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Abstract- Two novel series of compounds bearing insecticidal properties were quantitatively examined using chemometric 

3D-descriptors. The semicarbazide, thiosemicarbazide, urea, and thiourea derivatives make up the first series, while the 

chalcone counterparts make up the second series. These series have demonstrated insecticidal actions against Spodoptera 

littoralis and Spodoptera frugiperda larvae, respectively. To correlate their insecticidal effects, a total of 675 descriptors 

for the compounds in the first series and 651 descriptors for the compounds in the second series were initially deemed 

suitable. The DRAGON software was used to construct these characteristics for the energy-minimized 3D-structures of 

each compound individually for the two series. In order to produce statistically significant models explaining the highest 

significant correlations between insecticidal actions and the most influential descriptors, the descriptors were then 

subjected to filtering processes embedded in the combinatorial protocol in multiple linear regression, CP-MLR, 

computational software. Twenty and eleven descriptors in all were determined to be significant in the first and second 

series' statistical models, respectively. Six significant models for the larvae of S. littoralis and the same number for the 

larvae of S. frugiperda have been included in their respective Tables. One most crucial model, however, has finally been 

taken into consideration for further discussion for both 2nd and 4th instar larvae of S. littoralis and S. frugiperda. The 

3D-Morse signal 22 (Mor22m) and R autocorrelation of lag 2 (R2m) were the two descriptors that had the most bearing 

on the first series. Atomic masses were used to weigh each of these descriptors. The radial distribution functions-4.0 and -

11.5, each weighted by atomic polarizabilities (RDF040p and RDF115p), the unweighted radial distribution function-5.5 

(RDF055u), and the atomic Sanderson electronegativities weighted radial distribution function-11.0 (RDF110e) were the 

important descriptors filtered for the second series. The direction of their influence on the activity profile for the 2nd and 

4th instar larvae of S. littoralis and S. frugiperda, respectively, has been revealed by the sign of the regression coefficient 

linked to these descriptors. As all the compounds from both series were present in their respective domains and the 

significant models properly predicted the insecticidal activities of all the compounds from both series, the applicability 

domain (AD) analysis has revealed that the models under consideration had appropriate predictability. The guidelines 

given in the discussion may be useful for looking into new potential analogues of each series. 

 

Keywords: Chemometric 3D-descriptors, QSAR, Insecticidal activity, Semicarbazide, thiosemicarbazide, urea and 

thiourea derivatives, Chalcone analogues. 

 

INTRODUCTION 

 Insecticidal impact against Spodoptera littoralis (Boisd.) and Spodoptera frugiperda (Lepidoptera: Noctuidae) have recently 

been reported for two novel series of compounds [1,2]. The first series includes derivatives of urea, thiourea, semicarbazide, and 

thiosemicarbazide, whereas the second series includes chalcone analogues. The first series of compounds have demonstrated 

insecticidal activity against S. littoralis, a species of moth in the Noctuidae family. The larval stage of this species or pest 

primarily causes the cotton crop's enormous and astounding harm [3]. Its larvae have at least seven developmental stages and can 

harm a variety of other plants and crops during the cotton season [4-7]. The insecticidal action against S. frugiperda, one of the 

most dangerous insects that might harm maize and other crops, was triggered by the second series chalcone derivatives [8–10]. 

Cotton, sugar cane, rice, sorghum, and other significant crops can all be quickly destroyed by S. frugiperda insects in a couple of 

days [11,12]. Researchers in the fields of agriculture and plant protection have periodically created a number of novel compounds 

with improved activity profiles to stop the spread of various dangerous pests and/or insects. The main issue they have is coming 

up with new chemical compounds that may have no or minimum adverse effects and are also safe for humans, animals, and the 

environment in addition to synthesizing and evaluating biological functions. 

 The first series of analogues of the semicarbazide, thiosemicarbazide, urea, and thiourea were described as novel, efficient 

pesticides against S. littoralis cotton [1] and their biological activities in opposition to cotton leafworm were assessed. The 

insecticidal effects of these analogues were tested on S. littoralis larvae in their 2nd and 4th instars. 

 The second series of chalcones is a significant class of natural compounds that is a member of the flavonoid family [13] 

and has demonstrated a range of biological consequences. Some of these include antiparasitic [14], antileishmanial [14], 

anticancer [15], anti-inflammatory [15], anti-cardiovascular [15], and antitumor [15] actions. Chalcones are extremely reactive 

chemicals that are also used as protective agents in agricultural fields [17,18] because they include a conjugated enone moiety. 

According to the recent publication [2], the newly synthesized novel chalcones are particularly efficient compounds against the 

2nd and 4th instar larvae of S. frugiperda. 
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 The current study's objective is to quantitatively analyze the molecular parameters associated with the insecticidal effects 

for each of two series of chemicals separately. Quantitative structure-activity relationship analysis (QSAR) is the term used to 

describe the method. To forecast more potent analogues of the series' insecticidal activities, the generated QSAR between those 

activities and molecular descriptors may be further utilized. Furthermore, the generated statistical models may be useful in 

predicting the molecular mechanism of their action at molecular level. 

 

MATERIALS AND METHODS 

 The values for the compounds' insecticidal activity against S. littoralis and S. frugiperda larvae in their 2nd and 4th instars 

are reported as LC50(ppm), where LC50(ppm) denotes the lethal concentration in parts per million (ppm) required to elicit 50% of 

the desired action. The substances under investigation and their estimates of insecticidal activity are taken from published works 

[1,2]. For a compound, the estimate is expressed on logarithmic scale as logLC50(ppm). The semicarbazide, thiosemicarbazide, 

urea, and thiourea representative compounds from the first series, which has a total of 12 compounds, are included in Table 1.  

 

Table 1. Observed and calculated lethal concentrations of semicarbazide, thiosemi-carbazide, urea and thiourea derivatives 

against 2nd and 4th instar larvae of Spodoptera littoralis 

 

S. 

No. 
Compound 

3D-Descriptora log LC50 (ppm)b 

Mor22m R2m 

Obsd. 

2nd instar 

larvae 

Calcd. 

Eq.(3 ) 

 

Obsd. 

4th instar 

larvae 

Calcd. 

Eq.(6 ) 

 

1 

HOOC

H
N

H
N

O
 

0.598 0.000 1.867 2.024 2.215 2.239 

2 

HOOC

H
N

H
N

S
 

0.722 0.497 1.654 1.592 2.088 2.133 

3 

HOOC

N

S

N
O

 

0.484 0.069 1.933 1.889 2.179 2.188 

4 

HOOC

H
N

H
N

S O
 

1.000 0.419 1.777 1.831 2.214 2.232 

5 

HOOC

H
N

H
N

S O

Cl

 

0.857 1.000 1.245 1.160 2.046 2.029 

6 

H
N

H
N

S O

Cl

O

OCH3  

0.562 0.865 0.995 1.127 2.011 1.985 

7 

Cl

N
H

O
H
N

O

H
N

 

0.383 0.497 1.329 1.397 2.077 2.039 

8 

Cl

N
H

O
H
N

S

H
N

 

0.838 0.486 1.734 1.670 2.186 2.169 

9 N
H

O
H
N

O

H
N

 

0.665 0.065 1.970 1.998 2.221 2.239 

10 
N

N
H

O
H
N

O

H
N

 

0.425 0.004 2.010 1.920 2.238 2.190 
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11 
N

N
H

O
H
N

S

H
N

 

0.482 0.047 1.984 1.910 2.200 2.193 

Dimilin 
H
N

H
N

O O F

F

Cl  

0.000 0.912 0.774 0.754 1.778 1.816 

 

aScaled 3D-descriptors.bObsd. LC50 values are taken from ref. (1) and are expressed on logarithmic scale.  

The second series, which consists of 11 chalcone derivatives, is listed in Table 2 and in Figure 1, the generalized molecular 

structure of these congeners is depicted.  

 

Table 2. Observed and calculated lethal concentrations of chalcone derivatives against 2nd and 4th instar larvae of Spodoptera 

frugiperda (see Figure 1 for general structure) 

 

S. 

No. 
     R 

3D-Descriptora log LC50 (ppm)b 

RDF040p RDF115p RDF055u RDF110e 

Obsd. 

2nd instar 

larvae 

Calcd. 

Eq.(9) 

 

 

Obsd. 

4th instar 

larvae 

Calcd. 

Eq.(12) 

 

 

1 

 

0.126 0.257 0.338 0.630 1.552 1.610 1.949 1.968 

2 

Cl 

0.745 0.144 0.041 0.000 

 

0.983 

 

1.020 

 

1.868 

 

1.882 

3 

NO2 

1.000 0.522 1.000 0.483 0.976 0.944 1.826 1.821 

4 

Br 

0.173 0.172 0.041 0.490 1.591 1.535 1.981 1.989 

5 

OH 

0.093 0.168 0.000 0.359 1.633 1.604 1.983 1.967 

6 

CH3 

0.164 0.944 0.129 0.916 1.800 1.846 2.057 2.066 

7 

OCH3 

0.236 0.289 0.346 0.369 1.419 1.525 1.877 1.910 

8 
N

 

0.000 0.280 0.284 0.827 1.750 1.730 2.033 2.020 

9 
N

 

0.022 0.128 0.226 0.550 1.692 1.650 2.006 1.970 

10 
S

 

0.032 0.000 0.362 0.395 1.608 1.592 1.937 1.912 

11 

 

0.404 1.000 0.491 1.000 1.710 1.658 2.010 2.022 

aScaled 3D-descriptors.bObsd. LC50 values are taken from ref. (2) and are expressed on logarithmic scale.  
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Figure 1. General structure of chalcone derivatives 

The internal robustness of created statistical models has been evaluated using the leave-one-out (LOO) and leave-five-out (L5O) 

techniques. 

 

Descriptors 

 The compounds' structures (Tables 1 and 2) were drawn using the conventional method in 2D-ChemDraw [19]. Next, using 

DRAGON software [20], the energy-minimized 3D-modules of these structures were used to compute the molecular descriptors 

pertaining to the 0D- through 2D- and 3D-classes and gathered in separate files for two sets of compounds. In the current 

investigation, the models created using 3D-descriptors seemed to be more significant than the models created using 0D-2D-

descriptors. The examination of the insecticidal activity of both series of compounds resulted in the identification of a total of 27 

3D-descriptors. Table 3 lists many classes of these descriptors that address structural aspects, as well as their definition and scope.  

 

Table 3. 3D-descriptors, their classes and physical meanings, used for analysis of insecticidal activity of both series of compounds 

 

No. Descriptor Class Physical meaning 

1 DISPp Geometrical d COMMA2 value/weighted by atomic polarizabilities 

2 H6e GETAWAY H autocorrelation of lag6/weighted by atomic Sanderson electro-negativities 

3 H6m GETAWAY H autocorrelation of lag 6 / weighted by atomic masses  

4 HATSe GETAWAY Leverage-weighted total index/weighted by atomic Sanderson electronegativities 

5 HATS1m GETAWAY Leverage-weighted autocorrelation of  lag 1/weighted by atomic masses 

6 HATS2m GETAWAY Leverage-weighted autocorrelation of  lag 2/weighted by atomic masses 

7 HATS1p GETAWAY Leverage-weighted autocorrelation of  lag 1/weighted by atomic polarizabilities 

8 HATS1v GETAWAY Leverage-weighted autocorrelation of  lag 1/weighted by atomic van der Waals volumes 

9 Mor09e 3D-MoRSE 3D-Morse–signal09/weighted by atomic Sanderson electronegativities 

10 Mor14e 3D-MoRSE 3D-Morse–signal14/weighted by atomic Sanderson electronegativities 

11 Mor15m 3D-MoRSE 3D-Morse–signal15/weighted by atomic masses 

12 Mor22m 3D-MoRSE 3D-Morse–signal22/weighted by atomic masses 

13 Mor09u 3D-MoRSE 3D-Morse–signal09 / unweighted 

14 Mor14u 3D-MoRSE 3D-Morse–signal14/unweighted 

15 RDF055e RDF Radial Distribution Function–5.5/weighted by atomic Sanderson electronegativities 

16 RDF110e RDF Radial Distribution Function–11.0/weighted by atomic Sanderson electronegativities 

17 RDF130m RDF Radial Distribution Function–13.0/weighted by atomic masses 

18 RDF140m RDF Radial Distribution Function–14.0/weighted by atomic masses 

19 RDF040p RDF Radial Distribution Function–4.0/weighted by atomic polarizabilities 

20 RDF115p RDF Radial Distribution Function–11.5/weighted by atomic polarizabilities 

21 RDF055u RDF Radial Distribution Function–5.5/unweighted 

22 RDF110u RDF Radial Distribution Function–11.0/unweighted 

23 RDF040v RDF Radial Distribution Function–4.0/weighted by atomic van der Waals volumes 

24 RDF115v RDF Radial Distribution Function–11.5/weighted by atomic van der Waals volumes 

25 R1m GETAWAY R autocorrelation of  lag 1/weighted by atomic masses 

26 R2m GETAWAY R autocorrelation of lag 2/weighted by atomic masses 

27 R5e+ GETAWAY R maximal autocorrelation of lag 5/weighted by atomic Sanderson electronegativities 

 

As the magnitude of the identified descriptors differs greatly from one another, the imbalanced regression coefficients and the 

intercept of the regression model would reflect this. The data-set descriptors were further scaled [21] between 0 and 1 to prevent 

this. Comparatively to unscaled descriptors with higher or lower values, such descriptors would assign equal weights in a 

particular model.The QSAR models in various scaled descriptors were then developed using the combinatorial protocol in 

multiple linear regression (CP-MLR) computational process [22]. 

 

Regression Models 

 One of the important tasks in a QSAR analysis is to choose highly significant descriptors from the multivariate space in 

order to derive meaningful models. The CP-MLR is one of a vast variety of techniques that uses a 'filter'-based variable selection 

method to organize the selection process and produce unique statistically significant models. Our earlier papers [23–28] covered 
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the specifics and application of this strategy. Four filters have been embedded in the CP-MLR analysis computation software. 

Only those descriptors having inter-descriptor correlations with the dependent variable that are greater than or equal to 0.79 can 

be entered using the first filter.  The second filter regulates the entry of descriptors into a regression model by thresholding their 

coefficients' t-values at 2.0. The third filter enables comparison of models with various descriptor counts using the model 

equation's r-bar, which is the square root of the adjusted multiple correlation coefficient. The fourth filter measures the model's 

internal robustness using the leave-one-out index Q2
LOO, such that 0.3 ≤ Q2

LOO ≤ 1.0. As a new upper limit for subsequent model 

creation, the r-bar value (third filter) of the prior optimum model was improved with an increase in the number of useful 

descriptors. Each cross-validated model was put through the randomization test by repeatedly randomizing the activity profile in 

order to look for any chance correlations [29,30]. Every model was put through 100 simulation runs with random activity for this. 

To describe the percent chance correlation of the model under discussion, the scrambled activity models with regression statistics 

better than or equal to those of the original activity model were counted. The multiple correlation coefficient (r), standard 

deviation (s), and F-ratio between the variances of calculated to observed activities were used to evaluate a model's statistical 

significance (Fn, n-k-1, n is number of compounds and k is number independent descriptors). The leave-one-out and leave-five-out 

procedures were used to determine the internal validation, and the resulting statistical indices QLOO and QL5O, which are both 

greater than 0.5, indicate an internally reliable model. The Kubinyi function, FIT [33,34], the Friedman's lack of fit, LOF [35], 

and the Akaike's information criteria, AIC [31,32], have also been derived to evaluate the best model. Furthermore, the model can 

be externally validated if the data set includes a sizable number of substances. External validation is not feasible for the current 

investigation, however, because only a small number of chemicals are present in both series. A study on the applicability domain 

(AD) was also conducted to make sure that all congeners of a given series remained inside its domain. This means that the 

compounds used to construct a robust model have a greater chance of predicting future analogues of the series if they also share 

the same AD. 

 

Applicability Domain 

 The significance of a statistical model is judged by its capacity to accurately anticipate new analogues of the series. A 

model is only usable inside its training area, and new analogues must be reviewed to ensure that they belong to this domain. The 

applicability domain (AD) is determined using the Williams plot, which plots standardized residuals against the leverage values, 

h, of all compounds in the training domain [36,37]. The AD is determined using the Williams plot, which yields an area by taking 

into account a measure (s.d.) and the leverage threshold h*.. The h* is commonly specified at 3(k + 1)/n, where n is the number of 

compounds included in the training-set and k is the number of independent variables of the model under consideration. The value 

of β ranges between 2 and 3. The figure can then be used to visually discover the model's Y-outlier (response outlier) and X-

outlier (structurally influential compound). When the leverage value of a compound is less than the threshold value h*, the 

prediction becomes trustworthy. In this situation, the calculated and observed activity values of the training-set chemicals agree. 

When h > h*, the forecast becomes unreliable. 

 

RESULTS AND DISCUSSION 

 A total of 675 descriptors for compounds in Table 1 and 651 descriptors for compounds in Table 2 belonging to 3D-classes 

were initially used to correlate their insecticidal capabilities using the CP-MLR technique. Furthermore, the descriptors of the 0D- 

to 2D-classes have been attempted to associate the biological activity profiles of the substances under inquiry. However, these 

descriptors revealed poor models when compared to 3D-descriptors. 

 As a result, 3D-descriptors were only employed to obtain models in one-descriptor and two-descriptor increments. The 

two-descriptor models remained statistically significant in explaining the variance in observed activities of the congeners in two 

series. To examine prediction models, compounds, from Table 1 and Table 2, were used to measure their insecticidal activity 

against 2nd and 4th instar larvae in terms of scaled 3D-descriptors. The most acceptable descriptors used to create the final 

highest significant models of two series are included in respective Tables for convenience. 

 For the novel compounds (Table 1) which have shown insecticidal activities against 2nd instar larvae and 4th instar larvae 

of S. littoralis, only three highest significant models, for each of them, have been included in Table 4.  

 

Table 4. Regression equations and statistical parameters for the 2nd and 4th instar larvae of Spodoptera littoralis 

 

Eq. 

No. 

Regression Equation  

(n = 12 and LC50 in ppm) 
r s F(2, 9)a AIC LOF FIT Q2

LOO Q2
L5O 

2nd  instar larvae         

1 logLC50= –0.486(0.089)RDF140m  

  –0.939(0.097)HATS2m+ 2.161 0.973 0.108 78.779 0.019 0.020 9.847 0.897 0.693 

2 logLC50 = 0.513(0.108)Mor09e  

  –1.142(0.087)R2m + 1.820 0.975 0.103 85.967 0.018 0.018 10.746 0.910 0.897 

3 logLC50 = 0.577(0.109)Mor22m  

  –1.014(0.077)R2m + 1.679 
0.979 0.095 102.238 0.015 0.015 12.780 0.927 0.929 
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4th  instar larvae         

4 logLC50 = 0.301(0.050)Mor22m 

  –0.312(0.041)R1m + 2.084 0.954 0.044 45.478 0.003 0.003 5.685 0.743 0.699 

5 logLC50= –0.399(0.038)RDF130m  

  –0.156(0.035)HATS1p + 2.254 0.970 0.036 71.356 0.002 0.002 8.920 0.911 0.823 

6 logLC50 = 0.277(0.038)Mor22m  

  –0.282(0.027)R2m + 2.073 0.974 0.033 83.656 0.002 0.002 10.457 0.856 0.866 

aThe critical F-value, significant at 99%, is F2, 9(0.01) = 8.022 

 

 

These models with requisite statistical parameters are given through Eqs. (1)-(3) and Eqs. (4)-(6). In all these Equations, the F-

values remain significant at 99% level and the standard errors associated with regression coefficients (data within the parentheses) 

are significant at more than 95% level. The indices Q2
LOO and Q2

L5O (> 0.5) accounted for internal robustness of the derived 

models. In a model, the signs of the regression coefficients revealed the direction of influence of explanatory variables, the 

negative regression coefficient associated to a descriptor will improve the insecticidal activity of a compound while the positive 

regression coefficient will cause detrimental effect to it. A total number of 20 and 11 descriptors have participated in the 

developed models for data-set in Table 1 and Table 2 respectively. 

 The further discussion is, however, confined only to one highest significant model Eq. (3) and Eq. (6) of Table 4 for 

insecticidal activities, respectively, against 2nd instar and 4th instar larvae of S. littoralis. The descriptors, namely, the Mor22m 

and R2m have participated in both Eq. (3) and Eq. (6) but differ in their statistical parameters. The descriptor Mor22m is from the 

3D-MoRSE class, denoting the 3D-Morse signal 22 and R2m is from the GETAWAY class, representing the R autocorrelation of 

lag 2. Each of these descriptors is weighted by atomic masses.The resulting descriptors are, therefore, highly influential to address 

the insecticidal actions of the compounds. The sign of regression coefficient associated to these descriptors have indicated the 

direction of their influence on the logLC50(ppm) for 2nd instar and 4th instar larvae of S. littoralis. For a compound to be more 

active, its lethal concentration LC50 (or logLC50) should be low. In other words, the insecticidal activity of a compound is 

inversely proportional to its lethal concentration. In Eq. (3) and Eq. (6), the regression coefficient of the descriptor Mor22m is 

positive, indicates that its more positive value will result into higher logLC50 value (or lower activity). On the other hand, the 

regression coefficient of descriptor R2m is negative which suggests that its more positive value will results into lower logLC50 

value (or higher activity). Thus, to improve the effectiveness a compound against 2nd instar and 4th instar larvae, it is desirable to 

have lower (positive) value of the Mor22m and higher (positive) value of R2m.  

The molecular bulk (mass) appeared to play important role for an insecticide to be active against 2nd and 4th instar larvae of S. 

littoralis. 

 In Table 5, the highest significant regression Eq. (9) and Eq. (12) with their statistical parameters stands, respectively, for 

the 2nd and 4th instar larvae of S. frugiperda.  

 

Table 5. Regression equations and statistical parameters for the 2nd and 4th instar larvae of Spodoptera frugiperda 

 

Eq. 

No. 

Regression Equation  

(n = 11 and LC50 in ppm) 
r s F(2, 8)a AIC LOF FIT Q2

LOO Q2
L5O 

2nd  instar larvae          

7 logLC50 = –0.686(0.069)RDF040v 

+0.473(0.073)RDF110e + 1.414 

 
0.980 0.063 97.261 0.007 0.007 12.968 0.931 0.723 

8 logLC50 = 0.398(0.060)RDF115v  

–0.878(0.060)RDF040p + 1.615 

 
0.982 0.060 110.252 0.006 0.006 14.700 0.929 0.887 

9 logLC50 = –0.882(0.060)RDF040p 

+0.394(0.059)RDF115p + 1.620 

 

0.982 0.060 111.262 0.006 0.006 14.835 0.933 0.928 

4th  instar larvae          

10 logLC50 = 0.222(0.030)RDF110u 

+0.114(0.027)R5e+ + 1.767 

 
0.939 0.028 29.789 0.001 0.001 3.972 0.836 0.800 

11 logLC50 = –0.171(0.029)RDF055e 

+0.210(0.028)RDF110e + 1.889 

 
0.953 0.025 40.038 0.001 0.001 5.338 0.845 0.864 
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12 logLC50 = –0.173(0.027)RDF055u 

+0.218(0.026)RDF110e + 1.889 

 
0.960 0.023 46.667 0.001 0.001 6.224 0.875 0.830 

aThe critical F-value, significant at 99%, is F2, 8 (0.01) = 8.649 

 

In Eq. (9), the participated descriptors, RDF040p and RDF115p are from RDF-class account, in that order, for radial distribution 

functions-4.0 and -11.5. Both these functions are weighted by atomic polarizabilities. In Eq. (12), the important emerged 

descriptors, the RDF055u and the RDF110e are also from RDF-class. The former descriptor is unweighted radial distribution 

function-5.5 while the later descriptor is atomic Sanderson electronegativities weighted radial distribution function-11.0. From the 

Eq. (9) it became apparent that the lower (positive) value of RDF115p and the higher (positive) value of RDF040p are helpful in 

augmenting the activity profile of a compound against 2nd instar larvae. The polarizability of an insecticidal molecule has crucial 

role against 2nd instar larvae of S. frugiperda. Likewise, the lower value of the RDF110e and the higher value of the RDF055u of 

Eq. (12) are beneficial in improving the activity of a compound against 4nd instar larvae. The electronegativity weighted 

descriptor has imparted significant contribution against 4nd instar larvae of S. frugiperda. 

 The average regression coefficients and incidences of all 31 descriptors are included in Table 6.  

 

Table 6. Identified descriptorsa with average participation of regression coefficient and incidenceb, in modeling of the insecticidal 

activity 

 

Series I : Semicarbazide, thiosemicarbazide,  

       urea and thiourea derivatives 

Series II : Chalcone derivatives  

Larvae of S. littoralis Larvae of S. frugiperda 

2nd instar 4th instar 2nd instar 4th instar 

Descriptor AvgP 

(incidence) 

Descriptor AvgP 

(incidence) 

Descriptor AvgP 

(incidence) 

Descriptor AvgP 

(incidence) 

DISPp -1.237 (1) RDF130m -0.409(3) RDF040v -0.686 (1) RDF055u -0.173 (1) 

RDF140m -0.486 (1) Mor15m 0.133 (1) RDF115v 0.399 (1) RDF110u 0.190 (2) 

Mor09u 0.497 (1) Mor22m 0.269 (3) RDF110e 0.473 (1) RDF055e -0.171 (1) 

Mor22m 0.577 (1) H6m -0.302(2) RDF040p -0.880 (2) RDF110e 0.214 (2) 

Mor09e 0.513 (1) HATS1m -0.245 (1) RDF115p 0.394 (1) Mor14u -0.143 (1) 

Mor14e 0.746 (1) HATS2m -0.241 (1)   R5e+ 0.114 (1) 

HATS2m -1.006(2) HATS1v -0.118 (1)     

H6e -0.555 (1) HATSe -0.337 (1)     

R2m -1.091 (3) HATS1p -0.156 (1)     

  R1m -0.312 (1)     

  R2m -0.282 (1)     
aThe descriptors were identified from the models, surfaced from CP-MLR protocol with  training set of 12 (first series) and 11 

(second series) compounds for insecticidal activity. bThe average regression coefficient of descriptor relating to the most 

significant models and total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the 

regression coefficient in the models. 

 

The squared correlation coefficient r2, obtained in conjunction with Eq. (3) and Eq. (6), has explained 96% and 95% of variance 

in observed activity profiles, respectively, against 2nd instar and 4th instar larvae of S. littoralis. Also, the explained variance, in 

terms of r2 value of Eq. (9) and Eq. (12), were 96% and 92%, respectively, for the 2nd and 4th instar larvae of S. frugiperda. The 

other statistical parameters of these four Equations tune to the most significant models.  

 Next, Eq. (3) and Eq. (6) for all compounds of first series and Eq. (9) and Eq. (12) for compounds of second series were 

used to calculate the insecticidal activities and the same are included, respectively, in Table 1 and Table 2 for the sake of 

comparison with observed ones. Moreover, a close agreement between observed and calculated logLC50s for the compounds of 

these Tables, are apparent through the graphical representations, shown in Figure 2. 
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Figure 2. Plot between observed and calculated logLC50 values using Eq. (3) for 2nd larvae, Eq. (6) for 4th larvae of S. littoralis, 

and Eq. (9) for 2nd larvae, Eq. (12) for 4th larvae of S. frugiperda 

  

The applicability domains (ADs) were analyzed for the models based on data-set in Table 1 and Table 2. The same are shown 

through the Williams plots, separately for first series and second series, in which standardized residuals were plotted against 

leverage (hi) values. For this purpose, the most influential descriptors, Mor22m and R2m, were considered for compounds of first 

series relating to the activity profiles for 2nd instar and 4th instar larvae of S. littoralis (Eq. 3 and Eq. 6, Table 4). Similarly the 

descriptors, RDF040p and RDF115p, of Eq. (9) and the descriptors, RDF055u and RDF110e, of Eq. (12), from Table 5 were used 

to obtain standardized residuals and leverage values for the larvae of S. frugiperda. The standardized residuals and leverage 

values were further used to establish the ADs individually for 2nd instar and 4th instar larvae of S. littoralis and S. frugiperda. In 

each case, the limits of standardized residuals (Y-outliers) were considered as ±β ×s.d. and the leverage threshold as h* (= 3(k + 

1)/n). The value of β was taken equal to 2 for all four models. For convenience, the graphical representations, for the models 

obtained in their influential descriptors, depicting the data-set compounds are given in Figure 3.   
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Figure 3. Plot between leverage and residual values for 2nd and 4th  instar larvae of S. littoralis (h* = 0.75) and 2nd and 4th  

instar larvae of S. frugiperda (h* = 0.82) 

 

For given data-set compounds, the suggested models match the most significant parameters with good fitting power. Further, all 

of the compounds were remained within the ADs which denote that the models under consideration were able to evaluate the 

data-set compounds, correctly. 

 

CONCLUSION 

 Insecticidal activity profiles of two novel series of chemicals were quantified using chemometric 3D-descriptors.  The first 

series consists of semicarbazide, thiosemicarbazide, urea, and thiourea derivatives that have insecticidal activity against 

Spodoptera littoralis larvae in the 2nd and 4th instars. The second series, consisting of chalcone analogues, has exhibited 

insecticidal activity for Spodoptera frugiperda larvae in the 2nd and 4th instars. The quantitative structure-activity relationship 

(QSAR) models built statistically gave rationale to explain the insecticidal effects of both series of chemicals. For the first series, 

the most influential descriptors were the 3D-Morse signal 22/weighted by atomic masses (Mor22m) and R autocorrelation of lag 

2/weighted by atomic masses (R2m). The radial distribution functions-4.0 and -11.5, which are weighted by atomic 

polarizabilities (RDF040p and RDF115p), the unweighted radial distribution function-5.5 (RDF055u), and the atomic Sanderson 

electronegativities weighted radial distribution function-11.0 (RDF110e) were filtered out for the second series.The AD studies 

demonstrated that the proposed models have appropriate prediction because all of the chemicals from both series were present 

within their domains (square areas). As a result, the models under evaluation successfully predicted the insecticidal activity of all 

compounds in both series separately. The guidelines mentioned in the discussion may be useful in exploring new potential 

analogues of each series. 
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