CAD-CAM COMPLETE DENTURES - A REVIEW OF LITERATURE

1Dr. Nivethidha S, 2Dr. Senbagavalli S, 3Dr. Prabhu K

1CRI, 2Assistant Professor, 3Professor and Head of the Department
Adhiparasakthi Dental College and Hospital
Melmaruvathur.

Abstract- This research delves into the evolving application of Computer-Aided Design and Computer-Aided Manufacturing (CAD-CAM) in crafting complete dentures, signifying a paradigm shift in prosthodontics with improved precision, efficiency, and patient outcomes. The study explores CAD/CAM dentures’ properties in comparison to traditional counterparts and diverse fabrication systems within digital dentistry. Its objective is to clarify the integration of CAD/CAM throughout the entire denture-making process, from digital impressions to creating highly personalized complete dentures. The abstract highlights the benefits of digital workflows, emphasizing precision, reproducibility, and patient satisfaction. Furthermore, it touches upon the variety of materials and manufacturing methods used in digital denture systems, aiming to provide a comprehensive overview of current practices and summarize related literature on CAD/CAM complete dentures.

INTRODUCTION:

The edentulous arches are influenced by a combination of biological and patient-specific factors, making it a complex and multifactorial phenomenon1,2. For this, complete dentures have been used conventionally as a means of rehabilitation3-5. However, the conventional CDs take more time for the fabrication process, more clinical chairside time and impression making causes patient discomfort and hindrance. The complexity of manipulation leads to overextended borders which cause ulceration of the tissue. The time-consuming procedures of waxing, investing and wax elimination, the greater dimensional changes of PMMA resins and less fracture resistance results in poor adaptation of the intaglio surface. Residual monomer causes patient's soft tissue irritation and allergic reactions to some of the patients. Surface roughness and porosity from processing induce microbial accumulation to the dentures, all of that can compromise oral hygiene6-10. To overcome the limitations of conventional CDs, paved the way for the introduction of the digital denture workflow for fabrication in the dental field. Digital dentures can be fabricated within hours, overall patient satisfaction, less discomfort and better adaptation, less space for data storage, all make digital dentures popular in dental practices. Intra Oral Scanning provides better and improved detection and visualization of the morphology of the edentulous arches, especially in the palate shape11-15. To understand, digital dentures comprise both computer-aided technology and machining (CAD/CAM) and computer-engineered complete dentures (CECD). Computer-aided technology or digital technology is a wide term which indirectly refers to the skills to aid in the design, analysis and manufacture of products with the use of computers.

CAD/CAM technology has multiple applications in dental practices and it has been over two decades with improved outcomes & the scope for that in the future is increasing. Therefore, this study aimed to summarize and review the published papers related to the properties and various digital denture systems of CAD/CAM complete dentures.

COMPONENTS OF CAD/CAM:

The three key components make up CAD/CAM systems are:

1) A data acquisition unit gathers information from the preparation area, adjacent structures and opposing elements, converting them into virtual impressions using intraoral scanners or traditional impressions with a stone model16.

2) The CAD segment employs the acquired data to generate a virtual model of the restoration or prosthesis17.

3) The CAM part translates the virtual model into precise instructions for the manufacturing process, whether it involves milling or 3D printing the final restoration or prosthesis18.

The CAD/CAM is classified as additive manufacturing (rapid prototyping) and subtractive manufacturing (computerized numerical control [CNC] machining) and both use images from a digital file19. Additive manufacturing or 3D printing creates an object by laying down successive layers of a chosen material while Subtractive manufacturing creates an object by machining (cutting / milling) which physically removes material to achieve the desired geometry20,21,22.

PROPERTIES:
The CAD/CAM complete dentures and conventional dentures are compared in terms of their properties. The included studies showed significant variations but are summarized as follows.

1) TRUENESS AND ACCURACY OF FIT

The CAD/CAM milled complete denture shows overall improved fit in the intaglio surface of the palatal vault, alveolar crest, posterior seal area and the tuberosity region, thus preventing traumatic ulcers and provides better retention. However, the printed denture shows reduced reproducibility and is time-consuming. Among the digital denture systems, AvaDent shows the highest tissue adaptation.

The Yoon et al. study showed that mandibular bases from milling produce better adaptation than printed bases. He also stated that tissue adaptation was uniform in milled bases. Tissue compression was noted in the 3D-printed base in the posterior crest region which requires some chairside time for adjustment.

The Hwang et al. study showed that the printed base provides better adaptation than milled base in maxillary denture bases.

2) FLEXURAL STRENGTH

Most of the studies showed, that no significant change was noted between CAD/CAM and conventional dentures in terms of flexural strength. However, a study conducted to compare the surface properties showed a significant increase in flexural strength for CAD/CAM PMMA than conventional heat polymerized PMMA.

3) FLEXURAL MODULUS

In terms of flexural modulus, CAD/CAM PMMA resins show higher modulus leading to thinner manufacturing of the denture with increased fracture resistance leading to better retention and comfort.

4) FRACTURE TOUGHNESS and RESISTANCE

CAD/CAM dentures afford higher modulus of elasticity, thus providing increased fracture toughness. This makes the denture to manufacture thinner and at a uniform thickness. Thus, it provides a better and more natural speech for the patients.

3D-printed denture teeth resins tested for chipping and indirect tensile fracture resistance showed adequate resistance.

5) WETTABILITY or HYDROPHILICITY

Alammari and Steinmassl et al. compared CAD/CAM PMMA with conventional PMMA and showed a lesser contact angle which is more wettability in the CAD/CAM PMMA resins.

Increased wettability shows increased retention of the denture. Thus, in patients with salivary dysfunction, dentures made of CAD/CAM PMMA resins will provide better retention.

Microbial adhesion to the denture will be less in increased hydrophilic nature. Hence, the colonization of Candida sp. and other microbes will decrease in percentage than conventional dentures.

6) SURFACE ROUGHNESS

Surface roughness plays an important role in the biofilm adhesions and also causes surface staining. Monomer content and polymerization method contribute to the surface roughness. During processing, the milled denture produces undulated ripples. The size depends on the quality of the milling tools and the process. The surface quality improves when the manufacturing of CAD/CAM dentures is done under high pressure and temperature. Decreased roughness produces increased wettability, reduced biofilm retention and stainability.

7) COLOR STABILITY and SURFACE STAINING

By the change in surface staining, the denture base material ageing and damage were detected. In spite of the hydrophobic nature of the denture base, the colorants in the drinks such as coffee have a deeper depth of penetration into the denture base. In CAD/CAM dentures, the interface between the denture base and the teeth shows stainability which is less than conventional dentures. But visual evaluation of the interface shows better resistance to discolouration.

Other than coffee, beverages such as red wine, tea and cola showed no significant change in the surface stainability suggesting that coffee has strong chromogenic agents (tannic acid) which penetrate greater depth of PMMA. However, the acidic pH of red wine could affect the denture base, causing surface roughness and further leading to surface staining. However, using prepolymerized PMMA blocks was promising in the optical properties.

8) RESIDUAL MONOMER CONTENT

Under high pressure and temperature, the CAD/CAM PMMA prepolymerized leads to forming longer polymer chains resulting in reducing residual monomer. Thus, it leads to a reduction in porosity and free volume and also indirectly reduces biofilm retention.

9) CLINICIAN AND PATIENT REPORTED OUTCOME ([a]RETENTION & AESTHETICS and [b]PATIENT SATISFACTION)

The peripheral seal, the fit of the denture base and a sufficient layer of saliva played a major role in denture retention. By air depression between the denture and the mucosa and minimal or no shrinkage during polymerization provides better retention than conventional one. However, lack of trial placement resulted in inaccurate records and
esthetic dissatisfaction for the patients. Setting up the mandibular plane is impossible. Other complications are the occlusal vertical dimension and centric relation, even though it less. it influences the clinical outcomes.

10) BIOCOMPATIBILITY

Thermoplastic trays in different sizes (A-C); Maxillary and Mandibular definitive impressions with PVS (D-G). Mandibular mandibular registration material placed in AMD maxillary try (F-G). Registration of intermaxillary line, the contact point is adjusted up and down using a screwdriver to establish appropriate OVD (F-L). Adjustment of the VDO using the wrench to raise or lower the pin (M-P), stabilizer transparent guide (Q), Digital preview of virtual arrangement of denture during try-in (R), and final intraoral CECDs in patient mouth (S).

11) DENTURE TEETH MOVEMENT

In both conventionally fabricated and CAD/CAM dentures, teeth movement has been evaluated and concluded that all dentures exhibited less than conventional processing which has 5 appointment protocol that was concluded comparing monolithic CAD/CAM and the greatest movement was noted in compression method. The current cost for the laboratory and materials is more than the conventional method.

12) MANUFACTURING COST AND CHAIRSIDE TIME

It is less than conventional processing which may require additional appointments for trial denture placement. The chairside time for CAD/CAM dentures including the additional trial denture placement was significantly shorter than the conventional method. The digital fabrication denture systems include the AvaDent, Whole You Nexteeth system (Formerly known as DENTCA), Wieland Digital Denture (Ivoclar digital denture), AMMANN GIRRBACH AG which combines with Ceramill Full Denture System (FDS) to provide Vita VIONIC & Baltic Denture Systems (BDS), DENTSPLY dentures.

1) AVADENT DIGITAL DENTURES

The AvaDent system uses subtractive manufacturing and computer-aided engineering (CAE) which was fabricated in 2 ways.

a) The teeth will be bonded to the milled denture base
b) The teeth and the milled denture base will be made as a single unit (XCL)

Furthermore, it is also available in XCL-1 (monochromatic teeth) and XCL-2 (polychromatic teeth). In this system, the jaw relation records are obtained by either duplicating the patient's existing denture or from the prefabricated tray or Good fit denture trays or by conventional method. Then, the definitive impressions are sent to the manufacturer. If the clinician does no longer feel cozy having the dentures fabricated without assessing phonetics, esthetics and function, a try-in denture can be ordered. Then the milled denture is adjusted intraorally and delivered. Including try in, it will be completed by three appointments.
3) AMANN GIRRBACH AG

The AMANN GIRRBACH AG uses the Ceramill Full Denture System and merged with Vita and Merz to deliver 2 workflows such as The Vita Vionic and the Baltic Denture System20,33.

3.1 CERAMILL FULL DENTURE SYSTEM

The definite impressions are sent to laboratory for fabrication of record bases. After that, VDO, smile line, canine position and face bow transfer are recorded using that bases and sent to the laboratory. These recordings are transferred and mounted and then scanned by the software. The calculation algorithms are processed by the software for tooth arrangements, tooth line, ridge midline. Here, the esthetic template are digitized and processed for aesthetically demanding patients16. The milled teeth and denture base are integrated and processed in a wax base. Then sent to the clinician for approval and adjustments are made for esthetic correction, phonetic correction, smile line, lip line and processed conventionally20,33,43,44.

Using existing denture as close-fitting tray to take functional impression of edentulous arche (A), Optical scanning pathway of impression surfaces of dentures (B), Whole digitized denture image aligned to the centric relation position by using a digital bite scan (C), Formation of maxillary and mandibular digital working models for denture design, Segmentation of whole scan image into the maxillary and mandibular impression part, and dentition part (D-E), Conversion of the negative form of the digitized impression image into positive form using image reversal technique to generate digital working models (D-E), Design of definitive denture on the digital working model. Import of the dentition part image of the existing denture as a reference in the inter-arch space (F), Design of definitive denture (G). Mounted master casts, master casts and record bases fixed on articulator (Fig. 5A2), Reference points marked on master casts in CAD software [Midline maxillary tuberosity (Fig. 5B2), Occlusal plane (Fig. 5C2), Final setup lines for maxilla (Fig. 5D2), and for mandible (Figure 5E2), Artificial teeth arrangement (Figure 5F2), in Maxilla (Fig. 5G2), and arrangement in scanned record rim (Fig. 5H2), Articulator mounting (Fig. 5I2), Denture design (Fig. 5K2), Basal adaptation of artificial teeth (Fig. 5L2), Milled maxillary (Fig. 5M2), and mandibular wax denture base (Fig. 5N2), Milled artificial teeth (Fig. 5O2), Maxillary upper surface with milled artificial teeth inserted (Fig. 5P2), Milled wax dentures in articulator, notice the contact of incisal pin (Fig. 5Q2), Milled wax denture try-in (Fig. 5R2), and Definitive complete denture inside patient mouth (Fig. 5S2).

3.2 VITA VIONIC

Like Ceramill Full Denture System, this was also designed but here the denture teeth and the base material were put together by Vita20,33.

It is based on the principle of adjusting the denture resins specifically made and fixed using light polymerization. The denture is designed and arranged and then bonded to a definite denture. These virtual setups are modified according to the clinician and/or patient's need. If the clinician demands a trial denture, it would be sent and adjusted accordingly. Otherwise, the acquired data is processed and delivered in the second appointment.

3.4 MANDIBULAR BD KEY (A), MAXILLARY BD KEY (B), and both keys click fixed together (C). High concordance between milled CAD/CAM denture base and master cast. Green = maximal concordance, turquoise and yellow = less concordance. Maxillary and mandibular definitive impressions (Figure 4A1). Stereoangiography (STL) files after importing into software. Maxillary and Mandibular (Figure 4B2). Occlusal boundary line created by setting path points to form line (Figure 4C2). Occlusal rims, occlusal plane, and midline incorporated into image in software (Figure 4D2). Alignment of dental arches according to occlusal rims (Figure 4E2). Digital preview of virtual arrangement (Figure 4F2). Introral frontal view of definitive maxillary and mandibular CDs (Figure 4G2).

4) WIELAND DIGITAL DENTURE (Wieland dental + Technik Ivoclar Vivadent)

It also uses a subtractive technique for the fabrication of denture. This system requires 3 or 4 appointment workflows. The definite impressions in a preformed trays and cammer line, smile line, interpupillary line, interocclusal records and face bow records are taken in a provided device and sent to the laboratory. Using the software, these records are scanned and the occlusal plane determined. The denture teeth are selected from the software library and arranged and then bonded to a definite denture. These virtual setups are modified according to the clinician and/or patient’s need. If the clinician demands a trial denture, it would be sent and adjusted accordingly. Otherwise the denture will be milled and delivered for insertion.

5) DENSTPLY SIRONA DENTURES

It is the most recent denture system. Here the denture bases are specifically made and fixed using light polymerization.
ADVANTAGES AND DISADVANTAGES OF CAD/CAM COMPLETE DENTURES:

Advantages of digital fabrication denture systems:
❖ Lesser appointments\(^{20,33}\)
❖ Reduced polymerization shrinkage\(^{20,33}\)
❖ Decreased residual monomer\(^{20,33}\)
❖ Lesser fabrication time\(^{20,33}\)
❖ Superior quality of dentures preventing microbial adhesion\(^{20,33}\)
❖ Easy reproduction of the tissue architecture\(^{20,33}\)

Disadvantages/ Limitations of digital fabrication denture systems:
❖ Defining the mandibular occlusal plane is difficult\(^{20,33}\)
❖ Needed a lavish setup, thus increasing laboratory costs\(^{20,33}\)
❖ Expensive materials charges\(^{20,33}\)
❖ Mostly lack trial denture try in\(^{20,33}\)

CONCLUSION:
In conclusion, Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology has significantly advanced the field of complete denture fabrication. The precision, efficiency and customization offered by CAD/CAM systems not only enhance the accuracy of denture construction but also contribute to improved outcomes in terms of fit, aesthetics and patient satisfaction. As technology continues to evolve, integrating CAD/CAM into complete denture workflows holds great promise for enhancing the overall quality of dental prosthetics.

REFERENCES:

(16) Sariga Kanakaraj HK, Ravichandran R. An update on CAD/CAM removable complete dentures: A review on different techniques and available CAD/CAM denture systems.

(26) Ayman AD. The residual monomer content and mechanical properties of CAD/CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electronic physician. 2017 Jul;9(7):4766.

