A COMPARATIVE STUDY OF A BUILDING WITH SHEAR WALL AND WITHOUT SHEAR WALL BY USING STAAD PRO

¹A.B. Dehane, ²Ankita D Telrandhe, ³Amit R. Admane, ⁴Dhananjay C. Thakare, ⁵Kirti R. Bhendare, ⁶Rutik P. Ugemuge, ⁷Shrikant V. Sontakke, ⁸Aditya S. Suralkar

UG student Civil Department B.D.C.E. Sewagram Wardha Maharashtra

Abstract- Shear wall is a firm and stiff member, is a structural component used generally around the lift areas. Shear wall has constructed from foundation base to the top of the structure. Shear wall are one of the most commonly used lateral load resisting in high rise building Theyresist in plane loads that are applied along its height. Shear walls are a form of structural system that provide a building or structure lateral resistance. They can with stand in-planeloads that are applied along the height of the structure. A diaphragm, collector, or drag member is used to transfer the applied load to the wall. This study focuses on the comparative study of a building model with shear wall and without shear wall at the center with the software approach. The study includes understanding the main consideration factor that leads the structure to perform poorly during resisting the lateral forces and till some extent the horizontal forces with and without It also includes the effects of lateral forces on the building model.

Keywords-lateral forces, shear wall, software approach, lateral resistance

INTRODUCTION

More and more people are shifting to bigger cities for better lifestyle and easy livelihood. This causes concentration of population in cities. Constant effort is being made to find habitable land. As habitable land is constant and not increasing to meet the ever growing demands of increasing population in cities. Horizontal growth is not possible. This leaves us with only option, rise vertically. This gives rise to tall high-rise structures. High rise building structures are both a necessity and a matter of sophistication and pride for structuralengineers. Buildings crossing 25 to 30 storeys are a common phenomenon these days. But what happens to a structure as it crosses these height limits? Forces of the nature in the form of earthquakes and cyclones starts playing brutal games with the structures. Shear Wall are one of the vital structural elements of a multi-storey building with majorfunction to introduce lateral stiffness in thebuilding. The increase in lateral stiffness results in high resistance towards lateral forces. Apart from that shear wall also accompanies with the structural elements carrying gravityloads in order to transfer it to the ground. Thiscauses reduction in reinforcement in those elements. Shear walls can be of various shapeand sizes and also can be placed at various position of building. The position of shear wallplays an important role in determining the behavior against lateral forces. In the design of high-rise building, the lateral system that resists wind and earthquake load often dominates. Reinforced concrete shear wall Shear cores are a typical sort of lateral system that is often organized around elevators and other vertically continuous building features. because of their high bearing capacity, high ductility and rigidity etc. The shear wall's shape and position have a considerable impact on the structural integrity behavior under lateral load.

LITERATURE REVIEW: -

1. M. S. Aainawala and Dr. P. S. Pajgade (2014) says that shear walls have a high in-plane stiffness and strength, allowing them to resist significant horizontal loads while still supporting gravity loads, making them useful in a variety of structural engineering applications. Fordifferent scenarios of shear wall position, an earthquake load is given to a building for G+12, G+25, and G+38 located inzones II, III, IV, and V. In all circumstances, lateral placement and taledrift are calculated. It was discovered that multistory R.C.C. buildings with shearwalls. [9]

2. Ashok Thakur and Arvinder Singh (2014) "Comparative Analysis of a Multistoried Residential Building with and Without Shear Wall using STADD Pro". The study in this paper is carried outwith the help of the STADD-pro softwarepackage. The buildings are modelled with a floor space of 216 sqm ($18m \times 12m$) with 6 bays every 3 m along the 18 m span and 4 bays every 3 m along the 12 m span. STAAD.PRO software is used to create the design. As a result, the primary goal of this study is to compare the structural system and orientation of structures with and without shear walls. There is a wealthof information accessible on the design and analysis of shear walls. However, there is little discussion in the literature onwhere the shear wall should be placed in a multi-story building.[1]

3. SajalSarkar&AxayThapa (2017)"Comparative Study of Multi- Storied RCC Building with And Without Shear Wall". In this paper, three models withvaried heights and with and without shear walls are created. With altering structural member dimensions according to height, G+5, G+10, and G+15 R-C frame models with and without shear walls are constructed. In STAAD.

Pro V8i, the models are examined using the Static Method and Response Spectrum Method in seismic zone V. The three approaches are used tocompute lateral displacement, story drift, base shear, and mode shapes for all models (with and without shear walls), and the efficiency of shear walls is enumerated. In addition, comparisons are made based on earlier studies conducted by the other authors. [13].

4. P. P. Chandurkar and Dr. P. S. Pajgade (2013)

"Seismic Analysis of RCCBuilding with and Without Shear Wall". The major goal of this work is to find a solution for shear wall placement in multi-story buildings. Four separate models were used to investigate the effectiveness of shear walls. The first model is a bare- frame structural system, whereas the other three are dual- Page 5 type structural systems. A ten-story building in zone II, zone III, zone IV, or zone V is subjected to an earthquake load. In both situations replacing column with shear wall, parameters such as lateral displacement, story drift, and total cost required for the ground level are determined.[12].

5. Himalee Rahangdale and S.R. Satone (2013) "Analysis and Design of Multistory Building with Effect of Shear Wall" Here in this paper the Study of G+5 Story building in Zone IV is presented with some preliminary investigation which is analyzed by changing various position of shear wall with different shapes for determine parameter likeaxial load and moments. The axial load on the column is affected by the placement of the shear wall. In the absence of a shear wall, the axial stress and moments on the column are at their highest. [5]

RESULT

RESULT OF BUILDING WITH SHEARWALL

FI 0000	BEAM	DE	UCICUT (M		
FLOORS		END	MIDDLE	END	HEIGHT (M
G.F.	7	0.266	1.22	0.287	1.5
	4	0.375	0.436	0.226	1.5
	15	0.411	0.667	0.395	1.5
1ST FLOOR	111	0.726	1.879	0.787	3
	108	0.993	-	0.436	3
	119	1.041	1.582	1.077	3
2ND FLOOR	266	1.053	2.238	2.005	6
3	272	1.529	1.672	1.672	6
	263	1.417	1	0.565	6
3RD FLOOR	426	1.242	2.015	1.35	9
ŝ	432	1.746	2.425	1.746	9
	423	1.653	-	0.642	9
4TH SLAB	573	1.296	1.827	1.407	12
	579	1.826	2.329	1.828	12
	570	1.705	-	0.662	12
FLOORS	BEAM	SHEAR FORCE		END	
	7	11.086	16.464	12.026	
G.F.	4	15.818	0.545	18.516	
	15	15.793	2.533	15.767	
1ST FLOOI	111	30.685	4.541	28.611	
	108	10.76	2.46	1.575	
conserve as	119	35.583	1.858	26.198	
	266	33.833	16.284	7.089	
	272	9.217	3.396	7.463	
	263	0.175	4.372	12.357	
	426	31.469	5.235	28.965	
	432	37.562	2.505	37.501	
	423	8.217	2.396	5.463	
4TH SLAE	573	12.439	4.17	12.065	
	579	24.028	2.231	24.515	
	570	0.226	4,453	12,438	

FLOORS	DEAM	BENDING MOMENT			
FLUUKS	BEAM	END	MAXIBM	END	
G.F.	7	11.086	16.464	12.026	
	4	4.86	4.845	7.829	
	15	7.741	6.461	7.702	
1ST FLOOR	111	24.425	15.363	20.96	
	108	2.719	7.867	2.719	
	119	16.973	11.148	14.559	
2ND FLOOR	266	27.565	13.468	12	
	272	6.08	4.537	3.363	
	263	10.189	2.436	4.412	
3RD FLOOR	426	25.273	16, 161	20.015	
	432	17.887	13,164	17.928	
	423	12.145	2.478	6.452	
4TH SLAB	573	9.291	12.266	8.508	
	579	10.559	9.792	11.449	
	570	9.463	3.255	5.325	

RESULT OF BUILDING WITHOUT SHEAR WALL

FLOORS	BEAM	DEF	HEIGHT (M		
		END	MIDDLE	END	TEIGHT (N
G.F.	7	1.266	1.5	1.287	1.5
	4	1.375	1.436	1.226	1.5
	15	1.411	1.667	1.395	1.5
1ST FLOOR	111	1.726	1.879	1.787	3
	108	1.993	0.556	1.436	3
	119	1.556	1.582	1.077	3
2ND FLOOF	266	1.882	2.238	2.005	6
	272	1.826	1.672	1.752	6
	263	1.417	12	0.565	6
3RD FLOOF	426	1.526	2.015	1.536	9
	432	1.923	2.425	1.856	9
	423	1.653	0.963	0.642	9
4TH SLAB	573	1.536	1.827	1.687	12
	570	1 0 6 4	0.000	1 500	10
	579	1.964	2.329	1.528	12
	579	1.964	0.654	1.662	12
FLOORS	570	1.925		1.662	12
FLOORS		1.925	0.654	1.662	12
FLOORS G.F.	570	1.925 DEF	0.654	1.662 MM	
	570 BEAM	1.925 DEF END	0.654 LECTION IN MIDDLE	1.662 MM END	12 HEIGHT (M
	570 BEAM 7	1.925 DEF END 1.266	0.654 LECTION IN MIDDLE 1.5	1.662 MM END 1.287	12 HEIGHT (M 1.5
	570 BEAM 7 4	1.925 DEF END 1.266 1.375	0.654 LECTION IN MIDDLE 1.5 1.436	1.662 MM END 1.287 1.226	12 HEIGHT (M 1.5 1.5
G.F.	570 BEAM 7 4 15	1.925 DEF END 1.266 1.375 1.411	0.654 LECTION IN MIDDLE 1.5 1.436 1.667	1.662 MM END 1.287 1.226 1.395	12 HEIGHT (M 1.5 1.5 1.5
G.F.	570 BEAM 7 4 15 111	1.925 DEF END 1.266 1.375 1.411 1.726	0.654 LECTION IN MIDDLE 1.5 1.436 1.667 1.879	1.662 MM END 1.287 1.226 1.395 1.787	12 HEIGHT (M 1.5 1.5 1.5 3
G.F. 1ST FLOOR	570 BEAM 7 4 15 111 108	1.925 DEF END 1.266 1.375 1.411 1.726 1.993	0.654 LECTION IN MIDDLE 1.5 1.436 1.667 1.879 0.556	1.662 MM END 1.287 1.226 1.395 1.787 1.436	12 HEIGHT (M 1.5 1.5 1.5 3 3 3
G.F. 1ST FLOOR	570 BEAM 7 4 15 111 108 119	1.925 DEF END 1.266 1.375 1.411 1.726 1.993 1.556	0.654 LECTION IN MIDDLE 1.5 1.436 1.667 1.879 0.556 1.582	1.662 MM END 1.287 1.226 1.395 1.787 1.436 1.077	12 HEIGHT (M 1.5 1.5 1.5 3 3 3 3
G.F. 1ST FLOOR	570 BEAM 7 4 15 111 108 119 266	1.925 DEF END 1.266 1.375 1.411 1.726 1.993 1.556 1.882	0.654 EECTION IN MIDDLE 1.5 1.436 1.667 1.879 0.556 1.582 2.238	1.662 MM END 1.287 1.226 1.395 1.787 1.436 1.077 2.005	12 HEIGHT (M 1.5 1.5 3 3 3 3 6
G.F.	570 BEAM 7 4 15 111 108 119 266 272	1.925 DEF END 1.266 1.375 1.411 1.726 1.993 1.556 1.882 1.826	0.654 EECTION IN MIDDLE 1.5 1.436 1.667 1.879 0.556 1.582 2.238	1.662 MM END 1.287 1.226 1.395 1.787 1.436 1.077 2.005 1.752	12 HEIGHT (M 1.5 1.5 1.5 3 3 3 6 6 6
G.F. LST FLOOR	570 BEAM 7 4 15 111 108 119 266 272 263	1.925 DEF END 1.266 1.375 1.411 1.726 1.993 1.556 1.882 1.826 1.417	0.654	1.662 MM END 1.287 1.226 1.395 1.787 1.436 1.077 2.005 1.752 0.565	12 HEIGHT (M 1.5 1.5 3 3 3 6 6 6 6 6

FLOORS	BEAM	BENDING MOMENT				
FLOORS		END	MAX BM	END		
G.F.	7	10.086	16.464	11.026		
	4	6.86	4.845	7.829		
	15	9.741	6.461	8.702		
1ST FLOOR	111	26.425	15.363	24.96		
	108	3.719	7.867	2.719		
	119	18.973	11.148	15.559		
2ND FLOOF	266	29.565	13.468	16.235		
	272	8.08	4.537	4.363		
	263	12.189	4.436	14.412		
3RD FLOOF	426	26.273	16.161	25.015		
	432	19.887	13.164	18.928		
	423	13.145	2.478	9.452		
4TH SLAB	573	8.291	12.266	8.508		
	579	11.559	9.792	11.449		
	570	11.463	3.255	9.325		

0.642

1.687

1.528

1.662

12

12

CONCLUSION

In results we have found that the building without shear wall has higher values of deflection, bending moment and shear wall.

1. The displacements are reduced in building with shear wall compared to building without shear wall.

423

573

579

570

4TH SLAB

1.653

1.536

1.964

1.925

0.963

1.827

2.329

0.654

- 2. The building with shear wall has more earthquake resistance compared to building without shear wall.
- 3. There is no variation on wind effect for with and without shear wall

REFERENCES:

- 1. M. S. Aainawala and Dr. P. S. Pajgade (2014) "Design of Multistoried R.C.C. Buildings without and with Shear Walls" International Journal of Innovative Research in Sciences, Engineering and Technology. Vol. 6, Issue 3 July 2014 (1)
- 2. Ashok Thakur and Arvinder Singh Comparative Analysis of a Multistoried Residential Building with and Without Shear Wall using STADD Pro.International Journals of nnovative Research in Science, Engineering and Technology. Vol. 1, Issue 3 June 2014 (2)
- 3. SajalSarkar&AxayThapa (2017) "Comparative Study of Multi- Storied RCC Building with And Without Shear Wall", International Journal of Innovative Research in Science, Engineering and Technology. Vol. 6, Issue 2 February 2017 (3)
- 4. P. P. Chandurkar and Dr. P. S. Pajgade "Seismic Analysis of RCC Building with and Without Shear Wall", International Journal of Innovative Research in Science, Engineering and Technology. Vol. 3, Issue 3 May 2013 (4)
- 5. Himalee Rahangdale and S.R. Satone (2013) "Analysis and Design of Multistory Building with Effect of Shear Wall", International Journal of Innovative Research in Science, Engineering and Technology. Vol. 6, Issue 3 May 2013 (5)