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Abstract- Handwriting is a skill developed by humans from a very early stage in order to represent his/her thoughts visually 

using letters and making meaningful words and sentences. Every person improves this skill by practicing and developing 

his/her own style of writing. Because of the distinctiveness of handwriting style, it is frequently used as a measure to identify 

a forgery. 

 

Even though the applications of synthesizing handwriting is less, this problem can be generalized and can be functionally 

applied to other more practical problems. Mimicking or imitating a specific handwriting style can have an extensive variety 

of applications like generating personalized handwritten documents, editing a handwritten document by using the similar 

handwriting style and also it is extended to compare handwriting styles to identify a forgery. 

 

All the training and test data is taken from IAM online handwriting database (IAMOnDB). IAM-OnDB consists of 

handwritten lines of data gathered from 223 various writers using an e-smart whiteboard. 

 

Introduction 

It is important to digitize handwritten documents for efficient processing and storage. This problem is well known as Intelligent 

Word Recognition (IWR) and has been an area of study for decades. Our work presents an effective method to not only recognize 

the contents of a handwritten document, but also to generate handwritten documents from typed inputs with writing characteristics 

that are specific to an author’s writing style. Users can train our model by providing their handwritten documents as inputs and 

subsequently use this model to generate documents written in their handwriting font from text inputs. 

 

Cursive handwriting is a complex graphic realization of natural human communication. Its production and recognition involve a 

large number of highly cognitive functions including vision, motor control, and natural language understanding. Handwriting 

synthesis has many important applications to facilitate user's work and personalize the communication on pen-based devices. 

Many works have been written on the generation of handwritten characters. Generative techniques can be divided into two 

categories: movement simulation techniques and shape simulation methods. Movement simulation techniques are mostly based on 

motor models whereas shape simulation techniques use the trajectories of the handwriting. Movement simulation techniques are 

mostly derived from the kinematic theory of human movements. However, modeling handwriting with movement simulation 

techniques implies a dynamic-inverse problem which is difficult to solve. 

In contrast, shape simulation techniques concentrate on the trajectories of the handwritten strokes, which already embody the 

characteristics of an individual’s personal writing style directly in their shape. 

 

Motivation 

Humans learn writing by practicing repeatedly to study the strokes. The way we learn handwriting is almost similar to any task we 

learn. We learn things by repeating it until it finally becomes involuntary. Even with all these Deep Learning algorithms, computers 

still don’t know how to learn a task. And moreover, humans deal with both historical and spatial information which is also difficult 

for computers to handle. 

 

Trying to solve some simple problems like handwriting may lead us to a better understanding of how humans think and can develop 

better algorithms for computers. This model will even help us learn to imitate the particular style of handwriting. 

 

Problem Statement 

Our aim is to generate handwritten text from typed inputs with writing characteristics that are specific to an author’s writing style. 

Further which user trains the model by providing their handwritten texts as inputs and subsequently use the model to generate 

document (an image) written in their handwriting font from text inputs. 

 

The project focuses on synthesising English Handwritten Text from ASCII Trancriptions entered by a user. Recurrent Neural 

Networks using LSTM (Long Short Term Memory) cells has been used to achieve the said goal. 

 

Input to the system : Stream of ASCII character entered by a user.  

Output to the system: Synthesized handwritten text of the character stream inputted by the user. 
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Neural Network 

A neural network (NN), in the case of artificial neurons called artificial neural network (ANN) or simulated neural network (SNN), 

is an interconnected group of natural or artificial neurons that uses a mathematical or computational model for information 

processing based on a connectionist approach to computation. In most cases an ANN is an adaptive system that changes its structure 

based on external or internal information that flows through the network. 

 

Recurrent Neural Network 

The Recurrent Neural Network works on the principle of saving the output of a layer and feeding this back to the input to help in 

predicting the outcome of the layer. 

Here, the first layer is formed similar to the feed forward neural network with the product of the sum of the weights and the features. 

The recurrent neural network process starts once this is computed, this means that from one time step to the next each neuron will 

remember some information it had in the previous time-step. This makes each neuron act like a memory cell in performing 

computations. In this process, we need to let the neural network to work on the front propagation and remember what information 

it needs for later use. Here, if the prediction is wrong we use the learning rate or error correction to make small changes so that it 

will gradually work towards making the right prediction during the back propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Recurrent Neural Network 

 

Backpropagation through Time (BPTT) 

Recurrent networks rely on an extension of backpropagation called Backpropagation through Time, or BPTT. Time, in this case, is 

simply expressed by a well-defined, ordered series of calculations linking one time step to the next, which all backpropagation 

needs to work. 

The goal of the backpropagation training algorithm is to modify the weights of a neural network in order to minimize the error of 

the network outputs compared to some expected output in response to corresponding inputs. It is a supervised learning algorithm 

that allows the network to be corrected with regard to the specific errors made 

 

The general algorithm is as follows: 

1. Present a training input pattern and propagate it through the network to get an output. 

2. Compare the predicted outputs to the expected outputs and calculate the error. 

3. Calculate the derivatives of the error with respect to the network weights. 

4. Adjust the weights to minimize the error. 

5. Repeat. 

Backpropagation through Time, or BPTT, is the application of the Backpropagation training algorithm to recurrent neural networks 

applied to sequence data like a time series. 

A recurrent neural network is shown one input each timestep and predicts one output. Conceptually, BPTT works by unrolling all 

input time steps. Each timestep has one input timestep, one copy of the network, and one output. Errors are then calculated and 

accumulated for each timestep. The network is rolled back up and the weights are updated. 

 

Spatially, each time step of the unrolled recurrent neural network may be seen as an additional layer given the order dependence of 

the problem and the internal state from the previous time step is taken as an input on the subsequent time step. 

We can summarize the algorithm as follows: 

1. Present a sequence of time steps of input and output pairs to the network. 

2. Unroll the network then calculate and accumulate errors across each time step. 

3. Roll-up the network and update weights. 

4. Repeat
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Vanishing and Exploding Gradient Problems 

Vanishing Gradient: Vanishing Gradient Problem is a difficulty found in training certain Artificial Neural Networks. This problem 

becomes worse as the number of layers in the architecture increases. 

This mainly occurs when the network parameters and hyper parameters are not properly set. Parameters could be weights and biases 

while hyper parameters could be learning rate, the number of epochs, the number of batches, etc. 

Vanishing gradient problem depends on the choice of the activation function. Many common activation functions (e.g sigmoid or 

tanh) 'squash' their input into a very small output range in a very non-linear fashion. For example, sigmoid maps the real number 

line onto a "small" range of [0, 1]. As a result, there are large regions of the input space which are mapped to an extremely small 

range. In these regions of the input space, even a large change in the input will produce a small change in the output - hence the 

gradient is small. 

This becomes much worse when we stack multiple layers of such non-linearities on top of each other. For instance, first layer will 

map a large input region to a smaller output region, which will be mapped to an even smaller region by the second layer, which will 

be mapped to an even smaller region by the third layer and so on. As a result, even a large change in the parameters of the first layer 

doesn't change the output much. 

Due to Vanishing Gradient, y slope becomes too small and decreases gradually to a very small value (sometimes negative). The 

model may take longer to train and learn from the data and sometimes may not train at all and show error. This results in less or no 

convergence of the neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Understanding Gradient Problem 

This leads to poor performance of the model and the accuracy is very low. The model may fail to predict or classify what it is 

supposed to do. 

 

Solutions to Vanishing Gradient problem 

 

LSTMs: Long Short Term Memory Networks can solve Vanishing Gradient problems when working on RNN. LTSMs help to 

solve long term dependencies and can memorize previous data easily. 

Faster Hardware: Switching from CPUs to GPU’s with faster compilation time have made standard backpropagation method 

feasible where the cost of the model is very less. 

Other activation functions: Rectifiers such as ReLU suffer less from Vanishing Gradient problem, because they only saturate in 

one direction. 

 

Exploding Gradient 

Exploding gradients can cause problems in the training of artificial neural networks. Exploding gradients are a problem when large 

error gradients accumulate and result in very large updates to neural network model weights during training. 

 

When there are exploding gradients, an unstable network is likely to occur, the learning cannot be completed and can cause poor 

prediction results or even a model that reports nothing useful whatsoever.  

 

The values of the weights can also become so large as to overflow and result in something called NaN values. NaN values, which 

stands for not a number, are values that represent an undefined or unpresentable value. 
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Figure 1.4: Exploding Gradient 

 

Solutions to Exploding Gradient problem 

LSTMs: Long Short Term Memory Networks are generally used to tackle Exploding Gradient problems when working on RNN. 

LTSMs help to solve long term dependencies and can memorize previous data easily. 

Gradient Clipping: Gradient Clipping is when we check for and limit the size of gradients during the training of our network. So 

basically, the values of the error gradient are checked against a threshold value and clipped or set to that threshold value if the error 

gradient exceeds the threshold. 

LSTM: The above drawback of RNN pushed the scientists to develop and invent a new variant of the RNN model, called Long 

Short Term Memory. LSTM can solve this problem, because it uses gates to control the memorizing process. 

 

Long Short Term Memory networks, usually called “LSTMs”, were introduced by Hochreiter and Schmiduber. These have widely 

been used for speech recognition, language modelling, sentiment analysis and text prediction. 

 

Mixture Density Networks 

The idea of mixture density networks [1, 2] is to use the outputs of a neural network to parameterise a mixture distribution. A subset 

of the outputs are used to define the mixture weights, while the remaining outputs are used to parameterise the individual mixture 

components. 

 

The mixture weight outputs are normalized with a softmax function to ensure they form a valid discrete distribution, and the other 

outputs are passed through suitable functions to keep their values within meaningful range (for example the exponential function is 

typically applied to outputs used as scale parameters, which must be positive). 

 

Mixture density networks are trained by maximizing the log probability density of the targets under the induced distributions. Note 

that the densities are normalised (up to a fixed constant) and are therefore straightforward to differentiate and pick unbiased samples 

from, in contrast with restricted Boltzmann machines [3] and other undirected models. Mixture density outputs can also be used 

with recurrent neural networks [4]. 

 

In this case the output distribution is conditioned not only on the current input, but on the history of previous inputs. Intuitively, the 

number of components is the number of choices the network has for the next output given the inputs so far. 

 

REVIEW OF LITERATURE 

The number of contributions made by the researchers on handwriting synthesis is less. 

Handwriting synthesis is a common problem in the domain of machine learning. 

Generative techniques can be divided into two categories: 

1. Movement Simulation Techniques 

2. Shape Simulation Method 

 

Movement Simulation Techniques 

 

Movement simulation techniques are mostly based on motor models whereas shape simulation techniques use the trajectories of the 

handwriting. Synthesizing handwritten characters with movement simulation techniques requires dynamic information about 

handwriting to be available. Movement-simulation usually requires the acquisition of online data on tablets. 
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Ilya Sutskever,James Marten, Geoffrey Hinton, 2011 

 

Shape Simulation Techniques 

Shape simulation techniques use the trajectories of the handwriting which comprise the writing style’s characteristics in a direct 

way via handwritten shapes. Shape Simulation Techniques model the written samples themselves. Shape Simulation approaches 

are more practical for offline data. 

 

Generating Text with Recurrent Neural Network 

Recurrent Neural Networks (RNNs) are very powerful sequence models that do not enjoy widespread use because it is extremely 

difficult to train them properly. Fortunately, recent advances in Hessian-free optimization have been able to overcome the 

difficulties associated with training RNNs, making it possible to apply them. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Training sample from IAM-OnDB 

 

Data Pre-processing 

Pre-processing IAM-OnDB dataset required a lot of focus. The raw input data consists of the (x, y) pen co-ordinates and the points 

corresponding to the action of lifting the pen off the whiteboard. 

 

Some recording errors in the (x, y) data was corrected by interpolating to fill in for missing values. After this step, the network is 

directly trained to predict the (x, y) co-ordinates one point at a time. 

Architecture 

 

As seen, a traditional recurrent cell is not quite effective in storing long dependencies. So Long Short-Term Memory cells are used 

in its place. They maintain cell states and have longer memory by making use of various internal gates. 

With the help of LSTM cells, we can have long-term dependencies but one LSTM cell may not be so effective in abstracting the 

details of handwriting stroke. In order to have a deeper understanding of handwriting strokes to the network, multiple LSTM cells 

are stacked on top of each other to create a deep recurrent neural network. 
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Fig 3.3: Complete architecture of handwriting synthesis 

We have used three LSTM layers are used. The rolled architecture figure shows three layers of LSTM. The architecture uses one 

timestep of the model and does not show the looped connections inside the model. In order to understand those connections, it is 

better to unroll the model and visualize it as multiple architectures interconnected to each other. 

The first layer of LSTM was implemented and then attention mechanism part is hard coded following the mathematical equations 

and it is attached to the first layer of LSTM. The outputs of attention mechanism are then passed to second layer LSTM and then to 

final layer LSTM. Now the output of final layer LSTM is attached to Mixture Density Network. 

So, in this architecture, we have all the LSTMs and attention mechanisms pass their hidden states to the next timestep [10]. The 

output of t-1 step will the input of the t step. Mixture Density networks don't have any loop as they are a regular neural network 

without any hidden states. Therefore, there will not be any hidden state transfer in the case of MDNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Synthesis Network Architecture 
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In figure 3.17 an input vector sequence x = (x1, . . . , xT ) is passed through weighted connections to a stack of N recurrently 

connected hidden layers to compute first the hidden vector sequences hn = (h1n , . . . , hn T ) and then the output vector sequence y 

= (y1, . . . , yT ). 

 

The network is ‘deep’ in both space and time, in the sense that every piece of information passing either vertically or horizontally 

through the computation graph will be acted on by multiple successive weight matrices and nonlinearities. 

 

The ‘skip connections’ from the inputs to all hidden layers, and from all hidden layers to the outputs make it easier to train deep 

networks. 

 

The hidden layers are stacked on top of each other, each feeding up to the layer above, and there are skip connections from the 

inputs to all hidden layers and from all hidden layers to the outputs. 

 

These make it easier to train deep networks by reducing the number of processing steps between the bottom of the network and the 

top, and thereby mitigating the ‘vanishing gradient’ problem. 

 

The wt vectors are passed to the second and third hidden layers at time t, and the first hidden layer at t+1 (to avoid creating a cycle 

in the processing graph). The equations for the hidden layers are 
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LSTM 

Theoretically recurrent neural network, can work. But in practice, it suffers from problems discussed above vanishing gradient and 

exploding gradient, which make it quite unstable and unusable. 

Henceforth, LSTM (long short term memory) was invented to solve this issue by explicitly introducing a memory unit, called the 

cell into the network. So Long Short-Term Memory (LSTM) architecture [9], uses purpose-built memory cells to store information, 

and is better at finding and exploiting long range dependencies in the data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: LSTM building block. 

 

A simple LSTM cell consists of 4 gates: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Architecture of LSTM cell 

Now Inputs of the neural network is: 

 

● Memory of the previous block ht-1 

● Output of the previous LSTM block Xt, 

● Input for the current LSTM block Ct-1, and 

● A bias vector b0 

On the LSTM diagram, the top “pipe” is the memory pipe. The input is the old memory (a vector). The first cross ✖ it passes 

through is the forget valve. It is actually an element-wise multiplication operation. So if we multiply the old memory Ct-1 with a 

vector that is close to 0, that means we want to forget most of the old memory whereas if your forget valve equals 1 then we want 

to keep the old memory. 

 

Then the second operation here shall be the + operator. This operator means piece-wise summation. New memory and the old 

memory will merge by this operation. How much new memory should be added to the old memory is controlled by another valve, 

the ✖ below the + sign. 

 

After these two operations, the old memory Ct-1 gets changed to the new memory Ct.. 
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Figure 3.7: LSTM Stage 1 

This neural network has a sigmoid function as activation, It’s output vector is the forget valve, which will applied to the old memory 

Ct-1 by element-wise multiplication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: LSTM Stage 2 

 

The second valve is called the new memory valve. It is a one layer simple neural network that takes the same inputs as the forget 

valve. This valve controls how much the new memory should influence the old memory. 

The new memory itself, however is generated by another neural network. It is also a one layer network, but uses tanh as the activation 

function. The output of this network will element-wise multiple the new memory valve, and add to the old memory to form the new 

memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: LSTM Stage 3 
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Finally we have to decide what to output from the cell state which will be done by our sigmoid function. This step has an output 

valve that is controlled by the new memory, the previous output ht-1, the input Xt and a bias vector. This valve controls how much 

new memory should output to the next LSTM unit. We multiply the input with tanh to crush the values between (-1,1) and then 

multiply it with the output of sigmoid function so that we only output what we want to. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: LSTM Stage 5 

So, in nutshell LSTM cell looks like 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Complete setup of LSTM 

 

Forget Gate 

Tells about whether to erase the cell. It shuts the old memory. 

 

ft = σ(Wxf xt + Whf ht-1 +Wcf ct-1 + bf ) (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Forget Gate 
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Input Gate 

Tell about whether to write the cell. This is the new memory valve. 

 

ίt  = σ(Wxίxt +Whίht-1 +bc) (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: In-out Gate 

 

Cell Gate 

These are the two valves and the element-wise summation to merge the old memory and the new memory to form Ct 

ct = ft ct-1 +ίt tanh (Wxc xt + Whc ht-1 + bc) (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Cell Gate 

 

Output Gate 

This is the output valve and output of the LSTM unit. It tells how much to reveal the cell. 

ot = σ(Wxo xt + Who ht-1 + Wco ct + bo) (8) 

ht = ot tanh (ct) (9) 
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Figure 3.16: Output Gate 

Here: 

 

 σ is the logistic sigmoid function, 

 i, f, o and c are respectively the input gate, forget gate, output gate, cell input activation vectors, 

 h is the hidden vector. 

 

 The weight matrix subscripts have the obvious meaning, for example Whi is the hidden-input gate matrix, Wxo 

is the input-output gate matrix etc. The weight matrices from the cell to gate vectors (e.g. Wci) are diagonal, so element m in each 

gate vector only receives input from element m of the cell vector. 

 

Attention Mechanism 

Attention mechanisms in neural networks serve to orient perception as well as memory access (Attention filters the perceptions that 

can be stored in memory, and filters them again on a second pass when they are to be retrieved from memory. It can be aimed at 

the present and the past. 

 

Below equations describe how the attention mechanism is implemented and will give an intuition for how the parameters α, β, and 

κ affect the window’s behavior.

^ ^ 
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Now given a soft window wt into c at timestep t (1 ≤ t ≤ T) is defined by the following discrete convolution with a mixture of K 

Gaussian functions. 

 
 

 

Here  φ(t, u) is the window weight of cu at timestep t. 

 

Intuitively, the κt parameters control the location of the window, 

 

The βt parameters control the width of the window and 

 

The αt parameters control the importance of the window within the mixture. 

 

The size of the soft window vectors is the same as the size of the character vectors cu (assuming a one-hot encoding, this will be 

the number of characters in the alphabet). 

 

The location parameters κt are defined as offsets from the previous locations ct−1, and that the size of the offset is constrained to 

be greater than zero. Intuitively, this means that network learns how far to slide each window at each step, rather than an absolute 

location. Using offsets was essential to getting the network to align the text with the pen trace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Window weights during a handwriting synthesis sequence. Each point on the map shows the value of φ(t, u), where t 

indexes the pen trace along the horizontal axis and u indexes the text character along the vertical axis. The bright line is the 

alignment chosen by the network between the characters and the writing. 

 

Mixture Density Network for Handwriting Generation 

The idea of mixture density networks [14] is to use the outputs of a neural network to parameterise a mixture distribution. A subset 

of the outputs are used to define the mixture weights, while the remaining outputs are used to parameterise the individual mixture 

components. 

Each input vector xt consists of a real-valued pair x1, x2 that defines the pen offset from the previous input, along with a binary x3 

that has value 1 if the vector ends a stroke (that is, if the pen was lifted off the board before the next vector was recorded) and value 

0 otherwise. 

A mixture of bivariate Gaussians was used to predict x1 and x2, while Bernoulli distribution was used for x3. Each output vector 

yt consists of: 

● End of stroke probability e, 

● A set of means μj 

● Standard deviations σj 
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● Correlations ⍴j 

● Mixture weights πj for the M mixture components. 
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The mixture weight outputs are normalized with a softmax function to ensure they form a valid discrete distribution, and the other 

outputs are passed through suitable functions to keep their values within meaningful range (for example the exponential function is 

typically applied to outputs used as scale parameters, which must be positive). 

 

Technologies used: 

Python: Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first 

released in 1991, Python's design gives great importance to code readability with significant use of whitespace. Its language 

constructs and object-oriented approach aims to help programmers write clear, logical code for small and large-scale projects. 

It is dynamically typed and garbage-collected. It supports multiple programming paradigms, including procedural, object-oriented, 

and functional programming. 

Python is the top choice among developers for artificial intelligence (AI), machine learning, and deep learning projects. Python [31] 

has an abundance of libraries and frameworks that facilitate coding and save development time. 

NumPy, used for scientific computation, SciPy for advanced computation are among the most popular libraries, working alongside 

such heavy-hitting frameworks as TensorFlow. 

 

Python’s simple syntax means that it is also faster in development than many programming languages, and allows the developer to 

quickly test algorithms without having to implement them. 

Matplotlib is used to generate the handwriting and display it on a graph. 

 

TensorFlow 

TensorFlow is a free and open source software library for dataflow and differentiable programming across a range of tasks. It is a 

symbolic math library, and is also used for ML applications such as Neural Networks. TensorFlow offers multiple levels of 

abstraction so you can choose the right one for your needs. 

 

TensorFlow provides a direct path to production. Whether it’s on servers, edge devices, or the web, TensorFlow lets us train and 

deploy your model easily, no matter what language or platform we use.  

 

Jupyter Notebook 

The Jupyter Notebook is an open-source web application that allows to create and share documents that contain live code, equations, 

visualizations and narrative text. Jupyter Notebook is an open-source web application that allows users to create and share codes 

and documents. It provides an environment, where we can document the code, run it, look at the outcome, visualize data and see 

the results without leaving the environment. 

 

Outputs 

The outputs with different styles and biases are shown. 

● bias (float) - with higher bias generated handwriting is more clear so to speak  

● style - style of handwriting, int from 0 to 7. 

 

The output is finally created using the resultant set of points(an array of n values each containing 3 points)  generated from the 

output of Mixture Density Networks.  

x1 and x2 are used to specify the coordinates while x3 is used to identify whether the point is an eos marker or not. 

 

 The input text which is to be synthesized is “This is our thesis project.” 
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Fig 3.2.1: Synthesized Handwriting in style-0 with bias set to 0 

 
 

Fig 3.2.2: Synthesized Handwriting in style-0 with bias set to 10 
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Fig 3.3.1: Synthesized Handwriting in style-1 with bias set to
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Fig 3.3.2: Synthesized Handwriting in style-1 with bias set to 10 

 

 
 

Fig 3.4.1: Synthesized Handwriting in style-2 with bias set to 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4.2: Synthesized Handwriting in style-2 with bias set to 10 
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Fig 3.5.1: Synthesized Handwriting in style-3 with bias set to 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 3.5.2: Synthesized Handwriting in style-3 with bias set to 10 

 

 

http://www.ijsdr.org/


ISSN: 2455-2631                                       September 2023 IJSDR | Volume 8 Issue 9 
 

IJSDR2309156 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  1104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6.1: Synthesized Handwriting in style-4 with bias set to 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6.2: Synthesized Handwriting in style-4 with bias set to 10 
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Fig 3.7.1: Synthesized Handwriting in style-5 with bias set to 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.7.2: Synthesized Handwriting in style-5 with bias set to 10 
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Fig 3.8.1: Synthesized Handwriting in style-6 with bias set to 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.9.1: Synthesized Handwriting in style-7 with bias set to 0
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Fig 3.9.2: Synthesized Handwriting in style-7 with bias set to 10 

Conclusions 

Handwriting generation is a complicated task and it is even more difficult to mimic the particular style. With the explained model, 

we can achieve satisfying results. Results of the model totally depend on its hyper parameters. Tuning them properly is necessary. 

Few limitations observed with the model is that it cannot generate longer strings at once because of LSTMs limit. And also, the 

model needs more data for efficient results. 

This project introduced a novel convolutional mechanism that allowed a recurrent neural network with LSTM to condition its 

predictions on an auxiliary annotation sequence, and used the approach to synthesize diverse and realistic samples of online 

handwriting. 

Beyond that, here no segmentation was used and the network was trained to predict the x, y coordinates and the end-of-stroke 

markers one point at a time which contrasts with most approaches to handwriting recognition and synthesis that rely on sophisticated 

pre-processing and feature-extraction techniques. We eschewed such techniques because they tend to reduce the variation in the 

data (e.g. by normalising the character size, slant, skew and so-on) which we wanted the network to model the same. 

 

Team work, exposure to new state-of-art technologies and algorithms in the field of Machine Learning and Computer Vision are 

the learning outcomes of this project. 

 

Future Scope: 

Extending the method to understand offline data too can be the future work of the project. Here offline data means scanned images 

of handwriting documents. 

 

Use of more sophisticated Neural Networks and advanced methods like Multidimensional Long-Short Term Memory (MDLSTM) 

and attention mechanisms can result in better accuracy results, but at the expense of increased training time and increased 

complexity. 

 

We can use the application of the network to speech synthesis, which is likely to be more challenging than handwriting synthesis 

due to the greater dimensionality of the data points. 

 

We can widen our dataset by incorporating writing styles of various writers which can lead to further refinement and better practical 

results. 

 

With the advancements in the RNNs and model can also be improved to mimic any style with less training data. This method is not 

limited to handwriting data. It can be functional to any sequential data with few tweaks. Moreover, in future, this designed model 

can be applied in a much more useful real-time application. 
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Also we could even incorporate Generative Adversarial Net approaches to recurrent neural networks. As this could train a network 

to discriminate between fake handwriting and real one, and another network to generate fake handwriting to fool the discriminator 

networks. 
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