EVALUATION OF ANTI-ALZHEIMER AND ANTI-PARKINSON ACTIVITY OF ETHANOLIC EXTRACT OF WHOLE PLANTS OF CELOSIA CRISTATA LINN.

1Dr.I.Veena Rani, 2Dondra Srilatha, 3Dr.K.Vanitha Prakash
Correspondence to author: Dr.I.Veena Rani

Department of pharmacology
SSJ college of Pharmacy.
Vattinagulapally,
Hyderabad-500075.

Abstract- In the present study, ethanolic extract of *Celosia Cristata* was assessed for the prevention of alzheimer and parkinsonism in rats. Two doses of the plant extract (200 mg/kg & 400 mg/kg) were selected for treatment. The plant extracts produced significant prevention of Alzheimer and Parkinsonism in rats on a dose dependent manner. Based on the above results, it was concluded that the ethanolic extract of *Celosia Cristata* has shown good anti-alzheimer and anti-parkinson’s activity against in rats. It may be due to the presence of active phytoconstituents (anti-oxidants) in the extract. Thus, the exploitation of this plant will help the humankind to get potential API or drugs that can be used for the treatment of neurodegenerative diseases at very cheap and economically affordable prices. Our study will also avoid the synthetic route for the manufacture of some potential API or drugs and may prevent the huge investment and pollution caused during the synthesis of some potential API or drugs that can be used for the treatment of neurodegenerative diseases.

Key words: Anti-Alzheimer, Anti-Parkinson Activity, Ethanolic Extract, Whole Plants, Celosia Cristata Linn.

INTRODUCTION

Alzheimer’s disease (AD) is widely known as the most common cause of dementia, and AD is most frequently observed in older individuals [1,2]. Characteristics of AD include behavioral disturbances, neuronal death, memory loss, cognitive deficit, and cholinergic dysfunction. AD pathogenesis includes complex processes and a deficit of the neural pathways associated with memory function [3]. Early-onset AD has been detected in individuals over 65 years old. Nonetheless, over 90% of diagnosed cases are linked with the late-onset of AD, which is commonly observed in individuals over 65 years old [4]. On the other hand, preselinin 1 (*PSEN1*) mutation (P117L) is linked to familial AD (FAD) and can cause death of as young as 28 years old [5]. It has been reported that early-onset AD development is linked with various genetic mutations, particularly in amyloid precursor protein (*APP*), *PSEN1*, and preselinin 2 (*PSEN2*) genes [6]. Dysregulated expression of these genes might be present in around 5–10% of diagnosed cases of early-onset AD [4,6]. Indeed, apolipoprotein E (APOE) polymorphic alleles play a significant role in the development of early-onset and late-onset AD [7,8]. In addition, the presence of APOE4 alleles is linked with an elevated risk of cerebral amyloid angiopathy and age-associated cognitive deficit during normal aging [9].

Major neuropathological features of AD include nerve cell death, intracellular neurofibrillary tangles (NFTs), and extracellular amyloid plaques [10,11,12,13,14]. Sequential APP cleavage takes place via two pathways, including the amyloidogenic pathway and the non-amyloidogenic pathway [15]. The amyloid plaques are made of amyloid beta (Aβ), which is generated by the amyloidogenic APP cleavage. In this pathway, APP is cleaved via β-secretase (BACE1) and subsequently via γ-secretase to generate Aβ [14]. It has been revealed that there is a link between FAD mutations and increased ratio of Aβ42/40 [16,17], which indicates that increased Aβ42 levels (as compared to Aβ40) play a crucial role in AD pathogenesis, possibly via providing the core for Aβ assembly into amyloidogenic plaques, fibrils, and oligomers [18,19]. In the elderly, Aβ accumulation might take place due to the change in APP cleavage. It was reported that an excessive level of age-linked acetylation of the ε-secretase gene might reduce non-amyloidogenic APP processing [20]. In early AD brain tissue, increased BACE1 action was found to elevate amyloidogenic APP processing [21,22]. Monomers of Aβ progressively aggregate into fibrils, oligomers, and insoluble amyloid plaques [10]. NFTs are composed of hyperphosphorylated tau, and these NFTs are known as the histopathological hallmark of AD [23]. Tau can mediate the stabilization of microtubules under normal conditions. In contrast, when tau is hyperphosphorylated, it can accumulate into tangles made of paired helical filaments [11]. It is suggested by the amyloid cascade hypothesis that Aβ accumulation dysregulates neuronal and synaptic function, which can mediate the intracellular environment for the formation of NFTs, eventually resulting in loss of neurons and further deterioration of neurotransmitter activity [10]. Various synthetic medicines are prescribed for Alzheimer’s and Parkinson’s disease but they exert side effects. Still there is a challenge to the medical system for Management of Alzheimer’s and Parkinson’s disease without any side effects.

Consequently, the search for natural drugs from medicinal plants is being increased because of its fewer side effects, willingly availability and low cost. Thus, the scientific validation of medicinal plants traditionally used in the treatment and management of Alzheimer’s and Parkinson’s disease is demanded.

On the basis of literature and documentation of existing uses of *Celosia Cristata*, an effort has been made to establish the scientific validity to investigate anti-alzheimer and anti-parkinson activity.
MATERIALS & METHODS

SELECTION OF THE PLANT MATERIAL

The isolation of secondary plant metabolites begins with the selection of the plant, the most critical aspect of the project. In order to locate a plant, previously in folklore practices, one should turn to the discipline of ethanobotany. Ethanobotany literally means “people’s botany” and is defined as the study of plants important to primitive people. Ethanobotany can include present day people and involves interdisciplinary study surrounding a core of botany with chemistry, pharmacology and anthropology among others.

As the medicinal properties of plants have been investigated in the light of recent scientific developments throughout the world, due to their potent pharmacological activities, low toxicity and economic viability. The library search will yield detail of folk medicinal plants utilized in particular area. This will ensure the availability of plants for collection purposes. So, for the selection of a medicinal plant with an active anti-parkinson and anti-alzheimer activity, includes discussion with a tribal medical practitioner for the traditional and tribal uses of the plants which have been used for neurological diseases. The compiled list of plants must therefore be subjected to a literature survey to confirm that the plant has not been previously investigated for anti-alzheimer and anti-parkinson activity. In addition to the verification that the plant constituents have yet to be identified, note must be taken of which plant parts were utilized and how they were culturally prepared.

Based on the ethnopharmacological survey and literature review, the plant *Celosia Cristata* was selected for the present work.

COLLECTION AND AUTHENTICATION OF THE PLANT MATERIAL

The fresh plants of *Celosia Cristata* were collected from the Chittoor district, Andhra Pradesh, India, during the month of September 2022. The plant was taxonomically identified and authenticated by the Botanist.

EXTRACTION OF PLANT MATERIAL

The fresh plants were air-dried under shade and then coarsely powdered using a mechanical grinder. The powder was then passed through sieve no.40 and stored in an airtight container for the extraction. About 500gms of powder has been used for the process of extraction.

The cleaned and powdered material of whole plants of *Celosia Cristata* were used for extraction purpose. About 500gms of powdered material was evenly packed ina Soxhlet apparatus. It was then extracted with various solvents from non-polar to polar such as Petroleum ether, Ethanol and Aqueous successively. The solvents used were purified before use. The extraction method used was continuous hot percolation and carried out with various solvents, for 72 Hrs. The aqueous extraction was carried out by cold-maceration process.

METHODS OF EXTRACTION:

- Continuous hot percolation process
- Cold maceration process

SOLVENTS USED:

1. Petroleum ether
2. Ethanol
3. Distilled water

PREPARATION OF EXTRACTS:

Petroleum ether extract of whole plants of *Celosia Cristata*:

The shade dried coarsely powdered whole plants of *Celosia Cristata* (500gm) were extracted with petroleum ether (60-80˚C), for 72 hrs. After completion of extraction, the defatted extracts were filtered while hot through Whatmann filter paper (No.10) to remove any impurities if present. The extract was concentrated by vacuum distillation to reduce the volume to 1/10. Then the concentrated extract was transferred to 100ml beaker and the remaining solvent was evaporated on a water bath. Dark greenish brown coloured extract was obtained. The concentrated extract was then kept in a desiccator to remove the excessive moisture. The dried extract was packed in air tight glass container for further studies.

Ethanolic extract of whole plants of *Celosia Cristata*:

The main marc left after Pet. ether extraction was dried and then extracted with ethanol 95% v/v (75-78˚C), for 72 hrs. After completion of extraction, the solvent was removed by distillation. Dark greenish coloured extract was obtained. The extract was then stored in a desiccator to remove the excessive moisture. The dried extract was then packed in an air tight glass container for further studies.

Aqueous extract of whole plants of *Celosia Cristata*:

The marc left after ethanol extraction was again dried and then macerated with distilled water in a 2 litre round bottom flask for 72 hrs and 10 ml of chloroform was added to avoid fungal growth. After completion of extraction, it was filtered and the solvent was removed by evaporation to dryness on a water bath. Brown coloured extract was obtained and it was stored in a desiccator to remove the excessive moisture. The dried extract was packed in air tight glass container for further studies. The percentage yields of the above extracts were expressed in Table no.1.
IDENTIFICATION OF PHYTOCHEMICAL ACTIVE CONSTITUENTS PRELIMINARY PHYTOCHEMICAL STUDIES
The extracts obtained (Petroleum ether, Ethanol and Aqueous) were subjected to the following preliminary phytochemical studies.

PHARMACOLOGICAL SCREENING
ANIMALS
Healthy adult Wistar rats, weighing 180–220 g, were used and acclimatized to laboratory conditions for one week. All animals were housed in well-ventilated polypropylene cages (12hrs light and 12 hrs dark schedule) at 25°C and 55–65% RH.
The rats were provided with a standard diet. Rats were freely allowed to commercial pelleted rats chow and water ad libitum.

ANTI-ALZHEIMER'S ACTIVITY
Object recognition test
The apparatus consisted of plywood (70 × 60 × 30 cm) with a grid floor that could be easily cleaned with hydrogen peroxide after each trial. The apparatus was illuminated by a 40 W lamp suspended 50 cm above the box. The objects to be discriminated were also made of plywood in two different shapes of 8 cm height coloured black.
The day before test, rats were allowed to explore the box (without any object) for two min. On the day of the test in the first trial (T1), two identical objects were placed in two opposite corners of the box and the amount of time taken by each rat to complete 20 sec of object exploration was recorded. Exploration was considered directing the nose at a distance < 2 cm to the object and/or touching it with the nose. During the second trial (T2, 90 min after T1) one of the objects presented in trial T1 was replaced by new object and the rats were left in the box for 5 min. The time spent in exploration of familiar (F) and the new object (N) were recorded separately and discrimination index (D) was calculated (N-F/N+F). Care was taken to avoid place preferences and olfactory stimuli by randomly changing the role (familiar or new object) and the position of the two objects during T2 and cleaning the apparatus with hydrogen peroxide.
Wistar rats of either sex were selected and divided into four groups of six animals each and treated as follows:
- Group I: Administered propylene glycol (5 ml/kg body weight), served as vehicle group
- Group II: Administered extract at the doses of 200 mg/kg body weight intraperitoneally
- Group III: Administered extract at the doses of 400 mg/kg body weight intraperitoneally
- Group IV: Received Piracetam (100 mg/kg body weight)

The rats were treated with vehicle, extract (200 and 400 mg/kg, i.p.) and Piracetam (100 mg/kg, i.p.) 30 minutes before the first trial. The second trial was performed 90 min after the first trial. Each group consisted of 6 animals.

Y – Maze Test
Wistar rats of either sex were selected and divided into four groups of six animals each and treated as follows:
- Group I: Administered propylene glycol (5 ml/kg body weight), served as vehicle group
- Group II: Administered extract at the doses of 200 mg/kg body weight intraperitoneally
- Group III: Administered extract at the doses of 400 mg/kg body weight intraperitoneally
- Group IV: Received Diazepam (10 mg/kg body weight) as standard drug

The test was performed in Wistar rats at 60 min & 120 min after treatment. The rats were placed individually in symmetrical Y-shaped runway (33 x 38 cm) for 3 min and the number of times, a rat entered in the arm of the maze with all 4 ft (an entry) were counted.

ANTI-PARKINSON'S ACTIVITY
HALOPERIDOL-INDUCED CATALEPSY IN RATS
All the animals were divided into 5 groups (n = 6)
- Group I: Administered propylene glycol (5 ml/kg body weight), served as vehicle group
- Group II: Administered haloperidol (1 mg/kg, i.p.) daily for a period of 7 days, served as the negative control group.
- Group III: Received Syndopa (10 mg/kg body weight) as standard drug
- Group IV: Administered extract at the doses of 200 mg/kg body weight intraperitoneally
- Group V: Administered extract at the doses of 400 mg/kg body weight intraperitoneally

Haloperidol was given 30 minutes prior to standard and test drug administration. Bodyweight changes and behavioural assessments were carried out before the start of the treatment. Various parameters like Catalepsy (Bar test), Locomotor activity (Actophotometer test), and Muscle Rigidity (Rotarod test) were measured in all animals.

CHLORPROMAZINE-INDUCED CATALEPSY IN RATS
All the animals were divided into 5 groups (n = 6)
- Group I: Administered propylene glycol (5 ml/kg body weight), served as vehicle group
- Group II: Administered chlorpromazine (3 mg/kg, i.p.) daily for a period of 21 days, served as the negative control group.
Group III: Received Syndopa (10 mg/kg body weight) as standard drug
Group IV: Administered extract at the doses of 200 mg/kg body weight intraperitoneally
Group V: Administered extract at the doses of 400 mg/kg body weight intraperitoneally

Chlorpromazine was given 30 minutes prior to standard and test drug administration. Bodyweight changes and behavioural assessments were carried out before the start of the treatment. Various parameters like Catalepsy (Bar test), Locomotor activity (Actophotometer test), and Muscle Rigidity (Rotarod test) were measured in all animals.

BEHAVIORAL ASSESSMENT
Catalepsy bar test
Catalepsy is a state of activity characterized by muscle rigidity associated with failure to correct an externally induced oblique posture for a protracted amount of time. The standard bar test is used for the assessment of catalepsy. Antipsychotic agents usually increase hypersomnia, thereby providing a measure of the extrapyramidal side-effects observed in humans exposed to chronic antipsychotics. Catalepsy induced by the typical neuroleptic agents in rodents can be used as a model for extrapyramidal effects in PD. Catalepsy is most typically measured by the standard bar technique consisting of inserting an animal, after administration of a neuroleptic such as haloperidol/CPZ in a position with its front legs resting on a bar suspended on top of the ground. The intensity of catalepsy is measured by the length of time the subject maintains this externally induced abnormal posture.

Catalepsy was measured by a grading technique given below.
Step I
- Rat moved normally when placed on the table. Step II-0.5
- Rat moved only when touched/pushed.
Step III-0.5
- Front paws of the rats were placed alternately on a 3 cm highblock. If the rat failed to correct the posture within 15 sec, a score of 0.5 for each paw was added to the score of step 1.
Step IV-1.0
- The front paws of the rat were alternately placed on a 9 cm highblock. If the rat failed to correct the posture within 15 sec, a score of 1 for each paw was added to the scores of step I and II. Thus, 3.5 is a highest score for an animal.

Rotarod Activity test
Rotarod apparatus has a horizontal grooved rod rotating at a fixed speed. The rats are made to balance on this rod. Dependent upon their motor co-ordination, Central nervous activity, and grip strength the animal either stays on the rotating rod for a specific time and after that falls down on the platform of each compartment. The floor of each compartment has sensors that deactivate the timers and the exact fall off time for each rat is displayed on the respective display. A cut-off time of 180 seconds was maintained throughout the experiment. The average results were recorded as the fall time of In free riding, the mouse holds the rotating rod and rotates with it. Hence, free ridings are considered as a sensitive parameter related to grip strength and muscle coordination.

Locomotor activity test
The spontaneous locomotor activity was monitored using a digital actophotometer equipped with infrared-sensitive photocells. The apparatus was placed in a darkened, light and sound attenuated, and ventilated testing room. Each interruption of a beam generated an electrical impulse that was denoted on a digital counter. Each animal was observed over a period of 1 min following haloperidol and chlorpromazine administration and values were expressed as counts per min.

RESULTS AND DISCUSSION
Plant derived natural products such as flavonoids, phenolic compounds, terpenoids and steroids etc. have received considerable attention in recent years due to their diverse pharmacological properties, including antioxidant activity. There has been growing interest in the analysis of certain flavonoids, triterpenoids and steroids stimulated by research into their potential benefits to human health. One of their main properties in this regard is their antioxidant activity, which enable them to attenuate the development of neurodegenerative diseases. Antioxidant plays an important role in inhibiting and scavenging free radicals, thus providing protection to degenerative diseases. Realizing the fact, this research was carried out to evaluate the anti-alzheimer activity and anti-parkinson activities of extracts of Celosia Cristata.

DETERMINATION OF EXTRACTIVE VALUES OF WHOLE PLANT OF CELOSIA CRISTATA.
The shade dried coarsely powdered whole plants of Celosia Cristata were extracted by using different solvents of increasing polarity by continuous hot percolation process using Soxhlet apparatus and aqueous extracts by cold maceration method. Extractive values were presented in table no: 1
TABLE NO:1 EXTRACTIVE VALUES OF WHOLE PLANTS OF *CELOSIA CRISTATA*.

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Parts used</th>
<th>Method of extraction</th>
<th>Yield in percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celosia Cristata</td>
<td>Wholeplant</td>
<td>Continuous Hot Percolation and Cold Maceration</td>
<td>Petroleum Ether: 5.6</td>
</tr>
</tbody>
</table>

PHYTOCHEMICAL EVALUATION:

The phytoconstituents present in the various extracts were identified by performing chemical tests and the results were showed in Table No:4.

- **Petroleum Ether**: Chlorophyll, Starch, Fat, Fixed oil.
- **Ethanol**: Carbohydrates, Glycosides, Tannins, Saponins, Flavonoids and Phenolic compounds.
- **Aqueous Extract**: Carbohydrates, Glycosides, Flavonoids and Phenolic compounds.

From the above stated extracts, ethanolic extract showed the presence of more phytoconstituents. Hence, ethanolic extract (EECC) was selected for the pharmacological evaluation.

TABLE NO. 2: PRELIMINARY PHYTOCHEMICAL STUDIES OF EXTRACTS OF WHOLE PLANT OF *CELOSIA CRISTATA*

<table>
<thead>
<tr>
<th>S. No</th>
<th>Constituents</th>
<th>Tests</th>
<th>PetroleumEther Extract</th>
<th>Ethanol Extract</th>
<th>Aqueous Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ALKALOIDS</td>
<td>Mayer’s test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dragendorff’s test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hager’s test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wager’s test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>STEROLS</td>
<td>Libermann’s Burchard test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salkowski’s test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>CARBOHYDRATES</td>
<td>Molisch reagent</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehling’s reagent</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benedict’s reagent</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anthrone test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>FIXED OILS ANDFATS</td>
<td>Spot test</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>PHENOLIC COMPOUNDS</td>
<td>FeCl3</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gelatin test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead acetate test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>PROTEIN AND AMINO ACIDS</td>
<td>Biuret test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ninhydrin test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xanthoprotein test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Millon’s reagent - - -

7. Saponins Foam test - + -

8. Tannins Gelatin test - + -

9. Gum and Mucilage Precipitation with 95% alcohol + - -

10. Flavonoids Shinoda’s test - + +

Conc. H₂SO₄ - + +

11. Glycosides Molisch’s test - + +

Pharmacological evaluation

ANTI-ALZHEIMER’S ACTIVITY

Object recognition test

In the object recognition test, the animals spent more time to explore the objects in the first trial (T₁ session). In the second trial (T₂ session), when a new object replaced a familiar object, ethanol extract of *Celosia Cristata* and Piracetam significantly reduced the time to explore the familiar object as compared with the time to explore the new object. Moreover, ethanol extract of *Celosia Cristata* also showed significant increase in discrimination index (Table 3).

Table no. 3 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON OBJECT RECOGNITION TEST USING RATS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Object recognition time (seconds)</th>
<th>Discrimination index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Familiar object</td>
<td>Novel object</td>
</tr>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol 5ml/kg)</td>
<td>80.42±1.14</td>
<td>95.20±1.02</td>
</tr>
<tr>
<td>2.</td>
<td>Group II (EECC – 200mg/kg)</td>
<td>51.71±0.96</td>
<td>85.33±0.88</td>
</tr>
<tr>
<td>3.</td>
<td>Group III (EECC – 400mg/kg)</td>
<td>45.64±0.82</td>
<td>81.21±1.04</td>
</tr>
<tr>
<td>4.</td>
<td>Group IV (Piracetam –100mg/kg)</td>
<td>34.20±1.16</td>
<td>76.83±0.98</td>
</tr>
</tbody>
</table>

All the values were expressed as mean± SEM and n=6 in each group. All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.

Y - Maze test

In the Y-maze test, the animals treated with the extract in tested doses have shown a markedly decrease in exploratory behaviour compared with control group (Table no. 4). Thus, ethanol extract of *Celosia Cristata* showed significant decrease in exploratory behaviour indicating facilitator action on learning and memory.

Table no.4 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON Y - MAZE TEST USING RATS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Treatment</th>
<th>Exploratory Time(seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60 min</td>
</tr>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol 5ml/kg)</td>
<td>10.30±1.45</td>
</tr>
</tbody>
</table>
Table no.5 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON HALOPERIDOL INDUCED CATALEPSY IN RATS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6th day</td>
</tr>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol 5ml/kg)</td>
<td>1.91±0.21</td>
</tr>
<tr>
<td>2.</td>
<td>Group II (Haloperidol 1mg/kg)</td>
<td>3.43±0.26</td>
</tr>
<tr>
<td>3.</td>
<td>Group III (HP + EECC 200mg/kg)</td>
<td>2.80±0.31</td>
</tr>
<tr>
<td>4.</td>
<td>Group IV (HP + EECC 400mg/kg)</td>
<td>2.42±0.19</td>
</tr>
<tr>
<td>5.</td>
<td>Group V (HP + Syndopa 10mg/kg)</td>
<td>2.27±0.31</td>
</tr>
</tbody>
</table>

All the values were expressed as means ± SEM and n=6 in each group. All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.
Group-IV animals showed a much significant increase in the activity score similar to that of group-V animals. The results were shown below in table no.6.

Table no.6 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON HALOPERIDOL INDUCED HYPOLOCOMOTION IN RATS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Locomotor activity (counts/min)</th>
<th>0th day</th>
<th>7th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol - 5ml/kg)</td>
<td>70.42±0.61</td>
<td>71.80±0.23</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Group II (Haloperidol – 1mg/kg)</td>
<td>65.10±0.46</td>
<td>49.51±0.61</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Group III (HP + EECC – 200mg/kg)</td>
<td>66.61±0.40</td>
<td>63.84±0.39</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Group IV (HP +EECC – 400mg/kg)</td>
<td>67.13±1.04</td>
<td>64.24±0.73</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Group V (HP + Syndopa – 10mg/kg)</td>
<td>69.21±1.10</td>
<td>65.72±1.02</td>
<td></td>
</tr>
</tbody>
</table>

All the values were expressed as mean± SEM and n=6 in each group.
All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.

Effect of EECC on Haloperidol-induced Muscular Rigidity in Rats:
Muscular rigidity was evaluated by using a Rotarod apparatus. The mean fall-off time was considered to be an indicator of muscular rigidity. The mean fall-off time of group-I was found to be 95-100 seconds during the entire weekly observation. All the groups shown a nonsignificant difference in muscular rigidity on day 0 and then showed a significant difference in muscular rigidity on day 7 except group-I. Group-II showed a significant reduction in the mean fall-off time when compared to group-I. Group-III and Group-IV significantly shown the reduction in mean fall-off time compared to group-II. Group-V showed a significant increase in the mean fall-off time as compared to group-II. The results were shown below in table no.7. The results coincide with the previous reported article.

Table no.7 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON HALOPERIDOL INDUCED MUSCULAR RIGIDITY IN RATS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Fall off time(counts/min)</th>
<th>0th day</th>
<th>7th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol - 5ml/kg)</td>
<td>96.31±0.37</td>
<td>95.83±0.81</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Group II (Haloperidol – 1mg/kg)</td>
<td>92.22±1.64</td>
<td>76.54±0.96</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Group III (HP + EECC – 200mg/kg)</td>
<td>93.42±0.23</td>
<td>88.31±0.72</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Group IV (HP +EECC – 400mg/kg)</td>
<td>95.14±0.76</td>
<td>90.71±0.88</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Group V (HP + Syndopa – 10mg/kg)</td>
<td>94.20±1.21</td>
<td>95.13±0.91</td>
<td></td>
</tr>
</tbody>
</table>

All the values were expressed as mean± SEM and n=6 in each group.
All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.
CHLORPROMAZINE INDUCED MODEL:
Effect of EECC on Chlorpromazine-induced Catalepsy in Rats:
Animals were evaluated by using bar test for the assessment of catalepsy for weekly observation for a period of 21 days. All the animals were evaluated on day 0, day 7, day 14, day 21 after treatment. Group-I animals showed catalepsy score between 2.0-2.5 seconds during their entire observation period. Group-II animals showed a significant increase in catalepsy time when compared to group-I on day 7. On day 14, group-II animals still showed a significant increase in the catalepsy time compared to group-I and the time increases on day 21.
Group III and Group IV slightly reduce the catalepsy time after a week compared to group-II. On day 14, the reduction increases and on day 21, group-V has shown a much more significant reduction in the catalepsy time. Group-V animals showed a significant reduction in the catalepsy time as compared to group-II on day 7 and the reduction in catalepsy time increases after each week. On day 21, group-V showed a much significant reduction in catalepsy time compared to group-II. The results were shown in table no.8.

Table no.8 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON CHLORPROMAZINE INDUCED CATALEPSY IN RATS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0th day</td>
</tr>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol-5ml/kg)</td>
<td>2.12±0.52</td>
</tr>
<tr>
<td>2.</td>
<td>Group II (Chlorpromazine-3mg/kg)</td>
<td>4.31±0.40</td>
</tr>
<tr>
<td>3.</td>
<td>Group III (CPZ+ EECC-200mg/kg)</td>
<td>2.90±0.51</td>
</tr>
<tr>
<td>4.</td>
<td>Group IV (CPZ+EECC-400mg/kg)</td>
<td>2.73±0.46</td>
</tr>
<tr>
<td>5.</td>
<td>Group V (CPZ + Syndopa-10 mg/kg)</td>
<td>2.31±0.52</td>
</tr>
</tbody>
</table>

All the values were expressed as mean± SEM and n=6 in each group. All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.

Effect of EECC on Chlorpromazine-induced Hypolocomotion in Rats:
All the animals were evaluated for locomotor activity using Actophotometer. All the animals were evaluated on day 0, day 7, day 14, day 21 after treatment. The locomotor activity score of group-I was found to be 65-75 counts/min for the entire observation period. Group-II animals showed a significant reduction in the locomotor activity score when compared to group-I on day 7 and the reduction in the locomotor activity score increases on day 14, and 21. Group III and Group IV showed gradual increase in the locomotor activity score on day 7, day 14, and day 21 as compared to group-II. Group-V showed an increase in the locomotor activity score on day 7 when compared to group-II and the values were significant. Group-V animals showed much significant increase in the locomotor activity score on day 14 and day 21. The results were shown below in table no.9.

Table no.9 - EFFECT OF ETHANOLIC EXTRACT OF CELOSIA CRISTATA ON CHLORPROMAZINE INDUCED HYPOLOCOMOTION IN RATS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Locomotor activity(counts/minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0th day</td>
</tr>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol-5ml/kg)</td>
<td>69.23±1.08</td>
</tr>
</tbody>
</table>
2. Group II (Chlorpromazine – 3mg/kg) 64.25±1.34 58.02±1.05 47.43±0.81 36.81±1.34
3. Group III (CPZ + EECC – 200mg/kg) 66.31±0.75 64.31±0.66 62.48±0.44 61.06±1.15
4. Group IV (CPZ + EECC – 400mg/kg) 66.82±1.16 65.21±1.34 64.71±0.87 64.13±1.40
5. Group V (CPZ + Syndopa – 10 mg/kg) 67.10±1.64 67.52±1.38 68.24±0.94 68.82±0.82

All the values were expressed as mean± SEM and n=6 in each group. All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Treatment</th>
<th>Fall off time(seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0th day</td>
</tr>
<tr>
<td>1.</td>
<td>Group I (Propylene glycol - 5ml/kg)</td>
<td>88.20±1.14</td>
</tr>
<tr>
<td>2.</td>
<td>Group II (Chlorpromazine – 3mg/kg)</td>
<td>83.83±0.78</td>
</tr>
<tr>
<td>3.</td>
<td>Group III (CPZ + EECC – 200mg/kg)</td>
<td>84.22±1.41</td>
</tr>
<tr>
<td>4.</td>
<td>Group IV (CPZ + EECC – 400mg/kg)</td>
<td>85.11±0.86</td>
</tr>
<tr>
<td>5.</td>
<td>Group V (CPZ + Syndopa – 10mg/kg)</td>
<td>86.61±0.85</td>
</tr>
</tbody>
</table>

All the values were expressed as mean± SEM and n=6 in each group. All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.

DISCUSSION
Anti-Alzheimers activity
The high metabolic activity of nervous tissues attached with lipid present in the brain leads to oxidative damage. Additionally, catecholamines present in brain showed more sensitive for production of free radicals. The catecholamines such as adrenaline, noradrenaline and dopamine can spontaneously break down (auto-oxidize) to free radicals, or can be metabolized to radicals by

Effect of EECC on Chlorpromazine-induced Muscular Rigidity in Rats:
Muscular rigidity was evaluated using the Rotarod apparatus. The mean fall-off time was considered to be an indicator of muscular rigidity. All the groups showed a reduction in muscular rigidity after each week except group-I. The mean fall-off time of group-I was found to be 88-92 seconds during the entire observation period. Group-II showed a significant reduction in the mean fall-off time on day 7 when compared to Group-I and the reduction level increases on day 14, and day 21. Group-III and Group-IV slightly showed a significant increase in the fall-off time when compared to group-II on day 7. The fall-off time increases after each week on day 14, and on day 21. The results were shown below in table no.10. The results coincide with the previous reported article.

Table no.10 - EFFECT OF ETHANOLIC EXTRACT OF C ELO SIA CRIS TATA ON CHLORPROMAZINE INDUCED MUSCLE RIGIDITY IN RATS

All the values were expressed as mean± SEM and n=6 in each group. All the data were analyzed by one-way ANOVA method. P values <0.05 are considered to be significant.
the endogenous enzymes such as monoamine oxidase.

The antioxidants such as flavonoids containing substance will protect nervous tissue from damage by oxidative stress. Consequently, clinical studies exhibit that Alzheimer’s are accomplished of exciting the generation of free radicals and depletion of antioxidant levels. The reactive oxygen species imparts chief role in the pathogenesis of Alzheimer’s diseases. Various researches reported that antioxidant containing plants are neuroprotective and hence may have a role in improving memory in aging and neurodegenerative diseases.

The animals treated with ethanol extract of *Celosia Cristata* showed significant cognitive improvement as shown by the decrease in transfer latency in Y-maze test and increase in discrimination index in object recognition test. Thus, ethanol extract of *Celosia Cristata* has a neuroprotective effect and hence may have a role in improving cognition.

Anti-Parkinson’s activity

Catalepsy is a behaviour or nervous condition of animals characterized by muscular rigidity and fixity of posture for a prolonged period known as akinesia. Catalepsy is a well-known motor symptom of Parkinson’s disease. Group-III and Group-IV were found to reduce the catalepsy time in animals similar to that of standard drug. Moreover, Locomotor activity is considered to be an indicative of movement which is impaired or affected in PD which is known as bradykinesia. It is considered to be a cardinal motor symptom of PD. Hence, the locomotor index can be an indicator of Parkinsonism. Group-III and Group-IV were found to increase the locomotor index comparatively than group-II. Muscular rigidity is also known as muscle stiffness characterized by the inability of the muscles to relax. It is also regarded as the main motor symptom of Parkinson’s disease. Fall-off time from the rod indicates the level of rigidity in animals. Thus, muscular rigidity also can be an index of Parkinsonism. Group-III and Group-IV were found to show prevention of reduction in fall-off time. This indicates that ethanol extract of *Celosia Cristata* has a neuroprotective effect and hence may have a role in anti-parkinsonism activity.

SUMMARY AND CONCLUSION

In the present study, ethanolic extract of *Celosia Cristata* was assessed for the prevention of alzheimer and parkinsonism in rats. Two doses of the plant extract (200 mg/kg & 400 mg/kg) were selected for treatment. The plant extracts produced significant prevention of Alzheimer and Parkinsonism in rats on a dose dependent manner. Based on the above results, it was concluded that the ethanolic extract of *Celosia Cristata* has shown good anti-alzheimer and anti-parkinson’s activity against in rats. It may be due to the presence of active phytoconstituents (anti-oxidants) in the extract. Thus, the exploitation of this plant will help the humankind to get potential API or drugs that can be used for the treatment of neurodegenerative diseases at very cheap and economically affordable prices.

Our study will also avoid the synthetic route for the manufacture of some potential API or drugs and may prevent the huge investment and pollution caused during the synthesis of some potential API or drugs that can be used for the treatment of neurodegenerative diseases.

REFERENCES:

19. Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 1994, 13, 45–53. [Google Scholar] [CrossRef]

