GOALS OF COPD TREATMENT FOCUS ON SYMPTOMS AND EXACERBATIONS

Rahul rajendra Mahajan, Nikita ravindra morankar
Department of pharmacy
Shastry Institute of pharmacy
Erandol.

Abstract- Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. While COPD is a mainly chronic disease, a substantial number of patients suffer from exacerbations. Severe exacerbations are related to a significantly worse survival outcome. This review summarises the current knowledge on the different aspects of COPD exacerbations. The impact of risk factors and triggers such as smoking, severe airflow limitation, bronchiectasis, bacterial and viral infections and comorbidities is discussed. More severe exacerbations should be treated with β-agonists and anticholinergics as well as systemic corticosteroids. Antibiotic therapy should only be given to patients with presumed bacterial infection. Noninvasive ventilation is indicated in patients with respiratory failure. Smoking cessation is key to prevent further COPD exacerbations. Other aspects include choice of pharmacotherapy, including bronchodilators, inhaled corticosteroids, phosphodiesterase-4 inhibitors, longterm antibiotics and mucolytics. Better education and self-management as well as increased physical activity are important. Influenza and pneumococcal vaccination is recommended. Treatment of hypoxaemia and hypercapnia reduce the rate of COPD exacerbations, while most interventional bronchoscopic therapies increase exacerbation risk within the first months after the procedure.

Keywords: COPD; Exacerbations; GOLD; Management goals; symptoms.

1. Introduction
Healthcare systems [ductions in spirometry measures such as forced expiratory volume in 1 s 1]. COPD can be progressive, as indicated by reported to increase further in the coming years due to an aging populationapproximately 300 million in 2017 [States in 2017 [treatable disease marked by persistent respiratory symptoms and airflow limitation [wide in 2016 [tion and continued exposure to COPD risk factors, including tobacco smoke, occupational dusts and chemicals, biomass fuel and air pollution [1]. However, COPD can be prevented by reducing exposure to these risk Chronic obstructive pulmonary disease (COPD) is a preventable and 1]. It was ranked as the third leading cause of death worldwide, and the fourth leading cause of death in the United States in 2017. The prevalence of COPD was reported to be 4% in the US, with the burden of COPD exacerbations increasing in many countries. Recommendations discuss the challenges that many healthcare professionals face in for monitoring treatment outcomes and adjusting management strategies. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) strategy report discusses the current goals for COPD management and factors, including avoidance or early cessation of smoking, which are most common respiratory symptoms associated with COPD include 1,5].

2. Challenges in management of COPD
Dyspnea, cough and/or sputum production are common symptoms associated with COPD. These symptoms can be exacerbated by acute worsening of respiratory symptoms (often referred to as exacerbations). In addition to the factors, including genetic and environmental factors, COPD is a heterogeneous, multifaceted disease that is influenced by 7]. The heterogeneity of COPD has
Evidence suggests that COPD is underdiagnosed, with most cases identified during an exacerbation or after significant loss of lung function [14]. The US Preventive Services Task Force continues to recommend against screening for COPD with spirometry due to a lack of data to indicate that this impacts long-term outcomes [15], but unfortunately this has been interpreted by some as meaning that identifying and treating COPD is not beneficial. A good option for diagnosing COPD is to use systematic and targeted case-finding approaches. For example, a case-finding methodology was reported [14] which entailed a brief five-item questionnaire (COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease & Exacerbation Risk; CAPTURE) as an initial screen. Peak expiratory flow was then performed on a subset of patients with positive questionnaire results, to increase the accuracy of case identification [14]. This method is currently being further evaluated in a large primary care patient population [14]. Another potential approach involves the use of microspirometers such as the PiKo-6® device (nSpire Health, Inc.) [16,17]. Following a postal questionnaire, patients reporting respiratory symptoms can be invited for spirometric assessment to confirm the diagnosis of COPD [18]. When full spirometry is not available or practical, for instance during a primary care consultation, then hand-held microspirometers have been shown to reliably and quickly measure pre-bronchodilator FEV₁/FEV₆, and to therefore identify patients for further spirometric assessment [16,17]. Both of these approaches may have a future role in reducing the underdiagnosis of COPD whilst also increasing the efficiency of full diagnostic spirometry use in primary care.

Currently, management of COPD focuses on the alleviation of symptoms and prevention of the future risk of exacerbations [1]. Challenges relating specifically to the management of symptoms and exacerbations are described in the relevant sections below.

3. Goals of COPD treatment: focus on symptoms

COPD symptoms have a considerable influence on patients’ activities, health status and quality of life [19–30], and it is this impact that motivates some patients to seek a diagnosis [31]. In particular, dyspnea is responsible for much of the anxiety and disability associated with COPD [22], as it affects patients with all severities of the disease [23,29, 31]. The negative impact of COPD symptoms on physical activity promotes muscle deconditioning, which can lead to further dyspnea, thereby promoting a cycle of decline that results in deterioration of health status [32–35]. Symptoms

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPTURE</td>
<td>COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease & Exacerbation Risk</td>
</tr>
<tr>
<td>CCQ</td>
<td>Clinical COPD Questionnaire</td>
</tr>
<tr>
<td>FEV₁</td>
<td>forced expiratory volume in 1 s</td>
</tr>
<tr>
<td>GOLD</td>
<td>Global Initiative for Chronic Obstructive Lung Disease</td>
</tr>
<tr>
<td>ICS</td>
<td>inhaled corticosteroids</td>
</tr>
<tr>
<td>LABA</td>
<td>long-acting β₂-agonist</td>
</tr>
<tr>
<td>LAMA</td>
<td>long-acting muscarinic antagonist</td>
</tr>
<tr>
<td>mMRC</td>
<td>modified Medical Research Council</td>
</tr>
<tr>
<td>SGRQ</td>
<td>St. George’s Respiratory Questionnaire</td>
</tr>
<tr>
<td>SG-ACT</td>
<td>St. George’s Activity of Daily Living Questionnaire</td>
</tr>
<tr>
<td>SG-CAT</td>
<td>St. George’s COPD Assessment Test</td>
</tr>
<tr>
<td>SG-ResQ</td>
<td>St. George’s Quality of Life Questionnaire</td>
</tr>
<tr>
<td>SG-WRQ</td>
<td>St. George’s Work and Reliability Questionnaire</td>
</tr>
<tr>
<td>SG-YQ</td>
<td>St. George’s Younger Patient Questionnaire</td>
</tr>
</tbody>
</table>

Goals of COPD treatment: focus on symptoms

COPD symptoms have a considerable influence on patients’ activities, health status and quality of life [19–30], and it is this impact that motivates some patients to seek a diagnosis [31]. In particular, dyspnea is responsible for much of the anxiety and disability associated with COPD [22], as it affects patients with all severities of the disease [23,29, 31]. The negative impact of COPD symptoms on physical activity promotes muscle deconditioning, which can lead to further dyspnea, thereby promoting a cycle of decline that results in deterioration of health status [32–35]. Symptoms
such as dyspnea affect family life and the patient’s ability to perform everyday activities, for instance household chores and walking up stairs [36]. In addition to pulmonary symptoms, COPD can be associated with systemic features such as fatigue, weight loss and sleep disturbance, as well as psychiatric symptoms including depression and anxiety, significantly impacting quality of life [37,38].

3.1. Challenges of symptom recognition and management

Despite the significant impact of COPD symptoms on patients’ lives, there is evidence that the most common respiratory symptoms, such as dyspnea, cough and sputum production, are under-reported [1]. In particular, night-time symptoms and sleep disturbance are often under-recognized [19,24]. Even in those with severe airflow limitation, many patients with COPD do not report symptoms [39], and are often slow to discuss them with their physician [40] or attribute them to factors such as aging, workplace exposure to pollution or smoking [41, 42]. Some patients with COPD may adapt their lifestyle to compensate for symptoms, and often only present to physicians when their condition has deteriorated significantly [37]. A report describing the burden and impact of COPD in North America and Europe highlighted that even patients with severe dyspnea and significant compromise of daily physical activities requiring exertion tended to underestimate their disease burden, ranking it as mild or moderate [30]. In addition, the Medical Investigation of Respiratory COPD Perception (MIRROR) survey recently confirmed that there were differences between the perceptions that patients with COPD have of their disease and those of their physicians [40]. For instance, patients with severe or very severe COPD perceived their disease to have a greater impact than that perceived by their pulmonologists, particularly in terms of the impact on their quality of life (e.g. daily activities and work) [40].

FEV₁ is a very important parameter at the population level, for predicting clinical outcomes such as mortality and hospitalizations, or prompting consideration for non-pharmacologic procedures such as lung volume reduction or lung transplantation [1,43]. However, it is important to note that, at the individual patient level, FEV₁ loses precision and thus cannot be used to determine the most appropriate therapeutic option, as it does not necessarily correlate with all symptoms experienced by patients and their impact on quality of life or exacerbation frequency [1,37]. In addition, some individuals with chronic respiratory symptoms and/or structural evidence of lung disease may have normal spirometry [1,44]; therefore, healthcare professionals must consider both spirometry and symptoms when assessing patients, to avoid disease progression and the development of acute respiratory events [1,37]. Evidence regarding the impact of COPD symptoms on younger patients (e.g. data on absenteeism, presenteeism and socioeconomic status) is sparse; however, it has been reported that COPD likely represents a significant burden for patients of working age [45]. Lastly, although the benefits of COPD treatments are well established in terms of pulmonary symptoms, their impact on psychologic symptoms such as confidence, social interaction and sleep quality is less clear [46]. However, it has recently been shown that behavioral modifications that motivate patients to increase their daily physical activity can also improve anxiety, cognitive function and depression in patients with COPD [47].

3.2. Symptom assessment

Given the under-reporting and under-recognition of symptoms, there is a need for appropriate tools in clinical practice to identify symptoms and adjust treatment accordingly. The most efficient and accurate way for physicians to assess symptom severity, activity limitation and health-related quality of life is to use a standardized measure, such as a short patient-centered questionnaire [37]. A number of questionnaires are available for assessing symptoms, yet uptake is often limited in clinical practice, most likely due to a combination of lack of awareness, difficulty in incorporating questionnaires into practice flow, or lack of electronic medical record support for questionnaires.

The COPD Assessment Test (CAT) is a useful and practical questionnaire for clinical practice [37]. CAT aims to quickly measure the impact of COPD on health-related quality of life and to facilitate patient–physician communication [37]. Items covered include physical symptoms such as cough, phlegm, chest tightness, breathlessness when going up hills and stairs, activity limitation at home, and energy, as well as related factors that affect patients’ quality of life, including confidence leaving home and sleep quality [37]. CAT has also been shown to be responsive to pulmonary rehabilitation and in assessing recovery from an exacerbation [37].

Other questionnaires include the modified Medical Research Council (mMRC) dyspnea scale, Clinical COPD Questionnaire (CCQ) and St. George’s Respiratory Questionnaire (SGRQ) [37,48–50]. Simple to administer, the mMRC dyspnea scale (0– 4) is easily used to indicate the extent to which dyspnea impacts on daily activities alone; however, drawbacks include its insensitivity to change (e.g. in response to treatment), and it does not take into account the fact that patients often modify their behavior and the amount of effort exerted due to dyspnea [37]. The CCQ enables a more complete understanding of the impact of COPD on patients, including a more comprehensive assessment of activity limitation and emotional dysfunction, and is a useful tool in the everyday clinical setting to assess COPD [37]. Areas of assessment include symptoms (e.g. dyspnea, cough and phlegm), functional state and mental state. CCQ has also been shown to be sensitive to clinical improvement after smoking cessation, and during and after exacerbations [37]. Lastly, while frequently used in clinical trials, the SGRQ includes numerous questions and is not suitable for use in daily clinical practice [37].
4. Goals of COPD treatment: focus on exacerbations

An exacerbation in COPD is defined as an acute worsening of respiratory symptoms that results in additional therapy [1], and is mainly triggered by respiratory infections (mostly viral, such as rhinovirus, as well as bacterial infections), and environmental factors such as air pollution. Exacerbations associated with viral infections tend to be more severe, last longer, and require more hospitalizations (e.g. during winter) [1]. Current treatment goals for exacerbations are to minimize the negative impact of the current exacerbation and reduce the risk of any future exacerbations [1]. The majority of patients that experience exacerbations can be managed on an outpatient basis with pharmacologic therapies; however, some patients may require hospitalization for a number of reasons, including severity of symptoms, failure to respond to initial treatment, poor or limited home-based care, and presence of comorbidities [1]. As the clinical presentation of exacerbations is heterogeneous, the GOLD report recommends that the determination of severity in hospitalized patients should be based on clinical signs [1].

4.1. Challenges of exacerbation management
The long-term prognosis following hospitalization for exacerbations is poor, especially in patients with additional risk factors such as older age, comorbidities, lower body mass index and poorer quality of life [1]. Some patients with COPD are particularly susceptible to frequent exacerbations, and these patients have been shown to have worse health status, morbidity and mortality than those with less frequent exacerbations [1,51]. Despite this, many patients do not report their exacerbations to healthcare professionals [1]. Patient education on when to seek medical attention for exacerbations is of vital importance. A recent Cochrane review reported that COPD self-management interventions, which include written negotiated action plans for worsening symptoms, lead to a lower probability of respiratory-related hospitalization and all-cause hospitalizations [52]. However, there have been concerns that health benefits from self-management programs in COPD could be counterbalanced by increased mortality [53,54], although this should be interpreted with caution, as not all studies have been able to replicate the data [52,55]. Self-management programs are not intended to replace other components of patient care; however, the authors suggest that inappropriate use of self-managed therapies by patients may delay acute healthcare, with the potential of ultimately increasing the use of in-hospital healthcare.

COPD exacerbations are usually identified based on an increase in a variety of symptoms, including increased breathlessness and/or increased sputum production [56]. However, there are no objective criteria for measuring exacerbations, and this increase in symptoms may be an extension of regular COPD symptoms [57]. It may also be difficult to distinguish true increased symptoms versus the patient’s perception of symptoms. It has been reported that the sensation of dyspnoea is enhanced in patients with COPD who experience frequent acute exacerbations and is blunted in those who suffer from exacerbations infrequently [58]. Identifying exacerbation triggers in COPD patients is often difficult in practice. Pulmonary inflammation varies greatly between individuals, and this has proven challenging in terms of biomarker evaluation or inflammation-targeted therapeutic intervention [56]. Unlike COPD exacerbations [57], other acute presentations of chronic diseases (e.g. myocardial infarction) have specific and sensitive diagnostic toolkits, such as biomarkers and imaging techniques, that are used in routine management of patients [56].

Exacerbations can also be difficult to recognize, and many patients presenting with a COPD exacerbation have comorbid conditions, which complicates evaluation and management. Indeed, it may be that events recorded as exacerbations are actually a presentation of a comorbidity [59]. Some studies suggest that clinicians are less likely to diagnose comorbidities (e.g. heart failure and myocardial infarction) if there is an existing diagnosis of COPD [60,61]. Additionally, the presence of a comorbidity has been shown to increase the duration of an exacerbation and lead to longer hospital stays [62,63], while there is evidence to suggest that comorbidities (e.g. asthma) may contribute to more frequent severe exacerbations [64].

Many novel treatments have failed to prevent exacerbations. This may be due to the use of inappropriate or ineffective molecules, or because the concept of a single medicine treating a heterogeneous disease such as COPD is unrealistic [65]. However, personalized medicine may have a role in preventing exacerbations in some COPD patients [9, 11,66–68]. Blood eosinophil counts can help healthcare professionals to predict the probability of clinical benefit with the addition of inhaled corticosteroids (ICS) to maintenance bronchodilators [1]. Treatment with macrolides may also have a role in COPD therapy. Low-dose erythromycin therapy for 12 months reduced the frequency and severity of exacerbations in patients with moderate-to-severe COPD, with an acceptable tolerability [69]. Daily azithromycin therapy has also been shown to reduce COPD exacerbations, and has been recommended for use in patients who are at risk of recurrent exacerbations [69,70]. However, besides the potential to generate resistant microbes, azithromycin has been associated with a small increased risk of hearing decrements, as well as cardiovascular events relating to QT-interval prolongation in some patients with concurrent risk factors [70,71]. Additional subgroup analyses suggest that chronic azithromycin therapy may not benefit current smokers [72]. Furthermore, data on macrolide treatment for longer than 12 months, and the use of other antibiotics for the treatment of COPD, are currently lacking.
5. **Recommendations for COPD treatment**

5.1. **Control of risk factors and non-pharmacologic management**

It is important to identify and reduce COPD risk factors in the prevention and treatment of COPD [1]. For instance, smoking cessation is a key intervention, and healthcare professionals are therefore encouraged to deliver smoking cessation messages and interventions to patients, such as using counselling, financial incentive programs and patient education [1,73]. Therapies for tobacco dependence, including varenicline, sustained-release bupropion, nortriptyline, nicotine gum, nicotine inhaler, nicotine nasal spray, and nicotine patches, can be effective as quitting aids and are recommended in the absence of contraindications [1,74]. In addition, reducing exposure to indoor and outdoor pollution, including biomass fuel and occupational inhalants, may require public policy changes, as well as protective steps taken by individuals [1].

Pulmonary rehabilitation should be an important component of integrated patient management [73] in combination with pharmacologic therapies. A Cochrane meta-analysis of 65 randomized controlled trials involving 3822 patients has reported that pulmonary rehabilitation can relieve dyspnea and fatigue, improve emotional function and enhance the sense of control that patients have over their condition [75]. The effect with pulmonary rehabilitation was larger for quality of life domains (Chronic Respiratory Questionnaire) than the minimal clinically important difference of 0.5 units [75]. In addition, statistically significant improvements were noted in all domains of the SGRQ, and both functional and maximal exercise showed statistically significant improvements [75]. Similarly, another Cochrane review including 1477 patients suggested that pulmonary rehabilitation after an exacerbation can improve health-related quality of life and exercise capacity [76].

It has been reported that patients who undertake regular physical activity have a lower risk of exacerbations, COPD hospital admissions and allcause mortality [77,78]. Health education can also help patients cope with their illness, and it may be effective in influencing behavioural changes (e.g. smoking cessation) and attainment of certain treatment goals [5]. Lastly, influenza and pneumococcal (PCV13 and PPSV23) vaccinations are recommended for patients with COPD, in particular older patients [1]. Vaccination can reduce serious illness, and some studies have shown reductions in the total number of exacerbations [79–81].

5.2. **Pharmacologic treatment**

Pharmacologic therapy for COPD is used to treat symptoms, reduce the frequency and severity of exacerbations, and improve exercise tolerance and health status [1]. The classes of medications commonly used to treat COPD include long-acting β2-agonists (LABAs), long-acting muscarinic antagonists (LAMAs) and ICS [73]. The choice within each class depends on the availability of medication and patients’ responses and preferences [1].

Once the clinical and spirometry diagnosis of COPD is confirmed, clinical guidance from the GOLD strategy report can be applied for initial pharmacologic treatment using the best available evidence, emphasizing the importance of selecting the correct treatment from the start [1]. The model, involving the individualized assessment of symptoms and exacerbation risk using the ABCD assessment scheme, is shown in Fig. 1 [1]. Rescue medication with short-acting bronchodilators should be prescribed for immediate symptom relief, but use of these is not generally recommended on a regular basis [1]. A long-acting bronchodilator is then usually offered. In some patients, a combination treatment such as LAMA/LABA (e.g. for patients with severe breathlessness) or LABA/ICS (for patients with a high risk of exacerbations and higher blood eosinophil counts) may be offered as initial treatment [1].

5.3. The management cycle

Following initiation of therapy, patients should be followed up for achievement of treatment goals, and adjustments made where necessary (Fig. 2) [1]. If response to initial treatment is not appropriate, it is important to consider whether symptoms or exacerbations are the predominant characteristic, and follow the most appropriate pharmacologic path, as per Fig. 3 [1]. The addition of a long-acting bronchodilator is used for dyspnoea; for exacerbations, either a long-acting bronchodilator or an ICS is added. Factors that favour adding an ICS include more frequent exacerbations, higher eosinophil counts, or the coexistence of bronchial asthma [1].

As most COPD pharmacotherapies are inhaled, proper inhaler technique is key [1]. A recommendation in the GOLD report is that the choice of inhaler device needs to be individually tailored based on access, as well as the patient’s ability and preference [1]. Good instructions and demonstrations are critical, and technique should be assessed at each visit [1,82]. A significant relationship has been identified between poor inhaler use and symptom control in patients with COPD [82], although education can improve inhalation techniques in some patients [82,83]. Errors in delivery device use include low inhalation flow, multiple breaths, and exhalation into the inhaler [84]. Thus, inhaler technique and adherence should be assessed before concluding that the current therapy requires modification.

6. **Summary and conclusions**

Although COPD imposes a significant burden in terms of mortality and morbidity, it is both preventable (by reduction of exposure to risk factors) and treatable (by reducing COPD symptoms and exacerbations). The goals of COPD treatment include recognizing the significance of both symptoms and exacerbations when considering optimal
management. The authors recommend using the best tools available to diagnose and assess COPD (including comorbidities), and combining both pharmacologic and non-pharmacologic measures for effective COPD management.

Funding

This work was supported by Boehringer Ingelheim.

Declaration of competing interest

CFV reports grants and personal fees from AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Grifols, Mundipharma and Novartis, personal fees from Berlin Chemie/Menarini, CSL Behring, Nuvaira and Teva, and grants from the German Federal Ministry of Education and Research (BMBF) Competence Network Asthma and COPD (ASCONET), outside the submitted work. MR-R reports personal fees from AstraZeneca, Boehringer Ingelheim, Chiesi, Menarini, Mundipharma,

![Fig. 1. Initial pharmacologic treatment of COPD. © 2020, Global Initiative for Chronic Obstructive Lung Disease, reproduced with permission.](image1)

CAT, COPD Assessment Test; ICS, inhaled corticosteroid; LABA, long-acting β_2-agonist; LAMA, long-acting muscarinic antagonist; mMRC, modified Medical Research Council dyspnea scale.

![Fig. 2. The management cycle of patients with COPD. © 2020, Global Initiative for Chronic Obstructive Lung Disease, reproduced with permission.](image2)

![Fig. 3. Follow-up of pharmacologic management in patients with COPD in whom dyspnea or exacerbations predominate. © 2020, Global Initiative for Chronic Obstructive Lung Disease, reproduced with permission.](image3)
Consider if eos 300 or 100 AND 2 moderate exacerbations or 1 hospitalization; ** Consider deescalation of ICS or switch if pneumonia, inappropriate original indication or lack of response to ICS.

eos, eosinophils; FEV₁, forced expiratory volume in 1 s; ICS, inhaled corticosteroid; LABA, long-acting β₂ agonist; LAMA, long-acting muscarinic antagonist.

Novartis, Pfizer, Teva and Bial, and grants and personal fees from GlaxoSmithKline, outside the submitted work. DS reports personal fees from Apellis, Cipla, Genentech, Peptinnovate and Skyepharma, and grants and personal fees from AstraZeneca, Boehringer Ingelheim, Chiesi, Glenmark, Merck, Mundipharma, Novartis, Pfizer, Pulmatrix, Teva, Theravance and Verona, outside the submitted work. MKH reports personal fees from Boehringer Ingelheim, GlaxoSmithKline, AstraZeneca, Boehringer Ingelheim and Mylan, and other from Novartis and Sunovion, outside the submitted work. RR-R has nothing to disclose. GTf reports grants, personal fees and non-financial support from Boehringer Ingelheim, during the conduct of the study; grants, personal fees and nonfinancial support from Boehringer Ingelheim, Novartis, AstraZeneca, Pearl Therapeutics and Sunovion; personal fees from Verona, Mylan, Innoviva, GlaxoSmithKline and Circassia; and grants and personal fees from Theravance, outside the submitted work.

Acknowledgments

Dave Singh is supported by the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre (BRC). Editorial support was provided by MediTech Media, London, UK and was funded by Boehringer Ingelheim.

REFERENCES:

