# Prediction of In-silico Physicochemical Properties and Molecular Docking Studies of Dihydroartemisinin Derivatives for Antimalarial Activity against protein target Dihydropteroate Synthase

### <sup>1</sup>Patidar Bhoopendra, <sup>2</sup>Deshmukh Nitin, <sup>3</sup>Mandloi Nilesh, <sup>4</sup>Patidar Mohini

GRY Institute of Pharmacy, Borawan-451228, Dist.–Khargone (M.P.) India Corresponding Author: Nitin Deshmukh

*Abstract-* One of the most dangerous and pervasive parasitic diseases in the underdeveloped world is still malaria. In 2022, there was 241 million malaria cases and 6,27,000 deaths were reported worldwide. The objective of this work was to evaluate the physical-chemical, pharmacokinetic parameters (absorption, distribution, metabolism, excretion and toxicity) and pharmacodynamic parameters (bioactivity and adverse reactions) of artemisinin as a pharmacophore by means of in-silico computational prediction. Online software such as Pre-ADMET, Molinspiration and Rule of Five were used for the analysis. In-silico results allow us to conclude that substituted artemisinin is predicted to be a potential future drug candidate, due to its relevant Drug-likeness profile, bioavailability, excellent liposolubility and adequate pharmacokinetics, including at the level of CNS, penetrating the blood-brain barrier. Molecular docking studies of 40 designed compounds have also been performed to screen the inhibitory activity towards against protein target Dihydropteroate Synthase (PDB: 1AJ0). Compound D19 and D31 showed strong bonding interaction with GLY29, GLY32, THR97, GLY99, PHE100, THR101 and ASN140 amino acids with high hydrogen bond affinity and best Moldock score-169.698 and - 204.1319 respectively.

Keywords: Malaria, Dihydroartemisinin, Molecular docking, Molinspiration, PreADMET.

### 1. Introduction:

The pharmaceutical industry has been facing significant challenges since the past decade regarding the increased research and development (R&D) costs, looming patent expirations, and continuously declining number of new drug approvals. Due to the loss of the roaring success of drugs' market share to generic competition, it has become a serious concern that innovation in first-in-class drug discovery has stagnated and the new approved drugs would not be able to replace the losses incurred by expiring patents.<sup>1-3</sup> The significant contribution of computational and theoretical studies of quantum chemistry has allowed medicinal chemists to obtain more precise molecular properties and bioactivity of drugs in a shorter time.<sup>4</sup>

Malaria has been a significant public health issue for many years. It is mentioned in several passages of the Bible as well as in the writings of Hippocrates. Despite treatments to treat it, many people still believe that malaria is the most serious infectious disease impacting humanity. The disease is directly to blame for 1 million to 2.5 million fatalities and is thought to cause 200 million to 500 million new cases annually.<sup>5</sup>

An infectious disease spread by mosquitoes that affects both people and other animals, malaria is brought on by protists of the genus *Plasmodium*. The word malaria comes from the mediaeval Italian mala aria, which means "bad air." <sup>6</sup>

The parasites of the genus *Plasmodium* four species have been identified which can cause disease in humans: *Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, Plasmodium knowlesi*.<sup>7</sup>

Quinine was first drug was discovered and used to treat malaria as early as the beginning of the 17th century, and became the standard therapy for malaria from the mid-19th century to the 1940s. The extraction of quinine is still more economically viable than its synthetic production.<sup>8</sup>

Dihydroartemisinin, a derivative of artemisinin, is the active metabolite of artemisinin. Dihydroartemisinin is widely used in the clinical treatment of malaria and has saved countless lives, due to its 100% efficiency against malaria parasites and low toxicity. DHA kills plasmodium parasites by damaging their membranes, disrupting their mitochondrial function and causing oxidative stress through producing excessive reactive oxide species.<sup>9</sup>

499

Due to the high levels of mortality and morbidity caused by malaria-especially the P. falciparum species-it has placed the greatest selective pressure on the human genome in recent history. Several genetic factors provide some resistance to it including sickle cell trait, thalassaemia traits, glucose-6-phosphate dehydrogenase deficiency, and the presence of Duffy antigens on red blood cells.<sup>10</sup>

### 2. Material and Methods

For designing of compounds Dihydroartemisinin pharmacophore was selected on the basis of literature study. ChemDraw ultra 8.0 software (2D and 3D) was used for designing of compounds and Molegro virtual docker (MVD 6.0) which is available in CADD lab of GRY institute of pharmacy, Borawan. *In-silico* predictions was performed using online available tools i.e Lipinski rule of Five, Molinspiration and PreADMET.

### 2.1. In-Silico studies:

**2.1.1. Prediction of Lipinski's rule of five:** The Lipinski Rule of Five, also known as the Pfizer Rule of Five or simply the Rule of Five. Online web tool <u>http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp</u> is used for prediction of drug likeness.<sup>11</sup>

### 2.1.2. Molinspiration

Web-based programme called Molinspiration was used to obtain parameters including MiLogP, TPSA, and druglikeness. MiLogP is calculated to assess excellent permeability through the cell membrane. The software Molinspiration drug-likeness score, which is available online at www.molinspiration.com, was used to investigate these factors. For organic molecules, the possibility is that they are active if the bioactivity score is greater than zero, moderately active if it is between -5.0 and zero, and inert if it is below -5.0.<sup>12</sup>

### 2.1.3. PreADMET

PreADMET is a web-based application for predicting ADME data and building drug-like library using *in-silico* method.<sup>13</sup> This program resides entirely on a Web server, and can be accessed by browsers.

### **3.** Molecular docking:

To determine the conceivable binding interaction and to propose more knowledge into the understanding of the binding affinity of aurones, molecular docking examination was done utilizing the Molegro Virtual Docker. The crystal structures were recovered from RCSB Protein Data Bank. Every attached ligand and non-bridging water molecules have been eliminated from the outset, and the polar hydrogen atoms were added. Different parameters are set up by default in software. MVD depends on a differential evolution algorithm called MolDock; MolDock Score energy, E score, is characterized by, where E inter is the ligand- receptor interaction energy and E intra is the interior energy of the ligand. <sup>14-16</sup>

### **3.1.** Selection of Protein

On the basis of literature study, PDB Code: 1AJ0 (dihydropteroate synthase) is a crystal structure of a ternary complex of e. coliprotein which can show good hydrogen bond interaction and MolDock Score. Dihydropteroate synthase is a compound which is analysed and determined by the X-ray diffraction method. The site of action is the de novo folate biosynthesis enzyme dihydropteroate synthase (DHPS) where sulfonamides act as analogues of one of the substrates, para-aminobenzoic acid (pABA). We report here the crystal structure of E.coli DHPS at 2.0 A resolution refined to an R-factor of 0.185. The single domain of 282 residues forms an eight-stranded alpha/beta-barrel. The 7, 8-dihydropterin pyrophosphate (DHPPP) substrate binds in a deep cleft in the barrel, whilst sulfanilamide binds closer to the surface. The DHPPP ligand site is highly conserved amongst prokaryotic and eukaryotic DHPSs. <sup>17-18</sup>



Figure-1: Dihydropteroate Synthase (PDB Code: 1AJ0)

### **3.2.** Selection of compounds

On the basis of the literature survey Dihydroartemisinin pharmacophore were used to design new antimalarial derivatives. Data set of 80 compounds prepared summarised in table no.1.



Figure: 2-Dihydroartemisinin pharmacophore

| code | R                                | Code | R                                |
|------|----------------------------------|------|----------------------------------|
| D1   | 3,4-dimethoxyphenyl              | D21  | 4-nitrophenoxy                   |
| D2   | Oxan-4-yl                        | D22  | 2,3,4,5,6-                       |
| D3   | 2,5-dimethylphenyl               | D23  | 2,6-dichlorophenyl               |
| D4   | 2,4-dichlorophenoxy              | D24  | 4-nitrophenylmethylphenoxy       |
| D5   | 2,4-dichloro phenyl              | D25  | 3-methylphenoxy                  |
| D6   | 2- Fluorophenyl                  | D26  | 3-(trifluoromethyl) phenoxy      |
| D7   | 2,4- Bis(2-methylbutan-2-yl)     | D27  | 3-(5-methyltertrazol-2-yl)       |
|      | phenoxy                          |      |                                  |
| D8   | 2- methoxy phenyl                | D28  | 4-ethyl-3,5-dimethylpyrazol-1-yl |
| D9   | 1,3-benzodioxol-5-yl             | D29  | 2,3,4,5,6-pentafluorophenyl      |
| D10  | 4-propan-2-yl phenoxy            | D30  | 3,4-dichlorophenyl               |
| D11  | 2-methoxyphenyl                  | D31  | 4-methoxyphenoxy                 |
| D12  | 4-fluorophenoxy                  | D32  | 3-chlorophenyl                   |
| D13  | 2- methylphenyl                  | D33  | tetrazol-1-yl                    |
| D14  | 4-methylphenoxy                  | D34  | 2-bicycloheptanyl                |
| D15  | 4-chlorophenyl                   | D35  | 3-bromophenoxy                   |
| D16  | 4-methylsulfonylphenyl           | D36  | 2,3-difluorophenyl               |
| D17  | 4-methylpurazol-1-yl             | D37  | 2-bromo-4,5-dimethoxyphenyl      |
| D18  | 2,4-di(pentan-2-yl)phenoxy       | D38  | 5-methyl-3-pyrazol-1-yl          |
| D19  | 1,3-dimethyl-2,6-dioxopurin-7-yl | D39  | 4-chloro-3-methylpyrazol-1-yl    |
| D20  | 2-methylphenoxy                  | D40  | 2,3-dichlorophenyl               |

|--|

#### 4. **Result and Discussions**

#### 4.1 Lipinski Rule

According to Lipinski's rule, an orally active drug-like molecule shouldn't contain more than one violation of the following standards: Molecules with masses under 500 Dalton and high lipophilicity (defined as a Log P 5), molar refractivity should be between 40 to 130, with less than five hydrogen bond donors and ten hydrogen bond acceptors. All the compounds were exhibited in the range of data, adhering to Lipinski's rule of five except D7, D15, D18, D19, D22, D27 and D37. Results of Lipinski rule was described in below table no.2.

| Table-2: Kesult of Lipinski rule. |      |      |     |     |       |         |  |  |  |
|-----------------------------------|------|------|-----|-----|-------|---------|--|--|--|
| S. No.                            | Code | Mass | HBD | HBA | Log P | MR      |  |  |  |
| 1                                 | D1   | 462  | 0   | 8   | 3.997 | 116.169 |  |  |  |
| 2                                 | D2   | 410  | 0   | 7   | 3.554 | 101.079 |  |  |  |
| 3                                 | D3   | 462  | 0   | 8   | 3.997 | 116.169 |  |  |  |
| 4                                 | D4   | 487  | 0   | 7   | 3.579 | 109.014 |  |  |  |
| 5                                 | D5   | 471  | 0   | 7   | 3.743 | 107.223 |  |  |  |
| 6                                 | D6   | 420  | 0   | 6   | 4.119 | 103.023 |  |  |  |
| 7                                 | D7   | 558  | 0   | 7   | 7.191 | 151.491 |  |  |  |
| 8                                 | D8   | 432  | 0   | 7   | 3.988 | 109.617 |  |  |  |
| 9                                 | D9   | 446  | 0   | 8   | 3.708 | 109.188 |  |  |  |
| 10                                | D10  | 460  | 0   | 7   | 4 940 | 118 945 |  |  |  |

| Table-2: Resu | lt of Li | ipinsk | i rule. |
|---------------|----------|--------|---------|
|---------------|----------|--------|---------|

| 11 | D11 | 448 | 0 | 8  | 3.825 | 111.408 |
|----|-----|-----|---|----|-------|---------|
| 12 | D12 | 436 | 0 | 7  | 3.955 | 104.814 |
| 13 | D13 | 416 | 0 | 6  | 3.993 | 107.609 |
| 14 | D14 | 432 | 0 | 7  | 4.125 | 109.593 |
| 15 | D15 | 596 | 0 | 7  | 6.458 | 136.254 |
| 16 | D16 | 480 | 0 | 8  | 4.464 | 116.219 |
| 17 | D17 | 406 | 0 | 7  | 2.942 | 99.883  |
| 18 | D18 | 558 | 0 | 7  | 7.623 | 151.503 |
| 19 | D19 | 504 | 0 | 11 | 2.276 | 121.039 |
| 20 | D20 | 448 | 0 | 8  | 3.825 | 111.408 |
| 21 | D21 | 463 | 0 | 9  | 3.724 | 111.511 |
| 22 | D22 | 508 | 0 | 7  | 4.512 | 104.646 |
| 23 | D23 | 471 | 0 | 6  | 3.743 | 107.223 |
| 24 | D24 | 447 | 0 | 7  | 3.888 | 109.720 |
| 25 | D25 | 432 | 0 | 7  | 4.125 | 109.593 |
| 26 | D26 | 486 | 0 | 7  | 4.835 | 109.858 |
| 27 | D27 | 542 | 0 | 9  | 4.436 | 136.730 |
| 28 | D28 | 448 | 0 | 7  | 3.348 | 112.132 |
| 29 | D29 | 492 | 0 | 6  | 4.675 | 102.855 |
| 30 | D30 | 471 | 0 | 6  | 3.743 | 107.223 |
| 31 | D31 | 448 | 0 | 8  | 3.825 | 111.408 |
| 32 | D32 | 436 | 0 | 6  | 3.861 | 105.144 |
| 33 | D33 | 394 | 0 | 9  | 1.424 | 90.736  |
| 34 | D34 | 420 | 0 | 6  | 4.563 | 106.474 |
| 35 | D35 | 496 | 0 | 7  | 4.579 | 112.556 |
| 36 | D36 | 438 | 0 | 6  | 4.258 | 102.981 |
| 37 | D37 | 540 | 0 | 8  | 4.760 | 123.869 |
| 38 | D38 | 474 | 0 | 7  | 3.961 | 104.885 |
| 39 | D39 | 440 | 0 | 7  | 2.824 | 101.962 |
| 40 | D40 | 471 | 0 | 6  | 3.743 | 107.223 |

### 4.2 Molinspiration

### 4.2.1 Drug likeness Properties

D1, D2, D9, D11, D16, D17, D20, D21, D28, D33, D38 and D39 compounds are under the range e.g., MilogP is under the range of 5, TPSA is under the 140Å MW is under range of 500, nrotb is under 10, nON is under 10, nOHNH is under the range of 5 and Violations should be 0. Results of properties of molinspiration was described below in table no.3

|      | Table-5. Result of properties of monispiration. |       |            |        |         |           |                     |           |        |  |  |
|------|-------------------------------------------------|-------|------------|--------|---------|-----------|---------------------|-----------|--------|--|--|
| Code | Mi<br>LogP                                      | TPSA  | N<br>atoms | MW     | n<br>ON | N<br>OHNH | N<br>violatio<br>ns | N<br>rotb | Volume |  |  |
| D1   | 4.73                                            | 81.71 | 33         | 462.54 | 8       | 0         | 0                   | 6         | 423.34 |  |  |
| D2   | 4.18                                            | 72.47 | 29         | 410.51 | 7       | 0         | 0                   | 4         | 383.02 |  |  |
| D3   | 5.12                                            | 81.71 | 33         | 462.54 | 8       | 0         | 1                   | 6         | 423.34 |  |  |
| D4   | 6.24                                            | 72.47 | 32         | 487.38 | 7       | 0         | 1                   | 5         | 408.31 |  |  |
| D5   | 6.36                                            | 63.24 | 31         | 471.38 | 6       | 0         | 1                   | 4         | 399.32 |  |  |
| D6   | 5.20                                            | 63.24 | 30         | 420.48 | 6       | 0         | 1                   | 4         | 377.18 |  |  |
| D7   | 8.66                                            | 72.47 | 40         | 558.76 | 7       | 0         | 2                   | 9         | 547.21 |  |  |
| D8   | 5.09                                            | 72.47 | 31         | 432.51 | 7       | 0         | 1                   | 5         | 397.79 |  |  |
| D9   | 4.97                                            | 81.71 | 32         | 446.50 | 8       | 0         | 0                   | 4         | 396.18 |  |  |
| D10  | 6.47                                            | 72.47 | 33         | 460.57 | 7       | 0         | 1                   | 6         | 431.18 |  |  |
| D11  | 4.57                                            | 81.71 | 32         | 448.51 | 8       | 0         | 0                   | 6         | 406.78 |  |  |

|  | Table-3: | Result | of | properti | es of | molins | piration. |
|--|----------|--------|----|----------|-------|--------|-----------|
|--|----------|--------|----|----------|-------|--------|-----------|

| D12 | 5.12 | 72.47  | 31 | 436.48 | 7  | 0 | 1 | 5  | 386.17 |
|-----|------|--------|----|--------|----|---|---|----|--------|
| D13 | 5.48 | 63.24  | 30 | 416.51 | 6  | 0 | 1 | 4  | 388.81 |
| D14 | 5.41 | 72.47  | 31 | 432.51 | 7  | 0 | 1 | 5  | 397.79 |
| D15 | 8.08 | 72.47  | 41 | 597.03 | 7  | 0 | 2 | 7  | 497.50 |
| D16 | 3.95 | 97.38  | 33 | 480.58 | 8  | 0 | 0 | 5  | 420.24 |
| D17 | 3.73 | 81.07  | 29 | 406.48 | 8  | 0 | 0 | 4  | 370.07 |
| D18 | 8.81 | 72.47  | 40 | 558.76 | 7  | 0 | 2 | 11 | 548.34 |
| D19 | 3.02 | 125.08 | 36 | 504.54 | 12 | 0 | 2 | 4  | 439.27 |
| D20 | 4.57 | 81.71  | 32 | 448.35 | 8  | 0 | 0 | 6  | 406.78 |
| D21 | 4.92 | 118.30 | 33 | 463.48 | 10 | 0 | 0 | 6  | 404.57 |
| D22 | 5.49 | 72.47  | 35 | 508.44 | 7  | 0 | 2 | 5  | 405.89 |
| D23 | 6.34 | 63.24  | 31 | 471.38 | 6  | 0 | 1 | 4  | 399.32 |
| D24 | 5.04 | 109.06 | 32 | 447.04 | 9  | 0 | 1 | 5  | 395.58 |
| D25 | 5.38 | 72.47  | 31 | 432.51 | 7  | 0 | 1 | 5  | 397.79 |
| D26 | 5.83 | 72.47  | 34 | 486.48 | 7  | 0 | 1 | 6  | 412.53 |
| D27 | 4.83 | 106.85 | 40 | 556.70 | 10 | 0 | 1 | 5  | 512.89 |
| D28 | 4.63 | 81.07  | 32 | 448.56 | 8  | 0 | 0 | 5  | 419.94 |
| D29 | 5.61 | 63.24  | 34 | 492.44 | 6  | 0 | 1 | 4  | 396.90 |
| D30 | 6.36 | 63.24  | 31 | 471.38 | 6  | 0 | 1 | 4  | 399.32 |
| D31 | 5.01 | 81.71  | 32 | 448.51 | 8  | 0 | 1 | 6  | 406.78 |
| D32 | 5.73 | 63.24  | 30 | 436.93 | 6  | 0 | 1 | 4  | 385.79 |
| D33 | 2.28 | 106.85 | 28 | 394.43 | 10 | 0 | 0 | 4  | 345.15 |
| D34 | 5.15 | 63.24  | 30 | 420.55 | 6  | 0 | 1 | 4  | 396.85 |
| D35 | 5.74 | 72.47  | 31 | 497.38 | 7  | 0 | 1 | 5  | 399.12 |
| D36 | 5.31 | 63.24  | 31 | 438.47 | 6  | 0 | 1 | 4  | 382.11 |
| D37 | 5.46 | 81.71  | 34 | 541.43 | 8  | 0 | 2 | 6  | 441.23 |
| D38 | 4.71 | 81.07  | 33 | 474.48 | 8  | 0 | 0 | 5  | 401.32 |
| D39 | 4.18 | 81.07  | 30 | 440.92 | 8  | 0 | 0 | 4  | 383.56 |
| D40 | 6.34 | 63.24  | 31 | 471.38 | 6  | 0 | 1 | 4  | 399.32 |

**4.2.2 Bioactivities:** Results for bioactivities of molinspiration was described below in table no. 4 **Table-4: Results of bioactivities of molinspiration.** 

|     | Tuble 4. Results of blouchvitles of monnspir ation. |        |             |           |          |           |           |  |  |  |
|-----|-----------------------------------------------------|--------|-------------|-----------|----------|-----------|-----------|--|--|--|
| S.  | Code                                                | GPCR   | Ion channel | Kinase    | Nuclear  | Protease  | Enzyme    |  |  |  |
| No. |                                                     | ligand | modulator   | inhibitor | receptor | inhibitor | inhibitor |  |  |  |
|     |                                                     |        |             |           | ligand   |           |           |  |  |  |
| 1   | D1                                                  | -0.05  | -0.22       | -0.37     | 0.08     | -0.00     | 0.28      |  |  |  |
| 2   | D2                                                  | 0.03   | -0.16       | -0.33     | 0.08     | 0.12      | 0.39      |  |  |  |
| 3   | D3                                                  | -0.05  | -0.23       | -0.39     | 0.14     | -0.02     | 0.27      |  |  |  |
| 4   | D4                                                  | -0.08  | -0.33       | -0.37     | 0.11     | -0.10     | 0.22      |  |  |  |
| 5   | D5                                                  | -0.00  | -0.16       | -0.40     | 0.09     | 0.01      | 0.27      |  |  |  |
| 6   | D6                                                  | -0.01  | -0.18       | -0.36     | 0.12     | 0.09      | 0.31      |  |  |  |
| 7   | D7                                                  | 0.02   | -0.40       | -0.40     | 0.23     | -0.10     | 0.20      |  |  |  |
| 8   | D8                                                  | -0.04  | -0.23       | -0.40     | 0.13     | -0.01     | 0.29      |  |  |  |
| 9   | D9                                                  | -0.02  | -0.23       | -0.41     | 0.06     | 0.02      | 0.30      |  |  |  |
| 10  | D10                                                 | -0.06  | -0.28       | -0.41     | 0.16     | -0.02     | 0.26      |  |  |  |
| 11  | D11                                                 | -0.09  | -0.33       | -0.39     | 0.06     | -0.06     | 0.24      |  |  |  |
| 12  | D12                                                 | -0.06  | -0.31       | -0.38     | 0.15     | -0.03     | 0.26      |  |  |  |
| 13  | D13                                                 | -0.02  | -0.21       | -0.41     | 0.12     | 0.02      | 0.31      |  |  |  |
| 14  | D14                                                 | -0.10  | -0.36       | -0.44     | 0.11     | -0.06     | 0.23      |  |  |  |
| 15  | D15                                                 | 0.04   | -0.48       | -0.42     | 0.11     | 0.04      | 0.08      |  |  |  |
| 16  | D16                                                 | -0.02  | -0.28       | -0.35     | 0.18     | 0.21      | 0.44      |  |  |  |

| 17 | D17 | -0.13 | -0.44 | -0.37  | -0.28 | -0.17 | 0.24 |
|----|-----|-------|-------|--------|-------|-------|------|
| 18 | D18 | -0.04 | -0.46 | -0.48  | 0.12  | -0.05 | 0.13 |
| 19 | D19 | -0.05 | -0.61 | -0.54  | -0.53 | -0.21 | 0.28 |
| 20 | D20 | -0.09 | -0.33 | -0.39  | 0.06  | -0.06 | 0.24 |
| 21 | D21 | -0.18 | -0.33 | -0.49  | 0.04  | -0.13 | 0.17 |
| 22 | D22 | -0.09 | -0.37 | -0.36  | 0.13  | 0.02  | 0.21 |
| 23 | D23 | -0.05 | -0.18 | -0.40  | 0.09  | 0.00  | 0.30 |
| 24 | D24 | -0.13 | -0.20 | -0.47  | 0.04  | -0.05 | 0.23 |
| 25 | D25 | -0.10 | -0.37 | -0.45  | 0.12  | -0.06 | 0.23 |
| 26 | D26 | -0.02 | -0.22 | -0.34  | 0.23  | 0.00  | 0.25 |
| 27 | D27 | -0.04 | -0.54 | -0.68  | -0.47 | -0.25 | 0.07 |
| 28 | D28 | -0.20 | -0.59 | -0.52  | -0.35 | -0.18 | 0.12 |
| 29 | D29 | -0.02 | -0.10 | -0.36  | 0.07  | 0.07  | 0.34 |
| 30 | D30 | 0.00  | -0.15 | -0.39  | 0.11  | 0.04  | 0.31 |
| 31 | D31 | -0.09 | -0.32 | -0.40  | 0.10  | -0.04 | 0.25 |
| 32 | D32 | -0.00 | -0.16 | -0.41  | 0.10  | 0.04  | 0.32 |
| 33 | D33 | -0.06 | -0.67 | -0.44  | -0.22 | 0.04  | 0.29 |
| 34 | D34 | 0.06  | -0.27 | -0.59  | 0.12  | 0.01  | 0.30 |
| 35 | D35 | -0.15 | -0.37 | -0.46  | 0.05  | -0.14 | 0.19 |
| 36 | D36 | 0.00  | -0.15 | -0.35  | 0.12  | 0.09  | 0.31 |
| 37 | D37 | -0.12 | -0.31 | -0.045 | -0.03 | -0.17 | 0.20 |
| 38 | D38 | -0.14 | -0.34 | -0.44  | -0.23 | -0.01 | 0.22 |
| 39 | D39 | -0.26 | -0.62 | -0.40  | -0.42 | -0.27 | 0.02 |
| 40 | D40 | 0.00  | -0.14 | -0.42  | 0.10  | 0.03  | 0.28 |

### 5. **PreADMET**

**Drug likeness: CMC like rule-** All the compounds are not qualified for CMC like rule. **MDDR like rule-** Compounds which the in the range of mid-structure are moderately active and the compounds which are under the range of drug like structure are highly active. **Rule of Five-** Suitable compounds are obey the rules of five or Lipinski rule of five and Violated compounds are disobey the rule of five. Results for drug likeness are described below in table no. 5

| Table-5: Results of Drug likeness |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-----------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Druglikeness                      |               | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| CMC_like_Rule                     | Not qualified | All Compound are Not Qualified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                   | Mid structure | D2, D4, D5, D6, D8, D9, D12, D13, D14, D16, D17,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| MDDR like                         |               | D19, D21, D22, D23, D24, D25, D26, D27, D28,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Rule                              |               | D29, D30, D32, D33, D34, D35, D36, D38, D39,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                   |               | D40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                   | Drug like     | D1, D3, D7, D10, D11, D15, D18, D20, D31, D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                   | Suitable      | D1 D2 D2 D4 D5 D6 D8 D0 D10 D11 D12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Dula of Eine                      | Suitable      | D1, D2, D5, D4, D5, D0, D6, D9, D10, D11, D12, D12, D12, D14, D16, D17, D20, D21, D22, D24, D25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Rule of Five                      |               | D13, D14, D10, D17, D20, D21, D23, D24, D25, D25, D24, D25, D25, D25, D25, D25, D25, D25, D25 |  |  |  |  |  |
|                                   |               | D26, D28, D29, D30, D31, D32, D33, D34, D35,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                   |               | D36, D38, D39, D40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                   | Violated      | D7, D15, D18, D19, D22, D27, D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

**ADME Study: BBB-** All the compounds are the CNS inactive compounds except D7, D18, CaCO<sub>2</sub>- All the compounds have moderately permeability. **HIA-** All the compounds have higher absorption. **MDCK-** All the compounds have lower absorption. **PPB-** All the compounds are strongly bounded except D2, D17, D19, D27, D33. **Skin permeability-** All the compounds of skin permeability are in acceptable range. Results for ADME are described below in table no. 6.

| Table-6: Results of ADME. |      |     |       |     |      |         |              |  |  |
|---------------------------|------|-----|-------|-----|------|---------|--------------|--|--|
| S. No.                    | Code | BBB | Caco2 | HIA | MDCK | Plasma  | Skin         |  |  |
|                           |      |     |       |     |      | Protein | Permeability |  |  |
|                           |      |     |       |     |      | Binding |              |  |  |

| 1  | D1  | 0.065 | 50.780 | 98.942 | 0.045 | 90.360 | -2.918 |
|----|-----|-------|--------|--------|-------|--------|--------|
| 2  | D2  | 0.115 | 48.178 | 97.574 | 0.126 | 88.393 | -3.513 |
| 3  | D3  | 0.089 | 50.592 | 98.942 | 0.044 | 90.903 | -2.913 |
| 4  | D4  | 0.164 | 34.405 | 97.975 | 0.050 | 100    | -2.717 |
| 5  | D5  | 0.338 | 33.369 | 97.484 | 0.044 | 99.407 | -2.549 |
| 6  | D6  | 0.102 | 44.790 | 98.518 | 0.046 | 95.813 | -2.830 |
| 7  | D7  | 2.151 | 55.763 | 97.911 | 0.045 | 96.034 | -0.788 |
| 8  | D8  | 0.058 | 48.543 | 98.876 | 0.046 | 91.625 | -2.644 |
| 9  | D9  | 0.089 | 44.304 | 98.747 | 0.049 | 90.799 | -3.396 |
| 10 | D10 | 0.116 | 53.368 | 98.845 | 0.227 | 93.497 | -2.293 |
| 11 | D11 | 0.089 | 52.862 | 98.747 | 0.061 | 91.117 | -2.817 |
| 12 | D12 | 0.108 | 51.010 | 98.818 | 0.064 | 92.931 | -3.030 |
| 13 | D13 | 0.136 | 50.204 | 98.439 | 0.047 | 91.904 | -2.318 |
| 14 | D14 | 0.073 | 51.321 | 98.876 | 0.100 | 92.322 | -2.555 |
| 15 | D15 | 0.422 | 46.885 | 97.512 | 0.043 | 100    | -1.610 |
| 16 | D16 | 0.075 | 4.789  | 98.966 | 0.045 | 89.145 | -0.965 |
| 17 | D17 | 0.462 | 44.498 | 97.620 | 0.072 | 90.407 | -3.792 |
| 18 | D18 | 3.502 | 55.529 | 97.911 | 0.187 | 96.449 | -1.480 |
| 19 | D19 | 0.199 | 26.084 | 94.669 | 0.044 | 86.428 | -4.519 |
| 20 | D20 | 0.089 | 52.862 | 98.747 | 0.061 | 91.117 | -2.817 |
| 21 | D21 | 0.107 | 7.666  | 90.057 | 0.056 | 91.530 | -2.716 |
| 22 | D22 | 0.105 | 51.440 | 98.843 | 0.043 | 99.263 | -3.608 |
| 23 | D23 | 0.337 | 33.120 | 97.484 | 0.043 | 94.908 | -2.521 |
| 24 | D24 | 0.222 | 22.298 | 93.166 | 0.048 | 91.547 | -2.607 |
| 25 | D25 | 0.084 | 52.414 | 98.876 | 0.076 | 92.642 | -2.567 |
| 26 | D26 | 0.104 | 39.215 | 98.883 | 0.044 | 92.960 | -1.814 |
| 27 | D27 | 0.244 | 24.881 | 97.954 | 0.043 | 89.957 | -4.511 |
| 28 | D28 | 0.314 | 50.449 | 98.672 | 0.043 | 91.588 | -3.641 |
| 29 | D29 | 0.239 | 47.807 | 98.495 | 0.043 | 100    | -3.489 |
| 30 | D30 | 0.338 | 33.549 | 97.484 | 0.045 | 100    | -2.558 |
| 31 | D31 | 0.147 | 53.703 | 98.747 | 0.073 | 91.814 | -2.837 |
| 32 | D32 | 0.166 | 31.702 | 97.950 | 0.052 | 100    | -2.560 |
| 33 | D33 | 0.337 | 9.533  | 87.090 | 2.642 | 81.651 | -1.050 |
| 34 | D34 | 0.350 | 44.365 | 98.528 | 0.055 | 91.901 | -3.289 |
| 35 | D35 | 0.087 | 28.695 | 98.190 | 0.020 | 100    | -2.572 |
| 36 | D36 | 0.125 | 45.532 | 98.513 | 0.044 | 96.432 | -3.080 |
| 37 | D37 | 0.081 | 30.158 | 98.647 | 0.042 | 91.883 | -2.864 |
| 38 | D38 | 0.069 | 30.092 | 98.133 | 0.043 | 90.040 | -2.537 |
| 39 | D39 | 0.410 | 28.115 | 99.001 | 0.048 | 93.983 | -3.864 |
| 40 | D40 | 0.338 | 33.446 | 97.484 | 0.044 | 100    | -2.530 |

**Toxicity Study: Ames test-** The compounds D21, D24, D35, D37 mutagenic as these compounds are changing the DNA and show the gene mutation. **Carcino mouse-** The compounds D15 and D26 carcinogenic in mouse **Carcino rat-** The compounds D2, D13, D17, D24, D27, D28, D33, D34, D38 carcinogenic in rats. **hERG inhibition-** The compounds D6, D15, D17, D19, D27, D28, D33, D38, D39, D46, D53, D56, D60 and D66 are have medium risk for cardiotoxicity and the remaining compounds have low risk for cardio toxicity. Results for toxicity are described below in table no.7.

### Table-7: Results of toxicity

| Toxicity  |              | Compound                                                                                                                                                                 |  |  |
|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ames_test | Mutagen      | D21, D24, D35, D37                                                                                                                                                       |  |  |
|           | Non- Mutagen | D1, D2, D3,D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D22, D23, D25, D26, D27, D28, D29, D30, D31, D32, D33, D34, D36, D38, D39, D40 |  |  |

| Carcino_Mouse   | Negative    | D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D27, D28, D29, D30, D31, D32, D33, D34, D35, D36, D37, D38, D39, D40, |  |
|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                 | Positive    | D15, D26                                                                                                                                                                             |  |
| Carcino_Rat     | Negative    | D1, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D14, D15, D16, D18, D19, D20, D21, D22, D23, D25, D29, D30, D31, D32, D35, D36, D37, D39,                                             |  |
|                 | Positive    | D2, D13, D17, D24, D27, D28, D33, D34, D38,                                                                                                                                          |  |
| hERG_inhibition | Low Risk    | D1, D2, D3, D4, D5, D7, D8, D9, D10, D11, D12, D13, D14, D16, D18, D20, D21, D22, D23, D24, D25, D26, D29, D30, D31, D32, D34, D35, D36, D37, D40                                    |  |
|                 | Medium Risk | D6, D15, D17, D19, D27, D28, D33, D38, D39,                                                                                                                                          |  |

## 6. Docking study

Molecular docking studies were conducted with Molegro Virtual Docker (MVD 6.0) to obtain insights into the inhibitors' binding affinities and interaction patterns. Table no .8 and 9. Table-8: Results of docking study.

|      | Table-8: Results of docking study. |                                              |                                                                                          |  |  |  |
|------|------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Code | Dock                               | <b>H-Bond Interaction</b>                    | Steric Interaction                                                                       |  |  |  |
|      | Score                              |                                              |                                                                                          |  |  |  |
|      | -132.2                             | Gly32, Thr97, Gly29, Asn140,                 | Thr97, Phe100, Gly99, Gly32, Gly29,                                                      |  |  |  |
| D1   |                                    | Ser245                                       | Met30, Asn140, Ser245, Val138                                                            |  |  |  |
| D2   | -104.01                            | Gly32, Thr97,Gly29, Asn140,<br>Ser245, Ile31 | Thr97, Asn140, Gly99,Ser245                                                              |  |  |  |
| D3   | -143.90                            | Ser245, Asn140, Gly29, Thr97                 | Thr101, Gly32, Gly29, Met30, Gly99,<br>Ser245, Asn140, Ser245, Val138                    |  |  |  |
| D4   | -121.80                            | Thr97, Gly99, Ser145, Asn140                 | Gly99, Thr101, Thr97, Gly29, Leu112, Val138, Ile31                                       |  |  |  |
| D5   | -119.36                            | Thr97, Gly29, Gly32, Asn140,<br>Ser245       | Met30, Leu112, Phe100, Gly99, Thr97,<br>Ser245,Ile31                                     |  |  |  |
| D6   | -116.16                            | Thr139, Thr97, Ser245, Asn140                | Gly29, Met30, Ser245, Asn140,<br>Ser245, Val138                                          |  |  |  |
| D7   | -119.71                            | Thr97, Ile31, Asn140, Ser245                 | Thr101, Gly32, Gly29, Asn140,<br>Ser245, Val138                                          |  |  |  |
| D8   | -117.42                            | Thr97, Phe100,Ser245, Asn140                 | Asn140, Ser245, Phe100, Gly99,<br>leu112, Val138,Ile31                                   |  |  |  |
| D9   | -140.6                             | Asn140, Phe100, Asn116, Ser45                | Leu112, Met30, Val138, Ile31, Ser245                                                     |  |  |  |
| D10  | -110.59                            | Thr97, Phe100,Ser245, Asn140                 | Phe100, Gly99, Thr101, Gly32, leu112,<br>Asn140, Val138, Ile31                           |  |  |  |
| D11  | -120.86                            | Thr101, Ile31,Gly32,                         | Gly99, Thr101, Gly32, Thr97, Gly29,<br>Met30, leu112, Asn140, Ser245,                    |  |  |  |
| D12  | -121.11                            | Thr97, Ser245, Asn140, Gly29                 | Gly99, Thr101, Ser245, Val138, Phe100, Ile31                                             |  |  |  |
| D13  | -117.75                            | Thr97, Ser245,Asn140, Gly29                  | Phe100, Gly99, Thr101, Gly32, Thr97, Gly29, Met30, leu112, Asn140, Ser245, Val138, Ile31 |  |  |  |
| D14  | -108.54                            | Thr97, Gly29, Asn140, Ser245                 | Thr101, Gly99, Thr97, Ile31                                                              |  |  |  |
| D15  | -152.82                            | Gly29, Asn166, Thr101,<br>Asn140,Arg171      | Gly99, Thr101, Gly32, leu112,                                                            |  |  |  |
| D16  | -119.30                            | Ala329, Phe100, Asn166, Pro246               | Gly29, Met30                                                                             |  |  |  |
| D17  | -124.39                            | Gly32, Thr97, Gly29, Asn140,<br>Ser245       | Asn140, Ser245, Thr97, Gly29, leu112,<br>Ile31                                           |  |  |  |
| D18  | -125.39                            | Ile31, Gly32, Asp32, Pro246                  | Ser245, Val138, Phe100, leu112,<br>Asn140                                                |  |  |  |
| D19  | -119.28                            | Asn166, Asn100, Thr101, Ser245, Glv99        | Gly32, Thr97, Phe100, Thr101, Gly29,<br>Met30, Asn140, Ser245, Ile31                     |  |  |  |

IJSDR2312067 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org

| D20          | -110.20 | Gly99, Gly29, Ser245, Phe100                                   | Phe100, Gly99, Thr101, Gly32, leu112,                                 |
|--------------|---------|----------------------------------------------------------------|-----------------------------------------------------------------------|
|              |         |                                                                | Asn140, Val138, Ile31                                                 |
| D21          | -118.99 | Asn166, Thr101, Ser245, Gly99                                  | Gly99, Thr101, Gly32, Thr97, Met30,                                   |
|              |         |                                                                | leu112,Asn140, Ser245,                                                |
| D22          | -108.84 | Phe100, Ile31, Asn140                                          | Gly99, Thr101, Ser245, Val138,                                        |
|              |         |                                                                | Phe100                                                                |
| D23          | -110.61 | Val26, Ile31, Phe52, Ile54                                     | Phe100, Gly99, Thr101, Gly32, Gly29,                                  |
|              |         |                                                                | Met30, leu112, Asn140, Ser245,                                        |
|              |         |                                                                | Val138, Ile31                                                         |
| D24          | -124.20 | Phe100, Gly29, Ser245, Asn100,                                 | Phe100, Thr101, Gly32, Asn140,                                        |
|              |         | Asn166                                                         | Val138, Ile31                                                         |
| D25          | -118.66 | Thr101, Asn140, Ser245, Phe100                                 | Met30, Gly99, Thr101, Gly32, Asn140,                                  |
|              |         |                                                                | Val138                                                                |
| D26          | -132.83 | Gly29, Gly32, Arg171                                           | Gly99, Thr101, Gly32, Thr97, Met30,                                   |
|              |         |                                                                | leu112,Asn140, Ser245,                                                |
| D27          | 889.74  | Phe100, Asn166, Pro246, Thr139,                                | Ile31, Phe52 Thr97, Gly29, Met30,                                     |
|              |         | Thr97                                                          | leu112,                                                               |
| D28          | -136.25 | Thr97, Ile31, Gly29, Thr101                                    | Gly32, Met30, leu112, Phe100, Gly99,                                  |
| <b>D a</b> a | 10500   |                                                                | Thr101, Ser245, Ile31                                                 |
| D29          | -105.80 | Ser245, Ile31, Thr101, Ser245                                  | Phe100, Gly99, Thr101,                                                |
|              |         |                                                                | Gly32, Thr97, Gly29, Met30, Ser245,                                   |
| D20          | 110.72  | D 046 CL 00                                                    | The 101 Cl 22 Cl 20 Cl 00 Cl 02 Cl 245                                |
| D30          | -118./3 | Pro246, Gly29                                                  | Thr101, Gly32, Gly29, Gly99, Ser245,                                  |
| D21          | 100.72  | A1-220 Dh - 100 A 166 Dr - 246                                 | Asn140, Val138                                                        |
| D31          | -109.72 | Ala329, Phe100, Asn166, Pro246,                                | Giy29, Met30, Ser245, Asn140,                                         |
| D22          | 125.12  | $\frac{11031, Pne52}{Phe100, Phe210, Appl. 400, The101}$       | Ser245, Val138                                                        |
| D52          | -125.15 | Phe100, lie51, Ash140, 1hr101,                                 | 1nr101, Gly52, Gly29,Asn140, Val158                                   |
| D22          | 112 72  | Dho100 April 40 Cly20 Thr101                                   | Acri 140 Sor 245 Cly00 Cly22 Mot20                                    |
| D33          | -112.72 | Phe100, Ash140, Giy29, Thr101                                  | Asii140, Sei245 Giy99, Giy52, Met50                                   |
| D34          | -121.22 | Chw0. Sor246 Dho100. A or 116                                  | Giy32, 11197, 111101, A81140                                          |
| D33          | -110.82 | Gluy9, Ser240 Phe100, ASh110                                   | Ser243, $Gry99$ , $IIII101$ , $Gry52$ , $III197$ ,                    |
| D26          | 112.10  | App140 App166 Pho100 Sor245                                    | Sor245 Mot20 Thr101 Vol128 Ilo21                                      |
| D30          | -115.19 | Asi140 Asi1100, Pile100, Sei245                                | Clv20, Met20, Clv00, Thr101, Val158, lie51                            |
| D37          | -114.04 | Alg1/1, Pl0240, Ill/101, Sel245,                               | Giy29, Mei30 Giy99, 111101                                            |
| D28          | 13/13   | $\frac{11177}{4 \operatorname{sp} 140} \operatorname{Pho} 100$ | Cly00 Thr101 Thr07 Cly20 Mot20                                        |
| D30          | -134.15 | Asii140, File100                                               | 101999, 111101, 11197, $01929$ , Met50,<br>101112 App $140$ Ser $245$ |
| D20          | 127.22  | $C_{1y}20$ Thr $07$ Apr $140$ Pro $246$                        | $V_{0}112, ASI140, Sc1245,$<br>$V_{0}1128, Cly00, Scr245, Dbo100,$    |
| D39          | -127.22 | Gly29, 11197, A81140, F10240                                   | Val156, Oly99, Sel245, File100, Thr101 Ile31                          |
| D40          | -116/1  | Ile31 Gly32 Thr07 Acn140                                       | Phe100 Val138 Gly20 Cly00                                             |
| D40          | -110.41 | Ser245                                                         |                                                                       |

Table-9: Hydrogen bond interaction



Figure 3: Hydrogen bond interaction of designed compounds, co-crystallized ligand and standard drug Artemisinin



Figure-4: Binding pose of designed ligand in the active site of 1AJ0 (Dihydropteroate Synthase)

### 7. Conclusion

In Conclusion, Plasmodium parasites of diverse species are the cause of the parasitic disease malaria. However, the evolution of drug resistance to artemisinin is compromising the drug's efficacy, which increases the need for additional antimalarial medications. One of the most prized structures in medicinal chemistry, the Dihydroartemisinin scaffold, is linked to a variety of biological functions, including antimalarial activity. In the current study, the idea of molecular hybridization is used to create hybrid molecules. The objective is to increase efficacy and perhaps stop or delay the development of parasite resistance. A total of 40 different compounds were designed and analysed through online web tools and molecular docking. Compound D15, D17, D19 and D31 have a good interaction with amino acids of PDB: 1AJ0 and also having good hydrogen interaction.

### **REFERENCES:**

- 1. Ruffolo R. R. Why Has R&D Productivity Declined in the Pharmaceutical Industry? Expet Opin. Drug Discov. 2006, 1, 99–102. 10.1517/17460441.1.2.99.
- 2. Scannell J. W.; Blanckley A.; Boldon H.; Warrington B. Diagnosing the Decline in Pharmaceutical R&D Efficiency. Nat. Rev. Drug Discovery 2012, 11, 191–200. 10.1038/nrd3681.
- Paul S. M.; Mytelka D. S.; Dunwiddie C. T.; Persinger C. C.; Munos B. H.; Lindborg S. R.; Schacht A. L. How to Improve R&D Productivity: The Pharmaceutical Industry's Grand Challenge. Nat. Rev. Drug Discovery 2010, 9, 203–214. 10.1038/nrd3078.
- 4. Ruby Srivastava, Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities, ACS Omega. 2021 Sep 28; 6(38): 24891–24901.
- 5. https://www.ncbi.nlm.nih.gov/books/NBK8584

- 6. https://www.researchgate.net/publication/279200967\_Malaria
- 7. Pinheiro Luiz C.S., Feitosa Livia M., Flavia FDA Silveira and Nubia Boechat "Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives", Annals of the Brazilian Academy of Sciences, 2018; 90 (1 Supple. 2):1251-1271.
- 8. Harin A. Karunajeewa, "Artemisinins: Artemisinin, Dihydroartemisinin, Artemether and Artesunate", Springer Basel, 2012:157-190.
- 9. Singh, C.; Chaudhary, S.; Puri, S. K. J. Med. Chem. 2006, 49(24), 7227–7233.
- 10. Haynes, R. K.; Chan, H.-W.; Cheung, M.-K.; Lam, W.-L.; Soo, M.-K.; Tsang, H.-W.; Voerste, A.; Williams, I. D. Eur. J. Org. Chem. 2002, 113.
- 11. Hobibu Tijjani, Ahmed Olatunde, In silico insight into the interaction of 4-aminoquinolines with selected SARS-CoV-2 structural and nonstructural proteins, Drug Discovery Update, Vol. 3, 2022, Pages 313-333.
- 12. Shashank Shekhar Mishra1, Chandra Shekhar Sharma, Hemendra Pratap Singh, Harshda Pandiya, Neeraj Kumar, In silico ADME, Bioactivity and Toxicity Parameters Calculation of Some Selected Anti-Tubercular Drugs. International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR). December 2016. Volume 6. Issue 6. Page 77-79.
- 13. Khaoula Mkhayar, Kaouakeb Elkhattabi, Rachida Elkhalabi, Rachid Haloui, Ossama Daoui, Emmanuel Israel Edache, Samir Chtitae, Souad Elkhattabi, Evaluation of dimedone-derived compounds as inhibitors against human colon cancer: Insights from 2D-QSAR, ADMET prediction, Osiris, Molinspiration, and molecular modelling, Chinese Journal of Analytical Chemistry, Volume 51, Issue 11, November 2023, 100330. Pages 1-13.
- 14. Sugali Brahmani Bai, Meka Geethavani, Chintakunta Ramakrishna, Synthesis Characterization and Molinspiration Analysis, Anti-bacterial activity of Novel 2,4,6-tri Substituted Pyrimidines
- 15. Bhargavi Posinasetty, Kishore Bandarapalle, Nihar Pillarikuppam, Rajasekhar Komarla Kumarachari, Geetha Birudala, And Aruga Chandrakala, Synthesis, In silico Profiling, in vitro Anthelmintic and Antibacterial Activities of Novel 6-Bromo-2-Phenyl-3-Substituted Quinazolin-4(3H)-ones, Asian Journal of Chemistry; Vol. 35, No. 11 (2023), 2668-2676.
- Ruswanto Ruswanto, Richa Mardianingru, Siswandono Siswandon, Dini Kesuma, Reverse Docking, Molecular Docking, Absorption, Distribution, and Toxicity Prediction of Artemisinin as an Anti-diabetic Candidate, Molekul, Vol. 15. No. 2, July 2020, Pages. 88 – 96.
- 17. Seshu Vardhan, Suban K. Sahoo, In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in Biology and Medicine 124 (2020) 103936. Pages. 1-12.
- 18. Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat1, Helge Weissig, The Protein Data Bank, Nucleic Acids Research, 2000, Vol. 28, No. 1. Pages. 235–242.
- 19. Williams J. C. Macedo, Josivan S. Costa, Leonardo B. Federico, Josiane V. Cruz, A Multiple Linear Regression, Pharmacokinetic and Toxicological Study of New Dihydroartemisinin Compounds with Antimalarial Activity, Journal of Computational and Theoretical Nanoscience, Vol. 15, 1–10, 2018, Pages 1-11.
- 20. This work has been covered in an Indian patent: Singh, C.; Chaudhary, S.; Puri, S. K. Indian Patent Appl. No. 0391 DEL 2006, Filing Date 13-02-2006.
- 21. Brossi, A.; Venugopalan, B.; Dominquez, G. L.; Yeh, H. J. C.; Flippen, A. J. L.; Buchs, P.; Wo, X. D.; Milhous, W.; Peters, W. J. Med. Chem. 1988, 31, 645.
- 22. WHO. Malaria Treatment Policies (by region). http://www.who.int/malaria/publications/ treatment-policies/en/. Accessed 24 Apr 2010 2. WHO (2010) Guidelines for the treatment of malaria, 2nd edn. World Health Organization, Geneva 3. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217.