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Abstract: The object of the present paper is to study pseudo slant submanifolds of nearly quasi Sasakian manifolds
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1. Introduction

The notion of a slant submanifold as a natural generalization of both holomorphic and totally real immersion was given by
Chen [8]. Many authors have studied slant immersion in almost Hermitian manifold. A Lotta [16] introduced the notion of slant
immersion in contact manifold. The properties of slant submanifold of an almost contact manifolds were studied by Lotta [16]. L.
Cabrerizo et al. [10] was defined slant submanifold of Sasakian manifolds. N. Papaghiuc [17] introduced and studied the notion of
semi slant submanifold of an almost Hermitian manifold. A Carrizo [12, 13, 14] defined Hemi slant submanifolds. The contact
version of Pseudo slant submanifolds in a Sasakian manifolds have been studied by V. A. Khan et.al. [15] and the author studied
nearly quasi Sasakian manifold.

In Section 2, we recall some results and formula for later use. In Section 3, we define a pseudo-slant submanifold of a nearly
quasi-Sasakian manifold and in Section 4, it is concern with the integrability of the distributions on pseudo-slant submanifolds of a
nearly quasi-Sasakian manifold with quarter symmetric metric connection and obtains some characterizations. In Section 5, we
prove the classification theorem for totally umbilical pseudo-slant submanifolds of a nearly quasi-Sasakian manifold with quarter
symmetric metric connection.

2. Preliminaries.
Let M be a real 2n+1 dimensional differentiable manifold endowed with an almost contact metric structure (¢, &,7, ). then we
have

¢ =—-1+1®%, nX)=gX,§), n€)=1,¢=0 nop =0

9(@X, ¢Y) = g(X,Y) —nXn(Y), g(@X,Y) =—-g(X,¢Y) o (2.1)
For any vector field X, Y tangent to M, where I is the identity on the tangent bundle TM of M. An almost contact metric structure
(¢,€,m,9) on M is called quasi Sasakian manifold if

(Vxd)Y =n(Y)AX — g(AX,Y)E. PAX = ApX ~ (2.2)
Where A is symmetric linear transformation field is V denotes the Riemannian connection of g on M.
Further, an almost contact metric manifold M on (¢, &, 7, g) is called nearly quasi-Sasakian manifold if

(Vx)Y + (Vyp)X = n(Y)AX + n(X)AY — 2g(AX,Y)§ (23)
We have also on a quasi-Sasakian manifold M
Vyé = pAX (2.4)

A quarter symmetric metric connections is defined as

IJSDR2308116| International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org | 787


http://www.ijsdr.org/
mailto:1aboohoraira@gmail.com
mailto:2msadiqkhan.snc@gmail.com
mailto:shamsur@rediffmail.com

ISSN: 2455-2631 August 2023 IJSDR | Volume 8 Issue 8
VxY = ViV +n(Y)pX — g(¢X,Y)¢ (2.5)
The covariant derivative of the tensor field ¢ is defined as
(Vx@)Y = VydY — ¢V, Y (2.6)
Using equation (2.1), (2.2), and (2.5) in equation (2.6), we get
(Vxd)Y = n(V)AX — g(AX, )§ — g(X, )E + n(Y)X @.7)

Thus in particular, an almost contact metric manifold M on (¢, &, 7, g) is called nearly quasi- Sasakian manifold with quarter
symmetric metric connection if,

(Vx9)Y + (Vyp)X = n(Y)(AX + X) + n(X)(AY - Y)
—2g(AX,Y)§ —2g(X,Y)¢ (2.8)

Now, let M be a submanifold immersed in M. The Riemannian metric induced on M is denoted by the same symbol g. Let PM
and P1M be the Lie algebras of vectors fields tangential to M and normal to M respectively and V be the induced Levi-Civita
connection on M, then the Gauss and Weingarten formulae are given by

VyY = VY +h(X,Y) (2.9)

VoV = —AyX + V&V + n(V)X (2.10)

Forany X,Y € PM and V € P+M, where V+ is the connection on the normal bundle T M, h is the second fundamental form and
Ay is the Weingarten map associated with V as

gAvX,Y) = g(h(X,Y),V) (2.11)
Forany X € PM and V € P+M, we write

X = PX +VX, (PX € PM and VX € P+ M) (2.12)

dV =tV +nV, (tV € PM and nV € P*M) (2.13)

The submanifold M is invariant if N is identically zero. On the other hand, M is anti- invariant if T is identically zero. From
(2.1) and (2.12), we have

g(X,PY) = —g(PX,Y). (2.14)
Forany X,Y € PM. if we putQ = P2, we have
(VxQ)Y = VxQY — QVxY (2.15)
(VxP)Y = VyPY — PVyY (2.16)
(Vi V)Y = VEVY —VV,Y (2.17)
Forany X,Y € PM. In view of (2.9), (2.12) and (2.4) it follows that
Vyé = PAX, (2.18)
h(X,&) =VAX (2.19)
The mean curvature vector H of M is given by
H = ~trace(h) = =31 h(e;,ep), (2.20)
Where n is the dimension of M and e, e,, 5 ... ... ....., e, IS a local coordinate frame of M. A submanifold of a contact manifold
M is said be totally umbilical if
h(X,Y) = g(X,Y)H (2.21)

A submanifold M is said to be totally geodesic if h(X,Y) = 0 forany X,Y € T'(PM) and M is said to be minimal if H = 0.
3. Pseudo-Slant Submanifolds of Nearly Quasi-Sasakian Manifolds.

The purpose of this section is to study the existence of pseudo-slant submanifolds of nearly quasi-Sasakian manifolds.
A Lotta [16] introduced the notion of slant immersion and the properties of slant submanifold in almost contact metric
manifolds. L. Cabrerizo et al. [10] was defined slant submanifold of Sasakian manifolds.
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A submanifold M of an almost contact metric manifold M is said to be a slant submanifold if for any x € M and X € P,(M),
linearly independent on &, the angle between ¢X and P,(M) is a constant. The constant angle 6(x) € [0 ,g] is called slant angle
of M in M.

A submanifold M of nearly quasi-Sasakian manifold M is said to be pseudo-slant submanifold if there exists two orthogonal
distributions D+ and Dy on M such that

(). TM has the orthogonal direct decomposition, i.e. PM = D1 @ Dy @ (&), & e T(Dyp).
(ii). The distribution D+ is an anti-invariant. i.e. ¢D*+ c P*M
(iii). The distribution Dy is a slant, i.e. the slant angle between Dy and ¢ (Dy) is a constant.
From above definition, it is clear that if & = 0, then the pseudo slant submanifold is a semi invariant submanifolds and if 6 = g ,
and then submanifold becomes an anti-invariant.
On the other hand, we suppose that M is a pseudo slant submanifold of nearly quasi Sasakian manifold M and we denote the
dimension of distribution D+ and Dy by d, and d, respectively, then we have the following cases:
1). If d, = 0, then M is an anti-invariant submanifold.
2).If d; =0 and 8 = 0,then M is an invariant submanifold.
3).1f d, =0 and 6 # 0,then M is a proper slant submanifold with slant angle 8.

4).1fdy.d, #0 and 6 € [Og] then M is a proper pseudo- slant submanifold.

Theorem: (3.1) Let M be a submanifold of a nearly quasi Sasakian manifold M such that & € PM , then M is slant iff there exists
a constant A € [0, 1] such that
Pz = -l —n®¢} (3.1)
Furthermore, in such a case if 8 is the slant angle of M, then 1 = cos?8.
Corollary 3.2 Let M be a slant submanifold of a nearly quasi-Sasakian manifold M with slant angle 9, then for any X,Y €
I'(PM), we have
g(PX,PY) = cos*8(g(X,Y) —n(X)n(Y)) 3.2)
gWVX,vY) = sin?0(g(X,Y) — n(On(¥)) (3.3)
Let M be a proper slant slant submanifold of a contact manifold M and the projection on D+ and Dy By P, and P,
respectively, then for any vector field X e I'(PM), we can write
X= P X+ PX+nX)é (3.4)
Now applying ¢ both sides of (3.4), we obtain
X = ¢ PLX+ ¢ PX

That is,
PX+VX=VPX+PP,X+ VP,X (3.5)
We can easily to see
PX = PP,XVX = VPX+ VP,X (3.6)
pPX=VPX TPX=0 ¢P,X=TP,X+ VPX (3.7)
TP,X € T(Dy) (3.8)
If we denote the orthogonal complementary of ¢PM in DM by p, then the normal bundle P+ M can be decomposed as follows

P*M =V(D*) @V (Dg) ® u 3.9
Where u is the invariant sub bundle of PLM as V(D,) are orthogonal distribution on M. indeed,
g(Z,X) = 0,Foreach Z € I'(D') and X € T'(Dyp), thus by equation (2.1) and (2.12), we can write
gWVZ,VX) = g(¢Z,¢X) = g(Z,X) = 0 (3.10)
That is the distribution V(D+) and V (D,) are mutually perpendicular. In fact, the decomposition (3.9) is an orthogonal direct
decomposition.

4. Integrability of the Distributions of Pseudo-Slant Submanifolds of Nearly Quasi-Sasakian Manifolds
with Quarter Symmetric Metric Connection.

In this section we will discuss the integrability conditions of the distributions of pseudo-slant submanifolds of nearly quasi-
Sasakian manifolds with quarter symmetric metric connection.

Theorem 4.1 Let M be a pseudo-slant submanifold of nearly quasi-Sasakian manifold M with quarter symmetric metric
connection. Then for all X,Y e D+ we have
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Apy X — Apx Y = g(AX,Y)E — Vx(PY) — h(X, PY) + Ayy X — V#(VX)

+P(VxY) + V(YY) + V(R(X,Y)). 4.1)
Proof: In view of (2.11), we get
9(AgrX,Z) = g(h(X,2),¢Y) = —g(ph(X,2),Y) 4.2)

From (2.9) and (4.2), we get
9(ApyX, Z) = =g(@V;X,Y) + g($V,X,Y)
= —g(¢V,X,Y)
= g((Vz9)X,Y) — g(V; $X,Y). (4.3)
Now for X € D+, ¢X € P-M. Hence from (2.10) we have
VX = —ApxZ + VzpX +n(Z)p*X
= —ApxZ + VzX —n(2)X + n(XIn(2)¢ (4.4)
Combining (4.3) and (4.4) we obtain
9(ApX,2) = g((Vz0)X,Y) + g(ApxZ,Y)
-n(2)gX,Y) + nXnZ)n(Y) (4.5)
Since h(X,Y) = h(Y,X) it follows from (2.11)
9(Apx2,¥) = g(AgxY. 2).
Hence from (4.5) we obtain with the help of (2.8)
9(ApyX,Z) — g(ApxY, Z) = g(V29)X,Y) = n(2)g(X,Y) = n(X)n(¥In(Z)
(V20)X + (Vxp)Z = n(Z)AX + n(X) AZ — 29(AX,Z)§ — 29(X, Z)§
-nX)Z +n(2)X
=n(Z)g(AX,Y) + n(X)g(AZ,Y) — 2g(AX, Z)n(Y)
29X, Zn(¥) —nX)g(Z,Y) + n(Z)g(X,Y) — g(Vx$)Z,Y)
-n(2)gX.Y) + nCOn(¥)n(2)
Therefore above equation become
9(ApyX,Z) — g(ApxY.Z) = n(2)g(AX,Y) + g(Vx(PY) + h(X, PY)
—Ayy X + VEVX — n(X)pVY — P(VyY) — V(VyY)
—P(h(X,Y) — V(h(X,Y))),Z) (4.6)
Since X,Y,Z € Dt an orthogonal distribution to the distribution { &}, it follows that
n(X) = n(Y) = 0. Therefore above equation (4.6) become
AgyX — ApxY = g(AX,Y)E — Vx(PY) — h(X, PY)
+Ayy X — V% (VX) + P(V4Y) +V (V4 V) + V(h(X,Y))
Theorem 4.2 In a pseudo-slant submanifold of nearly quasi—Sasakian manifold M with quarter symmetric metric connection is
given by
(VxP)Y = Ayy X + Ay Y + th(X,Y) + P(R(Y, X)) — (VyP)X + n(Y)AX
+n(X)AY — 2g(AX,Y)$ - 29(X,Y)§ —n(X)Y + n(¥)X (4.7)
Proof. LetX,Y € PM, we have
VY = (Vxp)Y + ¢(V4Y) and VY = VY + h(X,Y)
From (2.12) and (2.13), we obtain
VyPY + V,VY = (Vyp)Y + ¢pVyY + ph(X,Y)
Also from (2.12) and (2.13), we obtain
VyPY + VyVY=(Vy)Y + P(VyY) + V(VyY) + th(X,Y) + nh(X,Y).
Using (2.9), (2.10) and (2.8), from above we get
VyPY + h(X,PY) — Apy X + Vx(VY) + n(X) VY = n(Y)AX + n(X)AY
— 2g(AX,Y)¢ —2g(X, )¢ —n(X)Y + n(V)X = VydX + p(VyX)
+ P(VyY) + V(YY) + th(X,Y) + nh(X,Y) — V4, PX — h(Y, PX)
+Ayx Y — VEVX + n(Y)PVX + P(VyX)+VV, X
+P(h(Y,X) + V(h(Y, X)) (4.8)
Comparing tangential and normal parts we get
VyPY — Apy X = n(NAX + n(X)AY — 2g(AX,Y)E
—29X,Y)§ —n(OY +n(V)X
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—VyPX + Ay Y + P(VyX) + P(h(Y,X) + P(V4Y) + th(X,Y) (4.9)
That is,
(VxP)Y = Ayy X + Ayx Y + th(X,Y) + P(R(Y,X)) — (VyP)X + n(Y)AX
+n(X)AY — 2g(AX,Y)E —29(X,Y)E —n(X)Y +n(V)X (4.10)

Theorem 4.3 Let M be a pseudo- slant submanifold of nearly quasi —Sasakian manifold M with quarter symmetric metric
connection. Then the anti-invariant distribution D+ is integrable if and only if forany Z,W € T (D1).
Ayw Z + Ayy W + 2TV, W + 2th(W,2) = —n(W)AZ — n(2)AW
+2g(AZ,W)E + 29(Z,W)E + n(2)W —n(W)Z (4.11)
Proof: Let Z,W eT (D) and using (2.8), we obtain
(V2W + (Vwd)Z = n(W)AZ +n(Z)AW — 2g(AZ, W)
—2g(Z,W)§ =)W +n(W)Z
Which is equivalent to
VW — ¢V, W + Vi oW — ¢V, Z = n(W)AZ + n(2)AW — 2g(AZ, W)E
—29(Z,W)§ —n(Z)W +n(W)Z
Using (2.9), (2.10), (2.12) and (2.13), we obtain
n(W)AZ + n(2)AW — 2g(AZ,W)E — 2g(Z,W)E —n(Z)W +n(W)Z
=V,NW —TV,W —VV,W — th(W, Z)
—nh(W,Z) + VyyNZ — TV Z —VVyZ — th(W,Z) — nh(W, Z)
So we have,
nW)AZ +n(Z)AW —2g(AZ,W)§ —2g(Z,W)§ —n(Z)W + n(W)Z
= —Ayw Z + V5 (VW) = n(Z)pVW — TV,W — VV,W — 2th(W,Z)
—Ay, W + Vi, (VZ) —=qn(W)PVZ — TV, Z — VVy, Z — 2nh(W, Z)
Now comparing tangential and normal parts we get,
Ayw Z + Ay W + TV,W + TV, Z + 2th(W, Z)
= —n(W)AZ — n(2)AW + 29(AZ,W)E + 29(Z,W)E +n(Z)W —n(W)Z
From above we can infer
—n(W)AZ —n(Z)AW + 2g(AZ,W)§ + 2g(Z, W)§ +n(Z)W —n(W)Z
=AywZ+ Ay, W + 2TV,W — T(V,W — V, Z) + 2th(W, Z)
TIZW] = ApwZ + Ay, W + 2TV, W + 2th(W, Z)
+n(W)AZ + n(Z)AW — 2g(AZ,W)§ — 2g(Z,W)§ —n(Z)W +n(W)Z
Thus [Z,W] € T (D%) if and only if (4.11) is satisfied.
Theorem 4.4 Let M be a Pseudo-slant submanifold of a nearly quasi—Sasakian manifold M with quarter symmetric metric
connection. Then the slant distribution Dy is integrable if and only if forany X,Y € T (Dy)
Py {Vx(PY) — PVyX + (VyP)X — Ayy Y — Apy X — 2th(X,Y)
—n(AX —n(X)AY + n(X)Y —n(¥)X} =0 (4.12)
Proof: Forany X,Y € T (Dgy) we denote the projections on D+ and Dy by P;and P,
Respectively, Then for any vector fields X,Y € I' (Dg), by using (2.8) we get
(Vxd)Y + (Vyp)X = n(Y)AX +n(X)AY — 2g(AX,Y)§
—29(X,Y)§ —nQOY +n(¥)X
VydY — pVyY + VX — ¢pVy X = n(Y)AX + n(X)AY — 2g(AX,Y)E
—2g9(X,Y)§ —nX)Y + n(V)X
Using (2.9), (2.10), (2.12) and (2.13), we obtain
VyxPY + Vi VY — ¢(VyY + h(X,Y) + Vy, PX + V, VX — ¢p(Vy X + h(X,Y)
= n(V)AX + n(X)AY — 2g(AX, V) — 29(X, V)¢
-nXY + n(¥)X
VyPY + h(X,PY) — ApyX + V£ (VY) = n(X)PpVX — PV, Y —VV,Y —th(X,Y)
— nh(X,Y) + VyPX + h(Y,PX) — AyxY + V3(VX)
-NnX) VX — PVy X — VVy X — th(X,Y) — nh(X,Y)

= n(NAX + n(X)AY — 2g(AX,Y)§ — 2g(X,Y)§ —n(X)Y + n(Y)X (4.13)
From tangent component of (4.4.13), we get
VXpY - PVXY + (VYP)X - AVXY - Ava - Zth(X, Y) (4.14)

IJSDR2308116| International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org | 791


http://www.ijsdr.org/

ISSN: 2455-2631 August 2023 IJSDR | Volume 8 Issue 8

= n(N)AX + n(X)AY —n(X)Y + n(Y)X
P[X,Y] = Vy4PY — PVyY + (VyP)X — AyxY — AyyX — 2th(X,Y) (4.15)
—n(Y)AX —n(X)AY + n(X)Y —n(¥)X

Applying P, to (4.15), we get (4.12).
Theorem 4.5 Let M be a Pseudo- slant submanifold of a nearly quasi Sasakian manifold M with quarter symmetric metric
connection, Then the distribution D* @ < & > isintegrable if and only if forany Z,W € T (Dt & < & >),
1 (AW —n(Z)AW + 2n(Z)W + n(W)AZ — n(AW)Z
3 —n(AW)Z = 2n(W)Z
Proof: Forany Z,W €T (D*@® <& >)andU € I (PM), by using (2.11) we can write

29(Apz W,U) = g(h(U, W), $Z) + g(h(U, W), $2).
By using (2.9), we have

29(4zW,U) = gy U, $2) + g(TuW, $2)

= _g(d’va Z) — g(d’vUW: Z)

29(Apz W, U) = g((Vwd)U + (Vyp)W,2) — g(Vw U, 2) = g(VypW, 2)
By using (2.8), we obtain

29(Ag, W, U) = —g(VypU,Z) — g(VypW, 2)

+9MU)AW +n(W)AU — 2g(AW,U)¢, Z) — 2g(W,U) —n(W)U +n(U)W, Z)
= —g(VwZ,¢U) = g(~Agpw U, Z) + g (AW)Z,U) + g(n(W)AZ, U)
—29mAW)Z,U) —2g(mW)Z,U) —g(nW)Z,U) + gly(W)Z,U)
= —g(PVyZ + th(Z,W),U) + g(Agw Z,U) + g(n(AW)Z,U)
+9mW)AZ,U) = 2g((AW)Z,U) — 2g(n(W)Z,U) — g(n(W)Z,U)
+9(mW)Z,U)
244, W = =PV Z — th(Z, W) + Agw Z + n(AW)Z + n(W)AZ — 2n(AW)Z
—2n(W)Z —n(W)Z + n(W)Z

[A¢Z w - A¢W Z]=

This is equivalent to,
2445, W = n(W)AZ — n(AW)Z + Agw Z — 2n(W)Z

— PVy, Z — th(Z,W) (4.16)
TakeZ =W
28pw Z = n(Z)AW — n(AZD)W + Ap, W — 2n(Z2)W
—PV,W — th(W,Z) (4.17)

By using (4.16) and (4.17), we obtain
3(Apz W — Agw Z) = PV;W — PV, Z + th(W, Z) — th(Z, W) — n(2)AW
+n(AZ)W + 20(2D)W +n(W)AZ —n(AW)Z — 2n(W)Z
= P[Z,W] —n(Z2)AW + n(ADW + 2n(2)W +n(W)AZ
—n(AW)Z — 2n(W)Z

(Apz W — Ay Z) = %[n(AZ)W —n(2DAW + 2n(2OW + n(W)AZ —n(AW)Z —2n(W)Z] (4.18)
Thus the Distribution D+ @ < & > is integrable if and only if for any P[Z, W] = 0 which proves our assertion.

5. Totally Umbilical Pseudo-Slant Submanifolds of Nearly Quasi-Sasakian Manifolds with Quarter
Symmetric Metric Connection

Theorem 5.1 Let M be a totally umbilical pseudo-slant submanifold of a nearly quas—Sasakian manifold M with quarter
symmetric metric connection. Then at least one of the following statements is true.

(i) dim () =1

(i) H=Tw.

(iii) M is a proper pseudo-slant submanifold.
Proof: Let z e I'(D1) and using (2.8), we have

(Vx®)Y + (Vyp)X = n(V)(AX + X) + n(X)(AY —Y) — 2g(AX,Y)¢ — 29(X,YV)¢

2(V29)Z =n(Z)(AZ + 2) + n(2)(AZ — Z) — 29(AZ,Z2)§ — 29(Z,Z)§
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From last equation, we have
(V2)Z = n(Z)AZ — g(AX,Y)§ — 9(Z,2)§
—Ay,Z —th(Z,2) —VV,Z —th(Z,Z) — nh(Z,Z)

= n(2)AZ — g(AZ,2)§ — g(Z,2)§ (5.1)

From (2.16) and the tangential component of (5.1), we obtain

—Ay,Z —th(Z,Z) = 0W(2)AZ — g(AZ,Z2)T¢ — g(Z,Z2)T¢ (5.2)
Taking the product by W e T(D'), we obtain

gAyzZ +th(Z,Z2) + n(2)AZ — g(AZ,Z)Té — g(Z,Z)T¢, W) =0
It implies that,

9gm(Z,W),NZ) + g (th(Z,2),W) + n(Z)g(AZ,W)

(5.3)

—9(AZ,2)g(T§, W) — 9(Z,2)g(T§, W) =0
9ZW)g(H,NZ) + g(Z,Z)g(tH,W) + n(2)g(AZ, W) — g(AZ,Z)g(T§, W)
-n(2)g(TZ,W) =0

Since M is totally umbilical submanifold, we obtain

9(Z,g@tH, Z)W) + g(Z,g(tH,W)Z) + g(Z, g(AZ,W)§ — g(Z, g(T§, W)AZ)

gtH, )W + g(tH,W)Z + g(AZ, W)& — g(TE, W)AZ — g(TZ,W)E = 0 (5.5)
Here tH is either zero or Z and W are linearly dependent vector fields. If tH =0, then
dim I'(D*) = 1, otherwise H e I'(u). since Dg =0, M is a pseudo-slant submanifold. Since 8 = 0and d;.d, =0, M is a
proper pseudo-slant submanifold.
Theorem 5.2 Let M be a totally umbilical proper pseudo-slant submanifold of a nearly quasi Sasakian manifolds M with quarter
symmetric metric connection. Then M is an either a totally geodesic submanifold or it is an anti-invariant if H, V3 H € T'(u).
Proof: Since the ambient space is a nearly quasi Sasakian manifold, by using (2.8) we have for any X € I'(PM),

(VxP)X = n(XDAX — g(AX,X)§ — g(X, X)¢ + n(X)X

VX — dVxX = n(X)AX — g(AX,X)§ — g(X,X)§ —n(X)pX (5.6)
Using (2.9), (2.11), (2.12) and (2.16) in (5.6) , we get
VyPX + g(X,PX)H — AypxX + V3VX = ¢V X + g(X,X)pH
+n(XAX — g(AX, X)§ — g(X, X)§ —n(X)pX (5.7)
By taking the product with ¢H, we get
g(VxVX,QH) = g(VVyX,pH) + g(X, X)IIHI? — g(AX, X)g(V§ dbH) — g(§, X)g(VX, pH) (5.8)
Taking into account (2.10), we get
g(VxVX,¢N) = g(X, )IIHI?> — g(AX,X)g(VE d6H) —n(X)g(VX, pH) (5.9)
Now for any X e I'(PM), we obtain
VypH = (Vx$p)H + pVxH (5.10)
In view of (2.10), (2.12), (2.13), (2.21) and (5.10) we obtain
[ ViV = —AX+ ViV + (V)X , h(X,Y) = g(X,Y)H ]
—ApuX + VxpH + n(pH)pX = (Vyp)H — PAgX — NAxX
+tVxH + nViH (5.11)
Taking the product VX to the above equation, we get
g(VxdH,VX) = g((Vx$)H,VX — g(VAuX, VX)
g(VxdH,VX) = g((Vxm)H + h(tH,X) + VX, VX) — g((VAgX, VX)
gVX,vY) = sin®0{g(X,Y) — n(X)n(¥)} (5.12)
(5.13)

cos?0 g(X, X|IH|I> + g(X, X)g(V§, pH) = 0
From (5.13), we conclude that g(X, X)||H||?> = 0, for any X € T'(PM), since M is proper pseudo slant submanifold of a nearly

quasi Sasakian manifold, we obtain H = 0. This tells us that M is totally geodesic in M.
Theorem 5.3 Let M be a totally umbilical pseudo-slant submanifold of a nearly quasi —Sasakian manifold M with quarter

symmetric metric connection. Then at least one of the following statements is true.
1). He p.
2).9(Vpx§ X) =0
3). n((VxP)X = 0.
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4). M is an anti invariant submanifold.
5). If M proper slant submanifold then, dim(M ) = 3, X € T(PM).
Proof: From (2.8) and M is nearly quasi—Sasakian manifold with quarter symmetric metric connection, we have
VypX — pVxX = n(X)AX +n(X)X — g(AX, X)§ — g(X, X)¢
By using (2.9), (2.10), (2.12) and (2.13), we have
VyPX + h(X,PX) — AyxX + VEVX + n(X)VX
—PVyX —VVyX — th(X,X) — nh(X,X)

=n(XAX +n(X)X — g(AX, X)§ — g(X, X)¢ (5.14)
Tangential component of (5.14) we get
VyPX — PVyX — th(X,X) — AyxX = n(X)AX + n(X)X (5.15)
Since M is a totally umbilical pseudo-slant submanifold, then by (2.11) and (2.21) we can write
9(AyxX, X) = g(h(X,X),VX) = g(H,VX)g(X,X) = g(g(H,VX)X,X) = 0 (5.16)

If HeTl(u),thenfrom (5.15), we obtain
VyPX — PVyX = n(X)AX + n(X)X
Taking the product with above by &, we get
9(VxPX, §)-g(PVxX, §) = n(X)g(4X,§) +n(X)gX, §) =0 (5.17)
Interchanging X by PX in (5.17), we drive
g(VpxP?X, &) =0, implies g(Vpyé, P2X) =0
By using (3.1) we have
9(Vpx§, —cos?0{X —n(X)§} =0,
c0s?0g(Vpxé, (X —n(X)¢) = 0.
Since M is a proper Pseudo slant submanifold then, we have
9(Vpx§, (X —n(X)§) = 0.
From which
I(Vpx§.X) =n(X)g(Vpx§, §) (5.18)
Now we have g(¢,¢&) = 1, taking covariant derivative of above equation with respect to PX for any X € I'(PM), we obtain
9(Vpx§, ) + g(§, Vpx$) = 0 which implies that g(Vpx§, &) = 0
And then (5.18) gives
g(Vpx$, X) =0 (5.19)
This proves (2) of the theorem.
Now interchanging X by PX in (5.19) we obtain
9(Vp25¢, TX) = g(vcosze{x—n(x)ffr PX) =0
cos?09(Vi-nuopé PX) = 0
—cos?0g(Vxé, PX) + cos?0n(X)g(V¢&, PX) = 0
Since, V=0, we obtain
cos?0g(V4&,PX) =0 (5.20)
From (5.20) if cos6 = 0,0 = % then M is an anti variant submanifold. On the other hand
g(Vx&, PX ) =0, that is, Vy& = 0. this implies that ¢ is the Killing vector field on M. If the vector field & is not
Killing, then we can take at least two linearly independent vectors X and PX to span Dy.
That is, the dim(M ) > 3.
Example 1. Suppose M is a submanifold of R” with coordinates (x; x,x3 y1,¥2,¥3, w), defined by

. a .
x; =v3usinha o X2 = —vcosha, x; =ssinhz,
1

y, =v cosha, y, =2v cosha, y;=—ssinhz, t=w
Where u, v and z denotes the arbitrary parameters , the tangent bundles of M is spanned by tangent vectors .

. a F] i a
e, = V3 sinha —, e, = cosha — — cosha — + 2cosh a —,
0xq 0y1 0x2 0y,

a 3 a ]
e; = sinhz — — sinhz —, e, = scoshz — —scoshz —
3 dx3 ays’ 4 0x3 dys3
For the almost contact structure ¢ of R’ , choosing

ay]-
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-9 o - =24y 2412 7
And & = 5= dt. forany vector field W = y; om; +v; o] +/16W € T(R’) then we have

a a
0L = s~y 5s 9PL,OZ) = k2 +},

9Z.20) = pwi+vi+ 2%, n@) =9Z =2
2 _ 0,0 9% 9 _ _
¢O°Z = Kige = Vioy: Aaw+ Aat— Z + n(Z)§,
For any i,j = 1,2,3.it follows that , g(¢Z,¢Z) = g(Z,Z) —n*(Z). thus (¢,¢,n,g) is an almost contact metric structure
on R”. Thus we have

a a F] d
e; = V3 sinha — e, =— cosha — — cosha — — 2 cosha —.
¢ 1 \/_ 6y1' ¢ 2 0x1 dy, 0xy

. a . F] F] F
e; = sinhz — + sinhz — e, = scoshz — + scoshz —
¢ 3 6y3 + aX3’ ¢ 4 6y3 + 0x3’

By direct calculation we can infer D, = span(e,, e,) is slant distribution with slant angle
— -1.1 i
6 = cos (\/E)' Since

g(pes, er) = g(des, e;) = g(des, eq) = g(des es) =0

g(pey, 1) = g(dey e;) = gldey, e3) = g(pey es) = 0.
e; And e, are orthogonal to M, Dt = span(es, e,) is an anti —invariant distribution. Thus M is 5 — dimensional proper pseudo-
slant submanifold of R” with its usual almost contact metric structure.
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