar Mali¹, Komal Sanjiv Mahajan²

Abstract: Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene resulting in the absence of dystrophin. Casimersen is a phosphorodiamidate morpholino oligomer designed to bypass frameshift DMD mutations and produce internally truncated, yet functional, dystrophin protein in patients amenable to exon 45 skipping. Our primary study objective was to evaluate safety and tolerability of casimersen; the secondary objective was to characterize the plasma pharmacokinetics.

INRODUCTION: - In DMD, frameshift or nonsense mutations in the DMD gene prevent the production of functional dystrophin, resulting in progressive, life-shortening disease. Management of DMD has involved a multidisciplinary approach to treat symptoms and modify disease progression; however, there is no cure for the disease [4] Antisense therapy using chemically engineered antisense oligonucleotides (ASOs) complementary to specific mRNA is a prominent method for treating neuromuscular disorders like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) [5,6]. ASOs can be used for RNA degradation, suppression of translation, or modulation of splicing [6]. Standard-of-care therapy for DMD includes the long-term use of glucocorticosteroids [7] One approach that has been investigated in the development of therapies for DMD has been to target restoration of the production of functional dystrophin, including using exon skipping. [4,8,9]. The approval, granted under the US FDA's Accelerated Approval Program, was based on an observed increase in dystrophin production in skeletal muscle in patients treated with casimersen [10]. Dystrophic muscle is not able to recover enough to overcome this loss, gradually leading to fibrotic remodelling and the replacement of muscle with fat [11] In addition to muscle weakness and loss of ambulation, DMD patients develop respiratory and cardiac weakness, requiring palliative care [12] An increase in dystrophin production is considered reasonably likely to predict clinical benefit; however, clinical benefit, including improved motor function, is yet to be established [13]. Continued approval of casimersen in the treatment of DMD may be contingent on verification of a clinical benefit in confirmatory trials. [10]

Features and properties of casimersen							
Alternative names	Amondys 45; SRP-4045						
Class	Antisense oligonucleotides; phosphorodiamidate morpholino						
	oligomers						
Mechanism of Action	Binds to exon 45 of dystrophin pre-mRNA; restores the open-						
	reading frame (by skipping exon 45) resulting in the production of						
	an internally truncated but functional dystrophin protein						
Route of Administration	Intravenous infusion						
Pharmacodynamics	Increases dystrophin levels in muscle tissues of patients with						
	Duchenne muscular dystrophy						
Pharmacokinetics	Exposure is approximately dose proportional over dose range of 4–						
	30 mg/kg; little to no accumulation with once-weekly dosing;						
	elimination half-life = 3.5 h; excretion is mostly (> 90%) via the						
	urine as unchanged drug						
Most common Adverse Effect	Upper respiratory tract infection, cough, pyrexia, headache,						
	arthralgia, and oropharyngeal pain						
WHO ATC code	M09A-X (Other drugs for disorders of the musculo-skeletal system)						
ATC codes							
EphMRA ATC codes	M5X (All other musculoskeletal products						

Table. 1

Drug(s)	Phase	Status Locations (S)		Sponsor	Identifer (S)
				(Collaborator)	
Casimersen, golodirsen,	III	Ongoing/recruiting	Multinational	Sarepta	NCT02500381;
placebo				Therapeutics	ESSENCE
Golodirsen, Casimersen	III	Enrolling by	Multinational	Sarepta	NCT03532542
		invitation		Therapeutics	
Casimersen, eteplirsen,	II	Enrolling by	USA	Kevin Flanigan	NCT04179409;
golodirsen		invitation		(Sarepta Kevin	SRPT-Dup US-
				Flanigan	001
				(Sarepta)	

Placebo, Casimersen	I /II	Completed	USA	Sarepta		NCT02530905	
	Thera		Inerap	beutics	ilcs		
		Table					
		DMD therapi	es examined				
Manufacturer	arer Type		Tech	Technology		regulatory	
Sarepta therapeutics	Gene	SRP-9001	AAV	AAVrh74		Phase III	
Pfizer	Gene	PF-069399	AAV AAV	AAV9		Phase III	
Solid biosciences	Gene	SGT-001	AAV	AAV9		Phase I/IIa	
Sarepta therapeutics	Exon-skipping	g Eteplirsen	PMO	РМО		Approved	
Sarepta therapeutics	Exon-skipping	g SRP-5051	PMO	РМО		Phase II	
Sarepta therapeutics	Exon-skipping	g Golodirser	n PMO	MO Appro		oved	
Sarepta therapeutics	Exon-skipping	g Casimerser	n PMO	PMO Appr		oved	
Nippon Shinyaku	Exon-skipping	g NS-089/N	CNP-02 PMC	PMO Phase		e I/II	
Nippon Shinyaku	Exon-skipping	g Viltolarsen	n PM0	PMO Approv		oved	
· · · · ·		2	n PMO		Approved		

Table .3

Pharmacodynamics: - Casimersen is designed to bind to exon 45 of the DMD gene pre-mRNA resulting in exclusion (or skipping) of this exon during mRNA processing [10]. In patients with genetic mutations that are amenable to exon 45 skipping, the action of casimersen is intended to allow for production of an internally truncated but functional dystrophin protein that can compensate for the lack of functional dystrophin in patients with DMD [10]

Pharmacokinetics: - Casimersen exposure is approximately dose proportional over the tested dose range of 4–30 mg/kg [14] Following a single IV dose, peak plasma concentrations are reached at the end of the infusion [10] Little to no accumulation of casimersen is observed with once-weekly dosing [14]

Current Status: - Casimersen received its first approval on 25 February 2021, in the USA (under the US FDA Accelerated Approval Program), for the treatment of DMD in confirmed mutation of the DMD gene that is amenable to exon 45 skipping []. Continued approval for this indication may be contingent upon verification of a clinical benefit in confirmatory trials. Reference: -

- 1. Shirley, M. (2021). Casimersen: first approval. Drugs, 81(7), 875-879.
- 2. Sheikh, O., & Yokota, T. (2021). Restoring protein expression in neuromuscular conditions: A review assessing the current state of exon skipping/inclusion and gene therapies for Duchenne muscular dystrophy and spinal muscular atrophy. *Bio Drugs*, *35*(4), 389-399.
- 3. Wagner, K. R., Kuntz, N. L., Koenig, E., East, L., Upadhyay, S., Han, B., & Shieh, P. B. (2021). Safety, tolerability, and pharmacokinetics of casimersen in patients with D uchenne muscular dystrophy amenable to exon 45 skipping: A randomized, double-blind, placebo-controlled, dose-titration trial. *Muscle & Nerve*, *64*(3), 285-292.
- 4. Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):13.
- 5. Bizot F, Vulin A, Goyenvalle A. Current status of antisense oligonucleotide-based therapy in neuromuscular disorders. Drugs. 2020;80(14):1397–415.
- Li D, Mastaglia FL, Fletcher S, Wilton SD. Precision medicine through antisense oligonucleotide-mediated exon skipping. Trends Pharmacol Sci. 2018;39(11):982–94
- 7. Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–67.
- 8. Datta N, Ghosh PS. Update on muscular dystrophies with focus on novel treatments and biomarkers. Curr Neurol Neurosci Rep. 2020;20(14):1–12.
- Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol. 2019;15(7):373– 86.
- 10. US FDA. Amondys 45 (casimersen) injection, for intravenous use: US prescribing information. 2021. https://www.accessdata. fda.gov/drugsatfda_docs/label/2021/213026lbl.pdf. Accessed 18 Mar 2021.
- 11. Klingler W, Jurkat-rott K, Lehmann-horn F, Schleip R. The role of fibrosis in Duchenne muscular dystrophy. Acta Myol. 2012; 31:184–95.
- 12. Korinthenberg R. A new era in the management of Duchenne muscular dystrophy. Dev Med Child Neurol. 2019;61(3):292-7.
- 13. US FDA. FDA approves targeted treatment for rare Duchenne muscular dystrophy mutation [media release]. 2021. https://www. fda.gov/news-events/press-announcements/fda-approves-targe ted-treatment-rare-duchenne-musculardystrophy-mutation-0. Accessed 18 Mar 2021.
- 14. Wagner K, Kuntz N, Koenig E, et al. Casimersen treatment in patients with Duchenne muscular dystrophy: safety, tolerability, and pharmacokinetics over 144 weeks of treatment [poster P.288]. In: World Muscle Society Virtual Congress. 2020