
ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1640

Advanced study of Shortest Route Problem and its

applications- bellman – ford algorithm

1Ramesh lempepatil, 2Vishwas V Rudraswamymath

Department Mathematics

Sharnbasva University Kalaburagi, India.

Abstract- Numerous shortest path graph analysis algorithms fall within the single source, single destination, or all pairs' categories.

When there is a single source, one such approach that fits into the first category is Dijkstra's algorithm, which can be used to

determine which node has the lowest cost. Negative weight cannot be used, though. In some scenarios, it can merely fail to deliver

the desired consequences. However, we must identify the shortest route between the networks in this project. For this, a number of

algorithms exist, including Bellman-Ford, A*, and Floyd-Warshall. It is a single source shortest path issue in Bellman-Ford, similar

to Dijkstra's, However, it has edges with negative weight. In the Floyd-Warshall algorithm, each node has the ability to function as

a source and can be used to find the shortest path between source and destination nodes, Floyd-Warshall will accurately assert that

there is no least weight path in the event of a negative cycle since the negative weight is unbounded. To put it briefly, Floyd-

Warshall is a suitable method for our system and will be used to generate the best route for every node pairing.

CHAPTER-1

SHORTEST PATH ALGORITHM

INTRODUCTION:

Networks can develop in a variety of contexts and ways, including in the ubiquitous Our daily lives are impacted by the

transportation, power, and communication networks. The representations of networks frequently used to solve issues in a variety of

fields, including resource management, project planning, facility location, transportation, production, and distribution of oil, among

others. It offers strong conceptual and visual support that is utilized to illustrate the interactions between the parts of systems in

almost every area of scientific, social, and economic effort. The extraordinarily quick advancement in both the technique and

implementation of network optimization models over the past few years has been one of the most fascinating breakthroughs in

operation research. Data structure and effective data manipulation have greatly benefited from a number of algorithmic innovations.

due to algorithms and Since software is now easily accessible, many formerly completely impractical routines can now be resolved.

The model takes into account everya component of the company, assisting management in planning and choosing varying degrees

at variousphases to the industry, such asknowing what to pay and what to charge. Because it aids in determining and observing the

flow of commodities from the industry to their destination, a network representation is crucial to an industry.

Graph theory has emerged as a significant tool for representing and analyzing a range of real-world issues. A graph in this sense is

composed of vertices.known as nodes and the connecting lines known as edges. In this project, the shortest path algorithm is being

used to find asolution for our system. In general, Any shortest path algorithm's categories can be split into three groups: single

source, single destination, and all pairings. The shortest route in a directed graph from each vertex to The single source leads to a

single destination.approach. By flipping the arcs, it can also be understood as a single source of issues. The final group, all pairs of

vertices, findevery pair of vertices' shortest path, if there are negative edges present, the one source problem can be handled using

algorithms like Dijkstra's and Bellman-Ford. The goal of every pair method, including Floyd-Warshall, is to identify the shortest

pathamong each pair of vertices. On the other hand, Floyd-Warshall is more helpful when dealing with thick graphs, such as actual

road networks.

SHORTEST PATH PROBLEM:

The goal of the shortest path problem in graph theory is to find a path between two vertices (nodes) of a graph where the weight of

each of its individual edges is reduced.

SHORTEST PATH ALGORITHM:

The group of algorithms referred to as "shortest path algorithms"is created to address the shortest path issue. Most people have

some intuitive acquaintance with the shortest path problem at this point. In computer science, the shortest path issue can take on a

variety of different shapes, necessitating the use of multiple techniques to resolve it.

In order to be straightforward and universal, shortest path algorithms often operate on an input graph G. A several vertices V and

the connecting edges E make up the graph. The graph is referred to asa graph that is weighted if the edges are weighted. The graph

is referred to as undirected when these edges are bidirectional. Even cycles can appear in a graph occasionally. Each This distinction

is what allows one algorithm to perform better than another on a certain type of graph.

The shortest path algorithm has several applications. As was already established, mapping programmer like Google or Apple Maps

use shortest path algorithms. The road network, operations and logistics research, and computer networks like the internet all depend

on the use of shortest path algorithms.

Any software that directs your route selection use some sort of shortest path algorithm. If you give Google Maps a beginning point

and an ending point, it will determine the shortest route.

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1641

SHORTEST PATH PROBLEM TYPES:

The following are some examples of shortest path issues:

1. Problem of the single-pair shortest path

2. Problem of the Single-Source Shortest Path

3.Single-Destination shortest path problem

4. The shortest path problem for all pairs

Problem of the single-pair shortest path

1. This shortest path issue involves calculating the distance between a pair of supplied vertices.

2. The well-known A*search technique is utilized to resolve the single pair the shortest path issue.

Problem of the Single-Source Shortest Path

1. This shortest path problem determines the shortest path from a specific source vertex to each of the remaining vertices.

2. Well-known techniques for resolving The Dijkstra algorithm and the Bellman Ford method are two solutions to the Single-Source

Shortest Path Problem.

Single-Destination shortest path problem:

1. Theshortest route between each vertex and a single destination the single-destination shortest path problem involves the

calculation of vertices.

2. The problem can be simplified to a single source shortest path problem by flipping the direction of each graph edge.

3. The shortest route problem with a single destination is resolved by the well-known Dijkstra's Algorithm.

The shortest path problem for all pairs:

1. This shortest path problem determines the shortest path between each pair of vertices.

2. Floyd-Warshall and Johnson's algorithms are two popular strategies for resolving the All-Pairs Shortest Path Problem.

Steps for Shortest path problem:

1. Assign variables to network nodes whose labels correspond to the nodes shortest distances from a given origin.

2. Assign origin as node-1, label it permanently as u1=0, and assign'm' to temporarily control the other nodes.

3. We compute for temporary label as uj = (uj, ui + dij) where node-j is momentarily labelled and distance dij smaller than

m.

4. Node-1 is permanently labelled and other nodes are briefly marked as m from node-1. Locate the smallest component of

the temporary label, such asui, and node-i will now be permanently labelled withui.

5. If every node is permanently nodded, or if every node is permanently labelled "fixed shortest path," then step 3 should be

taken.

Example on Shortest path problem

Find the shortest route between each of the other nodes and node 1

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1642

Solution: Assign 𝑢1= 0. Take it as permanent node. From node-1 it can reach node-3, node-2, and node-4. 𝑢2 = 𝑢3 = 𝑢4

Node (2) =𝑢2 = min(𝑢2, 𝑢1 + 𝑑12)

 = min (m, 0+2)

 𝑢2 = 2

Node (3) =𝑢3 = min(𝑢3, 𝑢1 + 𝑑13)

 = min (m, 0+4)

 𝑢3 = 4

Node (4) =𝑢4 = min(𝑢4, 𝑢1 + 𝑑14)

 = min (m, 0+10)

 𝑢4= 10

The smallest labeled is 𝑢2 = 2

𝑢2 Is permanently labeled. From 𝑢2 we are reaching to 𝑢4 and 𝑢5

Node (4) =𝑢4 = min(𝑢4, 𝑢2 + 𝑑24)

 = min (m, 2+11)

 𝑢4= 13

Node (5) =𝑢5 = min(𝑢5, 𝑢2 + 𝑑25)

 = min (m, 2+5)

 𝑢5= 7

The smallest label is 7 i.e., 𝑢5= 7 is permanently labeled.

From node-5 we can reach to 𝑢7 only,

Node (7) =𝑢7 = min(𝑢7, 𝑢5 + 𝑑57)

 = min (m, 7+6)

 𝑢7= 13

Therefore, the smallest path is

1 → 2 → 5 → 7

∴ The cost is 2 + 5 + 6 = 13

CHAPTER-2

ALGORITHM ANALYSIS

Dijkstra’s Algorithm:

Dijkstra's algorithm is one of the most popular methods for finding the shortest path between any two vertices on a graph or for

solving a variety of single-source shortest path issues with non-negative edge weight in graphs.

Dr. Edsger W. Dijkstra, a talented Dutch computer scientist and software developer, developed and published this technique.

His innovative technique was described in a three-page article he wrote in 1959 titled "A comment on two problems in connection

with graph"

Dijkstra's Algorithm's fundamentals

• The source node you choose is where Dijkstra's Algorithm begins, andexamines the graph to identify the node's shortest

route to each other node in the network.

• The algorithm modifies the reported shortest distance between each node and the source node if it finds a shorter path.

• Once the algorithm has identified the shortest path between a node and another node, the node is added to the path and

marked as "visited"

• The process will continue until all of the graph's nodes have been added to the path. Now we have a path that in this way

connects the source node to every other node.

Only positive weight graphs can be used with Dijkstra's algorithm. This is because in order to identify the shortest path, the weight

of the edges must be applied during the procedure.

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1643

The algorithm won't function properly if the network contains a negative weight. The current route to a node is designated as the

quickest route to that node once it has been registered as "visited." And if the total weight is reduced after this step, negative weights

can change this.

Define dij> 0, and let uibe the shortest distance between source node 1 and node i. The algorithm specifies the label for a node j

that succeeds it immediately as the length of r (i, j).i.e, [uj, i] = [ui + dij, j],dij ≥ 0

The initial node's label reads [0, -], designating it as the predecessor. There are two sorts of labels in the Dijkstra algorithm: 1.

Temporary 2. Consistent

1. If the shortest path to the node can be found otherwise, a temporary label at a node is changed to a permanent one.

2. Permanently affix the label [0 -] from set i=1 to source node 1.

Basic Actions

1. calculate the interim labels [ui+dij, j] for each node j with dij > 0 provided j is not permanently labeled. If node j already

has an existing temporary label [uj,k] through another node k and if [ui+dij, j]< ui replace [uj,k] with [ui+dij, j]

2. If every node has a permanent label, the operation should be stopped; otherwise, choose the temporary label [ur,s] with

the shortest distance from all the other temporary labels, set i=r, and go back to step 1.

Example:

The network provides a path that is permeable as well as their lines in kilometers between city 1 (node 1) and seven other cities

(node2, node3, node4, node5, node6, node7, node8) The shortest path between city1 and each of the other five cities should be

found.

Solution;Put [0 -] as the label's permanent form.

Iteration 1:

The list of labelled nodes becomes shorter since Node A (the last permanent labelled node) can be reached from Nodes B and C.

(temporary and permanent).

NODES LABEL STATUS

A [0 A] Permanent

B [0+6, A] Permanent

C [0+7, A] Temporary

Because node B is closer to the two temporary labels [6, A] and [7, A] (uB=6), its status has been changed from temporary to

permanent.

Iteration 2:

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1644

Since Node B permanent labelled node can be reached from Nodes C and E, the list of labelled nodes becomes (temporary and

permanent).

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Temporary

C [6+4, B] Temporary

E [6+11, B] Temporary

Node C is a temporary label [7, A] received in iteration 1 remains the same since node 3 retains another label [10, B] in iteration2

and the label [7, A] has the lowest distance.

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [17, B] Temporary

Since node C offers the smallest distance, uC=7, it has been made permanent.

Iteration 3:

Node C permanently lebeled and it extended to Node D and Node E

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [17, B] Temporary

D [7+8,C] Temporary

E [7+7,C] Temporary

Node E is temporary labeled from iteration2 is thus [14,C] obtained from iteration 3. Thus Node E yields shortest distance 𝑢𝐸 = 14

thus we change node E to permanently labeled. The list of labeled becomes;

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15,C] Temporary

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1645

Iteration 4:

Node E connected to Node F and node H. Thus, the list of labeled node becomes;

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Temporary

F [14+2,E] Temporary

H [14+7,E] Temporary

Node F submit the shortest distance from node E, thus node F 𝑢𝐹=16 becomes permanent. The list of label becomes;

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Temporary

F [16,E] Permanent

H [21,E] Temporary

Iteration 5:

Node F is connected to node G and node H. The list of labeled node becomes;

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Temporary

F [16,E] Permanent

H [21,E] Temporary

G [16+2, F] Temporary

H [16+4,F] Temporary

Node H is temporary labeled [20, F] obtained from iteration 5, [21, E] is obtained in iteration 4 indicates the shortest route through

nodeE. The shortest distance is node G (𝑢𝐻=20) labeled [20,F], thus we have

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1646

D [15, C] Temporary

F [16,E] Permanent

H [20,F] Temporary

G [18, F] Permanent

Iteration 6: Node H is connected to Node G

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Temporary

F [16,E] Permanent

H [20,F] Temporary

G [18, F] Permanent

H [18+7,G] Temporary

In iteration 5 Node H is temporarily labeled [20,F], in iteration 6 it is [25,G], then the smallest one is [20,F]

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Temporary

F [16,E] Permanent

H [20,F] Permanent

G [18, F] Permanent

Iteration 7:

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Temporary

F [16,E] Permanent

H [20,F] Permanent

G [18, F] Permanent

We make node D (uD=15) status permanent because node D can only be accessed by node C.

NODE LABEL STATUS

A [0, A] Permanent

B [6, A] Permanent

C [7, A] Permanent

E [14, C] Permanent

D [15, C] Permanent

F [16,E] Permanent

H [20,F] Permanent

G [18, F] Permanent

All of the lists now have a permanent status.

As a result, the answer to the question of what is the shortest distance between node A and any other node in the network is

NODES ROUTES DISTANCE

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1647

A A 0

B A-B 6

C A-C 7

D A-C-D 15

E A-C-E 14

F A-C-E-F 16

G A-C-E-F-G 18

H A-C-E-H 21

Applications of Dijkstra’s Algorithm

Dijkstra's algorithm has several practical applications, some of which are listed below:

1. Google Maps' digital mapping services:G-Maps has been used numerous times to calculate the distance between two

cities or between your current location and the closest desirable destination. The Shortest Path Algorithm is used because th ere

are many ways to get from one place to another, yet it needs to show the shortest distance. The shortest distance between any

two places on the path is found using Dijkstra's Algorithm. This method can be used to find the shortest routes inside India,

between any two cities or locations, as well as between any two cities or locations. Imagine India as a graph, with each city or

location representing a vertex, and the distance between each vertex and each location as an edge.

2. Social networking applications: Many programmes include a list of friends that a given user might know, as you may

have observed. How successfully do you think many social media companies will integrate this feature given that the system has

more than a billion users? The traditional Dijkstra algorithm can be used to find the user-to-user shortest path, as indicated by

handshakes or connections between them. When the social networking graph is tiny, various factors are used with the traditional

Dijkstra's algorithm to determine the shortest pathways. The employment of alternative sophisticated algorithms is necessary

since the regular approach becomes increasingly slower as the graph gets bigger.

3. Telephone Network:Every line in a telephone network has a bandwidth, ab, as we are all aware. Depending on its

bandwidth, a transmission line can support frequencies up to a certain limit. Typically, the signal is weaker along a certain line

if the frequency of the signal is higher along that line. Bandwidth is a unit of measurement for the volume of data that can be

sent through a line. Switching stations would be the nodes, transmission lines would be the edges, and the weight of the edge s

would be the value "b" if we were to visualize a city as a graph. As you can see, the Dijkstra algorithm can be used to resolve it.

It can be categorized as a shortest distance problem.

4. Find IP routing Open Shortest Path First (OSPF) is a link-state routing protocol that chooses the best path between

the source and destination routers using its proprietary Shortest Path First algorithm. Dijkstra's technique is extensively u sed in

routing protocols, which routers utilize to update their forwarding tables. The method presents the cheapest path away from the

starting router to the other routers in the network.

5. Flighting Agenda:Consider the situation when someone needs software to generate a flight itinerary for customers.

The agent has access to a database of all airports and flights. Along with the flight number, origin airport, and destination, the

flights also offer the departure and arrival timings. Given the airport of origin and the start time, the agent wishes to know the

earliest arrival time at the destination. There, this algorithm is employed.

6. Choose a file server: On a LAN, a file server can be chosen using Dijkstra's algorithm (local area network). Keep in

mind that transferring files across computers takes an interminable length of time. The objective is to use Dijkstra's algori thm to

reduce the shortest path between the networks, producing the fewest possible "hops" from the file server to each other comput er

on the network.

7. Robotic Path: It is now possible to use robots and drones, some of which are automated and others of which are

manual. The robot or drone moves in the requested direction by choosing the shortest path when the source and destination are

known, continuing to deliver the cargo in the quickest period of time. Automated drones and robots that are employed for jobs

or to deliver products to certain areas are equipped with this algorithm module.

BELLMAN – FORD ALGORITHM:

In a weighted directed network, the shortest path is found using the Bellman-Ford algorithm, a single source method.The shortest

path between one source and several destinations is what we mean when we say that a single source algorithm exists. Contrary to

Dijkstra’s, it takes into account even negative edge weights. In this approach, a low value path can be formed if. All edges are

simply relaxed by this algorithm until |v|-1 is reached. The number of vertices with accurately calculated distances increases with

repetitions, and eventually all vertices will have accurate distances. This is one of the explanations for the wider class of inputs to

which this method is used. Additionally, it improves system performance by allowing traffic to be dividedacross multiple routes.

This algorithm struggles to scale. Network topology can be altered, however due to the slow propagation of information from node

to node, the modifications are not immediately apparent. Additionally, if a node fails and becomes inaccessible to some other nodes,

those nodes may spend all of eternity increasing their estimations in order to reach the failed node. These problems are known as

the "count to infinity" problems.

Find the shortest routes between the given graph's source vertex (src) and each of its vertices.

Negative weight edges could be present in the graph

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1648

ALGORITHM:

Graph input with src as the source vertex

Shortest distance from src to all vertices is the output. The shortest distance is not determined and a negative weight cycle is given

if there is one.

1. In this stage, the distance to the source is set to 0 and the distances to all other vertices are initialized as infinite. These values

will be kept in the array dist [] of size v.

2. In order to determine the shortest distances, multiply the following by |v|-1 Follow these steps for each edge u-v

 If dist. [v] >dist. [u] + weight of u-v

 dist. [v] = dist. [u] + the weight of the u-v

3. This stage informs you if the graph has a negative weight cycle.

 Follow these steps for each edge u-v

 There is a negative weight cycle in the graph if dist. [v] >dist. [u] + weight of edge u-v.

Example:

Take A as the source vertex, which we will set to 0. Set all source distances to their initial values. Since there are 6 total vertices in

the graph, all edges must be processed 4 times.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

0

∞

∞
∞

∞

∞

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1649

Process all edges as follows: (A, B), (A, C), (A, D), (B, E), (C, B), (C, E), (D, C), (D, F) (E, F). When all edges are first processed,

the following distances are obtained. Using the equationdist. [v] =dist. [u] + weight of edge u-v

Taking the minimum distance from the above distance

A B C D E F

0 1 3 5 5 4

Process all edges as follows: (A, B), (A, C), (A, D), (B, E), (C, B), (C, E), (D, C), (D, F) (E, F). When all edges are second processed,

the following distances are obtained. Using the equation

dist. [v] = dist. [u] + weight of edge u-v

Taking from (D, F)

dist. [F] = dist. [D] + weight of edge D-F

d (F)= 5-1=4

Taking from (A, B)

dist[B] = dist[A] + weight of edge A-B

d(B)= 0+6= 6

Taking from (A, C)

dist[C] = dist[A] + weight of edge A-C

d(C)= 0+4=4

Taking from (A, D)

dist[D] = dist[A] + weight of edge A-D

d(D)= 0+5= 5

Taking from (B, E)

dist[E] = dist[B] + weight of edge B-E

d(E)= 6-1= 5

Taking from (C, E)

dist[E] = dist[C] + weight of edge C-E

d(E)= 4-2= 2

Taking from (D, C)

dist[C] = dist[D] + weight of edge D-C

d(C)= 5-2= 3

Taking from (D, F)

dist[F] = dist[D] + weight of edge D-F

d(F)= 5-1=4

Taking from (E, F)

dist[F] = dist[E] + weight of edge E-F

d(F)= 5+3=8

Taking from (C, B)

dist[B] = dist[C] + weight of edge C-B

d(B)= 5-1=4

Taking from (A, B)

dist[B] = dist[A] + weight of edge A-B

d(B)= 0+6= 6

Taking from (A, C)

dist[C] = dist[A] + weight of edge A-C

d(D)= 0+4=4

Taking from (A, D)

dist[D] = dist[A] + weight of edge A-D

d(D)= 0+5= 5

Taking from (B, E)

dist[E] = dist[B] + weight of edge B-E

d(E)= 1-1= 0

Taking from (C, E)

dist[E] = dist[C] + weight of edge C-E

d(E)= 3+3= 6

Taking from (D, C)

dist[C] = dist[D] + weight of edge D-C

d(C)= 5-2= 3

1

0

3

5

5

4

Taking from (E, F)

dist[F] = dist[E] + weight of edge E-F

d(F)= 0+3=3

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1650

Taking minimum distance from the above distance.

A B C D E F

0 1 3 5 0 3

Taking minimum distance from the above distance.

A B C D E F

0 1 3 5 0 3

After third iteration, the second and third iteration are same there is no need to perform all iteration. The values remain same.

Taking from (C, B)

dist[B] = dist[C] + weight of edge C-B

d(B)= 3-2=1

Taking from (A, B)

dist[B] = dist[A] + weight of edge A-B

d(B)= 0+6= 6

Taking from (A, C)

dist[C] = dist[A] + weight of edge A-C

d(D)= 0+4=4

Taking from (A, D)

dist[D] = dist[A] + weight of edge A-D

d(D)= 0+5= 5

Taking from (B, E)

dist[E] = dist[B] + weight of edge B-E

d(E)= 1-1= 0

Taking from (C, E)

dist[E] = dist[C] + weight of edge C-E

d(E)= 3+3= 6

Taking from (D, C)

dist[C] = dist[D] + weight of edge D-C

d(C)= 5-2= 3

Taking from (D, F)

dist[F] = dist[D] + weight of edge D-F

d(F)= 5-1=4

Taking from (E, F)

dist[F] = dist[E] + weight of edge E-F

d(F)= 0+3=3

Taking from (C, B)

dist[B] = dist[C] + weight of edge C-B

d(B)= 3-2=1

1 0

0

3

3 5

0 1

3

0

3
5

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1651

Vertex Distance from Source

A 0

B 1

C 3

D 5

E 0

F 3

Applications of Bellman-Ford Algorithm:

• It is utilized by distance-vector routing techniques like Routing information protocols (RIPs).

• The maximum weighted matching problem employs it.

• It is applied to the shortest path issue for all couples.

• Calculating the least amount of heat gain or loss during chemical processes.

• Determining the most effective currency conversion technique.

FLOYD’S ALGORITHM:

The Floyd-Warshall algorithm is also known as Floyd's and Roy-Warshall algorithms.The shortest path in a weighted graph can be

found using this graph analysis approach, which is also used to identify the transitive closure of the relation R. Edge weights on a

weighted graph might be either positive or negative (but with no negative cycle). A single execution of the procedure calculates

the total length of all the shortest paths connecting every single pair of vertices in the graph; as a result, it does not return information

about the actual paths. The Floyd-Warshall algorithm will be applied to locate every pair of vertices in the graph. This approach

uses adjacency matrices rather than adjacency lists and is competitive for dense graphs. Consider the following example of TSP

provided by W: Display the directed, edge-weighted adjacency matrix of the graph.

(

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

)

𝑤𝑖𝑗is the edge's weight (i,j), or infinite if there isn't an edge at all.

Give back a matrix D with each entry being dijis d(i,j). might potentially return a predecessor matrix, P, where each item,pij,

represents j's shortest-path predecessor on the left. Think about a path's intermediate vertices;

Assume for the moment that we are aware of the shortest path's length, which only has intermediate vertex numbers 1, 2, 3, k-1.

Floyd's algorithm, which finds the shortest path between any two network nodes, is more versatile than Dijkstra's approach. The

approach yields the finite distance d ij from node I to node j and represents a n node network as a square matrix. If I and j are

directly connected and ∞otherwise.

It is shortest to go through k when there are three nodes, I j, and k, with connection lengths listed on.

If 𝑑𝑖𝑘 + 𝑑𝑘𝑗 = 𝑑𝑖𝑗

Applying this triple operation exchange on the distance is done using the following steps:matrix in order to replace the direct route

from i to j with the indirect route I to k, k to j,

(i → k → j)

Step 1: Set k=1 and defineD0as the shortest distance matrix and node square matrix, respectively.

𝑑𝑖𝑘
𝑑𝑘𝑗

𝑑𝑖𝑗

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1652

 1 2 3 …… j ….. n

D0 = 1 - 𝑑12 𝑑13 …… 𝑑1𝑗 ….. 𝑑1𝑛

 2 𝑑21 - 𝑑23 …… 𝑑2𝑗 ….. 𝑑2𝑛

 3 𝑑31 𝑑32 - …… 𝑑3𝑗 …… 𝑑3𝑛

 : : :

 : : :

 i 𝑑𝑖1 𝑑𝑖2 𝑑𝑖3 ……………… 𝑑𝑖𝑛

 : : : :

 : : : :

 n 𝑑𝑛1 𝑑𝑛2 𝑑𝑛3 ……………… 𝑑𝑛𝑛

 1 2 … . .𝑗 … … 𝑛

Step 2 : Apply the triple operation to each element d ij in D (k-1) for all I & j such that. Define row k and column k as pivot rows

and pivot columns.

𝑑𝑖𝑘 + 𝑑𝑗𝑘 < 𝑑𝑖𝑗 (𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘) &(𝑖 ≠ 𝑗)

Step 3 : S (k-1) becomes s k by substituting s ij with k. By expressing D (k-1) here, row k and column k determined by the current

pivot row and columnDij=min(Dij, DiK+DjK), step 2 of the method can be described. Set k = k+1, If k = m+1 then halt, else repeated

step 2.

If some of the pivot row & column is less than the related intersection, the triple operation can be used. The direction refers to it as

a portion of the pivot distance while determining the quickest route from node I to node j using the matrixDn&Sn

EXAMPLE

Find shortest distance for all-pairs of vertices

1

2

3

:

:

Row i

Row k

Row p

 Pivot
…..

…..

…..

𝑑𝑖𝑗

𝑑𝑘𝑗

𝑑𝑝𝑗

𝑑𝑖𝑘

:

:

:

𝑑𝑝𝑘

𝑑𝑖𝑞

𝑑𝑘𝑞

𝑑𝑝𝑞

− 2 … … 𝑗 … … 𝑛
1 − … … 𝑗 … … 𝑛
⋮ : − : : :
: : : : : :

1 2 … … 𝑗 … … −

-2

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1653

Make a matrix of size 5*5, with 5 representing the number of vertices. The numbers I and j are listed for the row and column,

respectively. The graph's vertices are I and j.

There is a distance from vertex I to vertex j in each cell D[i][j]. The cell is left as infinity if there is no path connecting the ith and

jth vertex.

Now select first row and first column

 𝐷0 =

Create matrix D 1 now by utilizing matrix D 0. The first row and column's component are left in their current state.Then finding

the remaining value by using formula 𝑑𝑖𝑗 = min (𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗)

Where 𝑑𝑖𝑘&𝑑𝑘𝑗 are corresponding elements of selected row and column.

𝑑23 = min (5, ∞ + ∞) = 5,

𝑑24 = min (8 , 7 + ∞) = 8

𝑑25 = min(−4, ∞ + ∞) = −4

𝑑32 = min(−2, 6 + ∞) = −2

𝑑34 = min (∞, 7 + ∞) = ∞

𝑑35 = min(∞, ∞ + ∞) = ∞

Now replacing value with minimum value

 𝐷1 =

Now select second row and second column

 1 2 3 4 5

1 - 6 ∞ 7 ∞

2 ∞ - 5 8 -4

3 ∞ -2 - ∞ ∞

4 ∞ ∞ -3 - 9

5 2 ∞ 7 ∞ -
 1 2 3 4 5

1 - 6 ∞ 7 ∞

 2 ∞ - 5 8 -4

3 ∞ -2 - ∞ ∞

4 ∞ ∞ -3 - 9

5 2 ∞ 7 ∞ -

 1 2 3 4 5

1 - 6 ∞ 7 ∞

 2 ∞ - 5 8 -4

3 ∞ -2 - ∞ ∞

4 ∞ ∞ -3 - 9

5 2 8 7 9 -
 1 2 3 4 5

1 - 6 ∞ 7 ∞

2 ∞ - 5 8 -4

3 ∞ -2 - ∞ ∞

4 ∞ ∞ -3 - 9

-4 -3

𝑑23 = min (5, ∞ + ∞) = 5,

𝑑24 = min (8 , 7 + ∞) = 8

𝑑25 = min(−4, ∞ + ∞) = −4

𝑑32 = min(−2, 6 + ∞) = −2

𝑑34 = min (∞, 7 + ∞) = ∞

𝑑35 = min(∞, ∞ + ∞) = ∞

𝑑42 = min (∞, 6 + ∞) = ∞,

𝑑43 = min(−3 , ∞ + ∞) = −3

𝑑45 = min(9, ∞ + ∞) = 9

𝑑52 = min(∞, 6 + 2) = 8

𝑑53 = min (7, ∞ + 2) = 7

𝑑54 = min(∞, 7 + 2) = 9

 𝐷0 =

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1654

 =

Now, create a matrix 𝐷2 using matrix 𝐷1. The element in first row and first column are left as it is. Then finding the remaining value

by using formula 𝑑𝑖𝑗 = min (𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗)

Where 𝑑𝑖𝑘&𝑑𝑘𝑗 are corresponding elements of selected row and column.

Now replacing value with minimum value

 𝐷2 =

Now select third row and third column

=

Now, create a matrix 𝐷3 using matrix 𝐷2. The element in first row and first column are left

as it is. Then finding the remaining value by using formula 𝑑𝑖𝑗 = min (𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗)

Where 𝑑𝑖𝑘&𝑑𝑘𝑗 are corresponding elements of selected row and column.

Now replacing value with minimum value

 𝐷3 =

Now select fourth row and fourth column

 =

Now, create a matrix 𝐷4 using matrix 𝐷3. The element in first row and first column are left as it is. Then finding the remaining

value by using formula 𝑑𝑖𝑗 = min (𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗)

Where 𝑑𝑖𝑘&𝑑𝑘𝑗 are corresponding elements of selected row and column.

5 2 8 7 9 -

 1 2 3 4 5

1 - 6 11 7 2

2 ∞ - 5 8 -4

3 ∞ -2 - 6 -6

4 ∞ ∞ -3 - 9

5 2 8 7 9 -

 1 2 3 4 5

1 - 6 11 7 2

2 ∞ - 5 8 -4

3 ∞ -2 - 6 -6

4 ∞ ∞ -3 - 9

5 2 8 7 9 -

 1 2 3 4 5

1 - 6 11 7 2

 2 ∞ - 5 8 -4

3 ∞ -2 - 6 −6

4 ∞ −5 -3 - -9

5 2 5 7 9 -
 1 2 3 4 5

1 - 6 11 7 2

 2 ∞ - 5 8 -4

3 ∞ -2 - 6 −6

4 ∞ −5 -3 - -9

5 2 5 7 9 -

𝑑13 = min (∞, 6 + 5) = 11,

𝑑14 = min (7 , 6 + 8) = 7

𝑑15 = min(∞, 6 − 4) = 2

𝑑31 = min(∞, ∞ − 2) = ∞

𝑑34 = min (∞, 8 − 2) = 6

𝑑35 = min(∞, −4 − 2) = −6

𝑑41 = min (∞, ∞ + ∞) = ∞,

𝑑43 = min(−3 , ∞ + 5) = −3

𝑑45 = min(9, −4 + ∞) = 9

𝑑51 = min(2, 8 + ∞) = 2

𝑑53 = min (7,8 + 5) = 7

𝑑54 = min(9,8 + 8) = 9

𝑑12 = min (6, 11 − 2) = 6,

𝑑14 = min (7 ,11 + 6) = 7

𝑑15 = min(2,11 − 6) = 2

𝑑21 = min(∞, 11 + ∞) = ∞

𝑑24 = min (8,11 + 6) = 8

𝑑25 = min(−4,11 − 2) = −4

𝑑41 = min (∞, ∞ − 3) = ∞,

𝑑42 = min(∞ , −2 − 3) = −5

𝑑45 = min(9, −3 − 6) = −9

𝑑51 = min(2, ∞ + 7) = 2

𝑑52 = min (8, −2 + 7) = 5

𝑑54 = min(9,7 + 6) = 9

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1655

Now replacing value with minim

D4 =

Now select fifth row and fifth column

 =

Now, create a matrix 𝐷5 using matrix 𝐷4. The element in first row and first column are left as it is. Then finding the remaining

value by using formula 𝑑𝑖𝑗 = min (𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗)Where 𝑑𝑖𝑘&𝑑𝑘𝑗 are corresponding elements of selected row and column.

Now replacing value with minimum value

 𝐷5 =

Applications of Floyd – Warshall Algorithm:

1. The Floyd-Warshall algorithm facilitates the inversion of real matrices.

2. It facilitates the analysis of the bipartiteness of the undirected graph.

3. It aids in directed graph shortest path calculation.

4. Various iterations of the Floyd-Warshall algorithm assist in locating a directed graph's transitive closure.

5. This approach aids in identifying the regular expressions that finite automata accept.

6. It assists in identifying graph similarity.

7. The Floyd- Warshall method aids in determining the best route, or the amount of flow between two vertices.

Comparison of three algorithms:

There are several parallels between the Dijkstra algorithm and the Bellman-Ford algorithm. Both of them use the relaxation

calculation method, which finds the shortest path by varying the values of D[i] as it travels along the edges and vertices of the graph.

In essence, the bellman-ford algorithm can handle the graph with non-negative weight nodes but the Dijkstra algorithm cannot. The

Bellman-Ford method, however, is a lot more redundant and inefficient. Any problem involving two points can be resolved using

the Floyd-Warshall algorithm.It is more appropriate for use in tiny data sets or when figuring out the shortest route between all

vertices. The algorithm is easy to use even though it is useless. The Floyd algorithm wastes redundancy and is the slowest when

there are many points and edges.

 1 2 3 4 5

1 - 2 4 7 −2

 2 ∞ - 5 8 -4

3 ∞ -2 - 6 −6

4 ∞ −5 -3 - -9

5 2 4 6 9 -
 1 2 3 4 5

1 - 2 4 7 −2

 2 ∞ - 5 8 -4

3 ∞ -2 - 6 −6

4 ∞ −5 -3 - -9

5 2 4 6 9 -

 1 2 3 4 5

1 - 2 4 7 −2

 2 −2 - 2 5 -4

3 −4 -2 - 3 −6

4 −7 −5 -3 - -9

5 2 4 6 9 -

𝑑12 = min (6, 7 − 5) = 2

𝑑13 = min (11 ,7 − 3) = 4

𝑑15 = min(2,7 − 9) = −2

𝑑21 = min(∞, 8 + ∞) = ∞

𝑑23 = min (5,8 − 3) = 5

𝑑25 = min(−4,8 − 9) = −4

𝑑31 = min (∞, 6 + ∞) = ∞

𝑑32 = min(−2 ,6 − 5) = −2

𝑑35 = min(−6,6 − 9) = −6

𝑑51 = min(2, ∞ + 9) = 2

𝑑52 = min (5, −5 + 9) = 4

𝑑53 = min(7,9 − 3) = 6

𝑑12 = min (2, −2 + 4) = 2

𝑑13 = min (4 ,6 − 2) = 4

𝑑14 = min(7,9 − 2) = 7

𝑑21 = min(∞, −4 + 2) = −2

𝑑23 = min (5, −4 + 6) = 2

𝑑24 = min(8, −4 + 9) = 5

𝑑31 = min(∞, −6 + 2) = −4

𝑑32 = min(1 , −6 + 4) = −2

𝑑34 = min(6, −6 + 9) = 3

𝑑41 = min(∞, −9 + 2) = −7

𝑑42 = min(−5, −9 + 4) = −5

𝑑43 = min(−3, −9 + 6) = −3

http://www.ijsdr.org/

ISSN: 2455-2631 June 2023 IJSDR | Volume 8 Issue 6

IJSDR2306220 www.ijsdr.orgJournal of Scientific Development and Research (IJSDR) International 1656

Conclusion:

The shortest path is the most intriguing research topic. Here, we discuss shortest-path issues. It summarizes how various algorithms

have been applied. Bellman Ford in addition to the single-source Dijkstra algorithm is used when there is a negative loop. A dynamic

programming algorithm is the Floyd-Warshall algorithm. It locates the two vertices' shortest path. After examining every method,

we have come to the conclusion that the Floyd-Warshall algorithm is the most accurate for routing. Floyd-Warshall algorithm gives

appropriate time and space for the aforementioned problem. However, it is the most time-consuming and slow method.

REFERENCE:

1. Brendan.H.a(2005). Generalizing Dijkstra’s algorithm for solving MDPS. International conference on automated planed

and scheduling.

2. Lieberman,F.S.(2001). Introduction to operations research seventh edition.

3. Goldberg ,A.v. (n.d). point to point shortest path algorithms with pre-processing.silicon valley – Microsoft research.

4. Ayunita,Pramana,B, &tajidun, L.(2017). AplikasipencarianRuteterpendekapotek Di kota Kendari

MenggunakanAlogorithm Floyd-warshall.

5. Katalog Bps. (2016). Jakarta Dalam Angka 2016. Jakatra Bps provinsi DKI Jakarta.

6. Yusaputra, R.(2013). Aplikasi Mobile pencarianRuteTerpendeklokasifasilitasUmumBerbasis Android menggunakan

7. Pressman, R.S.(2015). Software engineering . A practitioner’s Approach, Eighth edition. United states of America :

Mcgraw-Hill education.

8. Marseguera.M, and Zio.E. 2000. Genetic algorithms: Theory applications in the safety Domain. Department of Nuclear

engineering

9. Pearsons J (1998) Heuristic search in Route finding master’s thesis university.

10. Sedgewik R and uitter J S (1986) shortest path in Euclidean Graphs Algorithm.

http://www.ijsdr.org/

