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Abstract- In this paper the authors on the basis of the general heat equation have obtain a differential equation 

describing the temperature enhancement (self-heating) by cycling of nonlinear elastoviscous composite materials as 

a function of imposed strain amplitude and frequency. One assumes homogeneous temperature field. Thermo-elastic 

and thermo-damage connectivity have been neglected. It is acceptable, due to the small cross section of the samples 

and the relatively small deformations. Natural and forced convection to describe the heat losses in the surrounding 

have been take into account. The dissipation energy has been divided into heat loss and damage development 

energies in order to take into account the damage by cycling loading. Some comparisons with experimental results 

for glass fiber composite (30% glass fibers) when take into account the heat losses in the surrounding confirm the 

applicability of the proposed approach. The surface temperature of the samples was measured with laser infrared 

thermograph. 
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1.  INTRODUCTION  

    The study of the cyclic loading of a nonlinear viscoelastic material involves a hysteresis curve in stress-strain coordinates 

[1]. Such a curve shows that some of the strain energy is not recovered but dissipated during the cycling. A large part of the 

mechanical energy when cycling viscoelastic solids is converted into heat [2]. The fraction of viscous work converted into 

heat has been shown to be strain and stress dependent [1,2]. When no heat is released from the structure, such as under 

adiabatic conditions, the temperature of the material increases, sometimes by noticeable levels [1]. This effect is evident at 

high loading rates, it can also be significant when energy is continuously supplied to the structure, as in the case of cyclic 

loading. Many problems related to cyclic loading at small deformations in the linear case have been solved and discussed 

in [2,3] using the complex moduli. The problem is defined on a fixed domain (the initial configuration of the body) and 

thermal diffusion is independent of temperature. Heat losses in the surrounding have been take into account in the case of 

natural and forced convection. In order to avoid an equilibrium loss we used here as imposed loads - strain pulsations, due 

to the cross-sectional length ratio of our specimens. 

 

2.CONSTITUTIVE EQUATIONS  

   Assuming similarity of the isochrones stress relaxation curves, which for fiber reinforced composite materials is 

acceptable [4], let introduce the following nonlinear integral equation to describe the mechanical behavior of a GFC [4,5] 

 

                                                                  𝜎(𝑡) = 𝜙(𝜀(𝑡)) − ∫ 𝑅(𝑡, 𝜏)𝜙(𝜀(𝜏))𝑑𝜏
𝑡

0
.                                         (1)                                                   

 

Here 𝜎(𝑡) is the stress as a function of time t, 𝜀(𝑡) is the imposed strain, 𝑅(𝑡, 𝜏) is the relaxation kernel, which can be found 

from stress relaxation tests, 𝜙(𝜀(𝑡)) is the instantaneous nonlinear stress-strain curve. To well describe this curve one can 

apply the Ogden relation [6], also valid for  larger nonlinear deformations 

 

                                      𝜙(𝜀) = ∑ 𝜇𝑖(𝜆(𝜀)𝜅𝑖−1 − 𝜆(𝜀)−
𝜅𝑖
2

−13
𝑖=1 ),                                                          (2) 

                                  

here  𝜇1, 𝜇2, 𝜇3, 𝜅1, 𝜅2, 𝜅3 are parameters obtained from instantaneous stress-strain test and the stretch   is related with the 

engineering strain as follows 𝜆(𝜀) = 1 + 𝜀. 

     The solution of Equation 1 can be represented as follows [4,5] 

 

                                     𝜙(𝜀(𝑡)) = 𝜎(𝑡)  + ∫ 𝐾(𝑡, 𝜏)𝜎(𝜏))𝑑𝜏
𝑡

0
.                                                            (3) 
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     To obtain the strain creep curve (nonlinear creep) one should use the inverse function  𝜓(𝜀(𝑡)) = 𝜙−1(𝜀(𝑡)). The above-

mentioned integral equations of Volterra have been longtime employed to describe the viscoelastic behavior of polymers, 

glass fiber composites and other materials [4,5,7]. Due to the extremely high strain (stress) rate at the beginning in creep as 

well as in stress relaxation conditions one needs to introduce singular kernels. In order to increase the creep or stress 

relaxation time interval and thus well describe the experimental data from the beginning to the end in the case of large time 

interval, we have proposed in our previous work [8] to involve in the nonlinear hereditary theory a sum of singular kernels 

as follows  

   

                 𝑅(𝑡) = ∑ 𝑅𝑖(𝑡),   𝑁
𝑖=1      with         𝑅𝑖(𝑡) = 𝐴𝑖

𝑒−𝛽𝑖𝑡

𝑡𝛼𝑖
.                                                 (4) 

       

In this case the resolving kernel is [4,5] 

 

𝐾(𝑡) = ∑ 𝐾𝑖(𝑡),   𝑁
𝑖=1        with        𝐾𝑖(𝑡) =

𝑒−𝛽𝑖𝑡

𝑡
∑ 𝐴𝑖𝛤(𝛼𝑖)𝑛∞

𝑛=1 𝑡𝛼𝑖𝑛/𝛤(𝛼𝑖𝑛)   .                     (5) 

 

Note. Practically one need to stop the summation in Equations 4 and 5 after the 3-th member N = 3. 

                                   

3. DIFFERENTIAL EQUATION OF SELFHEATING  

     The heat equation, in the general case, can be written as follows [1,3,9,10] 

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝜎𝑖𝑗

𝑣 𝜀𝑖̇𝑗
𝑣 − 𝐴𝑖𝑉̇𝑖 + 𝑘𝛻2𝑇 + 𝑇(

𝜕𝜎𝑖𝑗

𝜕𝑇
𝜀𝑖̇𝑗

𝑒 +
𝜕𝐴𝑖

𝜕𝑇
𝑉̇𝑖),     [𝑊/𝑚3],                   (6) 

 

where  - the density, 𝐶𝑝- the thermal capacity, T - the temperature, 𝜎𝑖𝑗
𝑣 ,𝜀𝑖𝑗

𝑣  - the components of the tensor of the inelastic 

part of the stress and deformation, 𝐴𝑖𝑉̇𝑖- the non-recoverable energy (internal variables) associated with restructuring and 

damage of the material, k - coefficient of thermal conductivity, 𝛻 - nabla operator, 
𝜕𝜎𝑖𝑗

𝜕𝑇
𝜀𝑖̇𝑗

𝑒 +
𝜕𝐴𝑖

𝜕𝑇
𝑉̇𝑖 - the energy of the 

thermomechanical connectivity - the first term expresses the thermo-elastic connectivity, the second the thermo-damage 

one. This connectivity should be takes into account in the cases of large strain amplitudes (over 5%). In our case the strain 

amplitude is 0.35%. Thus, this connectivity will be neglected in the future and we obtain the following simplified heat 

equation: 

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝜎𝑖𝑗

𝑣 ,𝜀𝑖𝑗
𝑣 − 𝐴𝑖𝑉̇𝑖 + 𝑘𝛻2𝑇,          [𝑊/𝑚3].                            (7) 

 

      Important note: During cycling, the inelastic deformation and the corresponding stresses, which for viscoelastic 

materials are the viscous ones, can be obtained from the full tensors minus their elastic part. Thus, to the viscous strains we 

have 𝜀𝑖𝑗
𝑣 = 𝜀𝑖𝑗 −  𝜀𝑖𝑗

𝑒  and to the viscous stresses 𝜎𝑖𝑗
𝑣 = 𝜎𝑖𝑗  − 𝜎𝑖𝑗

𝑒   .  If we have imposed strains  𝜀𝑖𝑗,𝑖𝑚𝑝
𝑣 = 𝜀𝑖𝑗,𝑖𝑚𝑝  i.e. viscous 

strains are equal to those applied. If we have imposed stresses, then the viscous stresses are equal to the applied (imposed) 

stresses  𝜎𝑖𝑗,𝑖𝑚𝑝
𝑣 = 𝜎𝑖𝑗,𝑖𝑚𝑝 . Thus, instead to the viscous power per unit volume  𝜎𝑖𝑗

𝑣 𝜀𝑖̇𝑗
𝑣  , if imposing strains, we should write  

𝜎𝑖𝑗
𝑣 𝜀𝑖̇𝑗  . In the future for brevity to the viscous power per unit volume we will write  𝜎𝑖𝑗 𝜀𝑖̇𝑗. Our imposed strains are not very 

high (see the experimental results bellow) and thus, we exclude plastic deformations. 

     If the process is adiabatic or if a thin sample (as in our case) is introduced, the temperature distribution in sample space 

is constant, or in other words, the temperature field is homogeneous. In this case, we obtain an ordinary differential equation 

describing the heat enhancement 

 

                                              𝜎𝑖𝑗𝜀𝑖̇𝑗 = 𝜌𝐶𝑝𝑇̇ + 𝐴𝑖𝑉̇𝑖,                 [𝑊/𝑚3].                   (8) 

   

 The damage enhancement due to deformations can be expressed as follows [10] 

 

                                                             𝐴𝑖𝑉̇𝑖 = 𝑑(𝑡)𝜎𝑖𝑗𝜀𝑖̇𝑗,                                                (9) 
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 Where 𝜎𝑖𝑗
𝑒 𝜀𝑖̇𝑗

𝑒  represents the elastic recoverable power and  d(t)  is the relative damage. The so-called anisotropic damage 

is assumed here. In this case, the heat Equation takes the form: 

 

𝜎𝑖𝑗𝜀𝑖̇𝑗 = 𝜌𝐶𝑝𝑇̇ + 𝜎𝑖𝑗𝜀𝑖̇𝑗𝑑(𝑡) .                                   (10)  

 

     This expression can be used in the case of an arbitrary stress and strain states. In order to obtain relations for different 

stress and strain states  we will decompose the stress and strain tensors on deviatoric and spheric (bulk) parts  

 

                                     𝜎𝑖𝑗𝜀𝑖̇𝑗 = 𝑠𝑖𝑗𝑒̇𝑖𝑗 + 𝜎𝑉𝜀𝑘̇𝑘𝛿𝑖𝑗 + 𝑠𝑖𝑗𝑒̇𝑘𝑘 + 𝜎𝑉𝑒̇𝑖𝑗.                           (11) 

 

Here 𝜎𝑖𝑗; 𝜀𝑖𝑗; 𝑠𝑖𝑗; 𝑒𝑖𝑗; 𝜎𝑉; 𝜀𝑘𝑘  are respectively the components of the stress and strain tensors , their deviatoric and spheric 

parts and velocities (with point over). ij  is the Kronecker symbol.  

       We will simplify this expression, bearing in mind that elastomers are incompressible, i.e.  their volumetric part and 

respective velocity are equal to zero: 0=kk , 0=kk , after that we arrive to 

 

                                                             𝜎𝑖𝑗𝜀𝑖̇𝑗 = 𝑠𝑖𝑗𝑒̇𝑖𝑗 + 𝜎𝑉𝑒̇𝑖𝑗.                                                       (12) 

 

     Concerning the one dimensional case of pure traction from Equation 12 we have 

 

                                                 𝜎𝑖𝑗𝜀𝑖̇𝑗 =
2

3
𝜎11𝜀1̇1 + 𝜎11

1

3
𝜀1̇1 = 𝜎11𝜀1̇1.                 (13) 

 

Here 𝜎11 and  𝜀11 are the normal stress and the respective strain by traction, which we will henceforth denote as 𝜎 and  𝜀  

respectively.     

     Equation 10  in the one-dimensional case (traction pulsations or sinusoidal loading), taking into account the above 

important note, can be represented as follows: 

 

𝜎 𝜀̇ = 𝜌𝐶𝑝𝑇̇ + 𝜎 𝜀̇ 𝑑(𝑡) .                       (14) 

 

4. DAMAGE ACCUMULATION 

     In Equation 14 we need to obtain the damage accumulation  d(t). 

The number of cycles and time are related as follows: 

 

                                                                          t = 2πN/ω ,                                                   (15) 

 

where ω is the angular frequency of the applied cycling load.  

     In the case of imposed positive sinusoidal strains (pulsations), we have 

 

                                                  𝜀𝑖𝑚𝑝(𝑡) = 𝜀𝑜 + 𝜀𝑜 𝑠𝑖𝑛( 𝜔𝑡 − 𝜋/2).                                      (16) 

               

In this case the stress response can be obtained using Equations 1, 2 and 16. 

     In Equation 16  𝜙  is the phase angle shift, 𝜀𝑜 , 𝜎𝑜  are the imposed strain and stress amplitude  and 𝜔 is the angular 

frequency related with the imposed period T as follows  

 

                                                                          𝑇 = 2𝜋/𝜔.                                          (17) 

             

           On the other hand, to the stored energy per cycle in the more general case (nonlinearity) as a function of the strain 

amplitude 𝜀𝑜 and the angular frequency   in the case of pulsations, we can respectively write [10, 11] 

 

             𝑈(𝜀𝑜) = ∫ 𝜎𝑑𝜀 = ∫ 𝜎(𝑡, 𝜀𝑜)𝜀̇(𝑡, 𝜀𝑜)𝑑𝑡 =
(𝑛−0.5)𝑇

(𝑛−1)𝑇 ∫ 𝜎(𝑡, 𝜀𝑜)𝜀̇(𝑡, 𝜀𝑜)𝑑𝑡
(2𝑛−1)𝜋/𝜔

(𝑛−1)2𝜋/𝜔
.               (18) 

        

Here n = 1, 2…N, where N is the final cycle number. Here we have used Equation (17). 
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     It is evident that these energies are cycle number dependent. But this dependence is not strong. To derive the lower and 

upper limits in (18) we have used Equation 17. 

     To obtain the damage 𝑑 (n)  as a function of the cycle number n we need to define the damage for the n-th cycle as in 

[11,12,13,14] 

 

                                                                  𝑑𝑛(𝑛) = 1 −
𝑈(𝑛)

𝑈𝑖𝑛
  ,                                                      (19) 

                        

where  𝑈(𝑛) and 𝑈𝑖𝑛 are the stored energies for the n-th cycle and the initial one. Then the relative damage accumulation 

per cycle is d(n) = [d(n+1)-d(n)]/din . After summation of the relative damage accumulation per cycle we obtain the damage 

as a function of the cycle numbers 

 

                                                          𝑑(𝑁) = ∑ 𝑑𝑛(𝑛)
𝑁

𝑛=1
 .                                                            (20) 

 

To obtain the damage enhancement d(t) as a function of time in Equation 14, we need to take into account Equations (19,20) 

and transform the cycle numbers in time unities. To do this we should inverse Equation 15 and express the cycle number as  

 

                                                                    N =  t ω / 2π  ,                                                       (21) 

                                                   

5. HEAT LOSSES IN THE SURROUNDING 

    Concerning the heat losses in the surrounding we need to distinguish two cases. Natural convection – the surrounding 

fluid (mostly air) remains stationary relative to the sample and forced convection – flow around the sample with constant 

velocity. 

 

5.1. NATURAL CONVECTION 

    Inserting the damage growth according to Equations 19 and 20 into the heat Equation 14, to the heat generation by cycling 

we obtain an ordinary differential Equation 21 which does not account the energy losses to the surroundings. In order to 

take into account these losses we will use the Newton's cooling equation. In the one-dimensional case we have [9,10] 

 

                                              𝑘
𝑑𝑇

𝑑𝑥
+ ℎ(𝑇 − 𝑇∞) = 0,    for  𝑥 = 0   and   𝑥 = 𝛿,                               (22) 

 

where  𝑇∞ is the ambient temperature coincident with the initial one 𝑇𝑜;  k, h  are the coefficients of thermal conductivity 

and heat transfer respectively;  x  is the coordinate of an arbitrary point measured on the left side of the specimen and  δ  is 

the thickness of the specimen. In the case of a thin specimen or an adiabatic process, the right-hand side of Equation (15) 

divided by the specimen height H (to obtain the energy lost per unit volume) must be added to the heat Equation (9). In this 

way, we arrive at the ordinary differential Equation, taking into account the losses in the surroundings 

 

                                         𝜎𝜀̇ = 𝜌𝐶𝑝𝑇̇ + 𝜎𝜀̇𝑑(𝑡) +
ℎ

𝐻
(𝑇 − 𝑇о)   .          [𝑊/𝑚3]             (23) 

 

This equation concerns the so called natural convection. 

 

5.1 FORCED CONVECTION 

     We will note that the transfer of heat to the environment by means of Newton's equation represents the so-called natural 

convection. For this we will need to find the heat transfer coefficient in the case of forced convection. We will follow the 

derivations in [15 ], where the expression for the heat transfer coefficient is given 

 

                                   ℎ𝑓 =
𝑘

𝐻
𝑁𝑢.                                                                                      (24) 

 

In this equation 𝑘 is the coefficient of the thermal conductivity [𝑊/𝑚 𝑑𝑒𝑔𝐾], 𝐻 – the length (high) of the specimen [m], 

Nu –  the Nusselt number – without dimension.  To this number we have 

 

𝑁𝑢 = 0.102 𝑅𝑒0.675 𝑃𝑟1/3,                                                                   (25) 
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where  Re   is the Rеynolds number,  Pr  - the  Prandtl’s one. Both are dimensionless. 

To the Rеynolds number we have  

 

                                        𝑅𝑒 =
v𝐻

𝑣
               .                                                                       (26) 

   

In this Equation 26  𝜈 – is the cinematic viscosity  [𝑚2/𝑠],  v is the velocity of the surrounding fluid [𝑚/𝑠] (ordinary the 

air). 

Using this way from Equations  24, 25, 26  to the coefficient of the  heat transfer coefficient we arrive to 

 

                 ℎ𝑓 =
𝑘

𝐻
[0.102(

𝑣𝐻

𝑣
)0.675 𝑃𝑟1/3],   [𝑊/𝑚2 𝑑𝑒𝑔 𝐾]                 .                             (27) 

 

      If we replace in Equation (23) the coefficient of the natural convection with this of the forced one, using Equation (27) 

we will obtain a differential equation taking into account this effect 

 

                                          𝑇̇(𝑡) +
ℎ𝑓

𝐻𝜌𝐶𝑝
𝑇(𝑡) =

1−𝑑(𝑡)

𝜌𝐶𝑝
𝜎𝜀̇ +

ℎ𝑓

𝐻𝜌𝐶𝑝
𝑇о                   .                         (28) 

 

    To the viscous stress response, according to the important note make above, we ca write 𝜎(𝑡) = ∫ 𝑅(𝑡, 𝜏)𝜙(𝜀(𝜏))𝑑𝜏
𝑡

0
. 

This expression should be introduced in Equation 28, respectively in Equations 21,23. Note that these particular cases can 

be obtained from Equation 28 putting d(t) = 0 (no damage), ℎ𝑓 = ℎ (natural convection) and  ℎ𝑓 = 0 (no losses in the 

surrounding). 

 

6. EXPERIMENTAL RESULTS AND COMPARISONS   

     For this purpose, we will apply the solutions according to the differential equations of self-heating (Equations 21,23,28) 

for GFC with 30% glass fibers. The computational procedures in the Mathcad software environment require joint solution 

of the equations in the following order:  

1. Determination of the nonlinearity parameters in the Ogden Equation 2                                                     

2. Determination of the relaxation kernel parameters in the nonlinear hereditary Equation  1 with relaxation kernel consisting 

of sum of   

    singular kernels - Equations 4 

3. Determination of the damage parameters - Equations 19,20 

4. Solution of the differential equations of self-heating according to Equations 21,23,28 concerning tree characteristic cases, 

namely without taking into account the damage and heat losses in the surrounding, taking into account the damage and 

natural convection and finally taking into account damage and forced convection (heat losses dues to air blowing of the 

sample with constant air velocity). 

    In the case of imposed strains (controlled deformation) we should replace  ɛ  with the imposed strain law  𝜀𝑖𝑚𝑝(𝑡) – see 

Equation 16. 

    For our FGC with 30% glass fibers, the following experimental results were obtained:  

Parameters of the Ogden equation: 

 

𝜇1 = 9.93;        𝜇2 = −39.9;          𝜇3 = 1.2;        𝑘1 = 29.95;           𝑘2 = 59.81;          𝑘3 = 5.4. 
 

Parameters of the relaxations kernel 

 

𝐴1 = 0.0001; 𝑎1 = 0.8;  𝑏1 = 0.01;  𝐴2 = 0.015;   𝑎2 = 0.94;   𝑏2 = 0.31;   𝐴3 = 0.013;   𝑎3 = 0.2;  𝑏3 = 0.01. 
 

     The relative stress relaxation curve according to these parameters are illustrated in our previous work in the same 

journal [17].      

Figure 1 below illustrates the increase in damage with increasing time on the basis of Equations 19,20. 
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                                                                                Fig.1. GFC. Growth of damage with time. 

 

     The following Figure 2 shows the imposed strain law (pulsations) and the stress responses. Comparison between elastic 

response (without taking into account the composite viscosity) and elastoviscous stress response are made.  

 

 
Fig.2. FGC. Imposed strain and stress responses 

 

           In the next Figure 3 we have illustrated the final result, namely the temperature rise due to self-heating in three 

specific cases. The influence of the damage enhancement and heat losses in the surrounding in the case of natural convection 

can be observed after 1000 seconds (17 minutes). In the case of forced convection the same effect can be observed after 

300 seconds (5 minutes).  

     The imposed strain amplitude was 0.0035 and the imposed angular frequency was 2.2 [rad/s]. For our GFC the density 

and the thermal capacity were respectively  = 1150 [kg/m3] , 𝐶𝑝 = 998 [J.kg/deg K]  . 

     The air heat transfer coefficient in the case of natural convection is  h  = 6.35 [𝑊/𝑚2 𝑑𝑒𝑔 𝐾], see the results in the 

detailed book [15]. In the case of forced convection hf  = 104 [𝑊/𝑚2 𝑑𝑒𝑔 𝐾] . The latter was calculated using Equation 

27, introducing the following parameters: surrounding air velocity  v = 1 [m/s], cinematic viscosity of the air 𝜈 =1.5 x 10−5 

[𝑚2/𝑠], coefficient of the thermal conductivity 𝑘 = 0.3 [𝑊/𝑚 𝑑𝑒𝑔𝐾], air Prandtl number  0.71 as in [15]. 

     The surface temperature of the samples was measured with laser infrared thermograph [16]. 
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Fig.3  Temperature enhancement with time by cycling. Thin line - without considering                                      

damage and heat losses. Intermediate line - considering damage and natural convection.  

                                        Thick line - considering damage and forced convection 

 

6. CONCLUSIONS 

     On the basis of the generalized heat equation, after accepting some simplifying assumptions, a differential equation of 

self-heating during cycling of elastoviscous composites in the nonlinear domain is obtained and resolved. This equation 

takes into account progressive damage, nonlinear constitutive behavior and heat losses in the surrounding in the cases of 

natural and forced convection.  

    Comparison between the above mentioned tree cases (no losses in the surrounding, natural convection and forced one) 

is made. It was established that in the case of forced convection, even with a low blowing air speed around the experimental 

samples, the self-heating temperature increases significantly more slowly and reaches an equilibrium value much earlier as 

in the other two cases. 

    In order to clearly notice the difference between natural convection and no heat transfer to the environment, a 

significantly longer time is required (comparing with forced convection). 

    Forced convection can significantly decrease the temperature of self heating of elastoviscous composite materials by 

cycling loading.  

    Viscosity has very important impact on the self-heating of composite materials.    

    Experimental results for glass fiber composite with 30% glass fibers illustrate the applicability of this approach. 
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