Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies

1Kishan Kumar Sahu, 2Rahul Kumar, 3Nitesh Dewangan, 4Krishna Singh Gond, 5Uma Rathore

1,2,3,4B.tech Scholar, 5Assistant Professor
Department of Electrical Engineering
Government Engineering College, Bilaspur, India.

Abstract- Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies have emerged as promising solutions to address the challenges of grid stability, renewable energy integration, and electric vehicle (EV) adoption. V2G enables electric vehicles to discharge stored energy back into the grid during peak demand periods, providing valuable grid services such as frequency regulation and peak shaving. Conversely, G2V technology allows EVs to charge from the grid, leveraging smart charging strategies to optimize energy consumption and support renewable energy integration. This paper provides an overview of V2G and G2V technologies, including their operation, benefits, applications, and challenges. Key considerations such as infrastructure development, battery management, regulatory frameworks, and market dynamics are discussed to highlight the opportunities and barriers associated with the widespread adoption of V2G and G2V systems. By harnessing the bidirectional flow of energy between EVs and the grid, V2G and G2V technologies offer transformative potential to enhance grid flexibility, reduce greenhouse gas emissions, and accelerate the transition towards a sustainable energy future.

1. INTRODUCTION
Electric vehicles encompass a diverse range of transportation modes, including cars, lorries, boats, motorcycles, and scooters, all of which depart from traditional fossil-fuel-powered vehicles. Conventional vehicles, reliant on diesel, petrol, or natural gas, exhibit energy conversion efficiencies of only 14%–30%, with much of the input energy lost to engine inefficiencies or accessory power. However, the advent of hybrid and plug-in electric vehicles (PHEVs) promises significant gains in energy security, fuel economy, and emissions reduction. PHEVs, incorporating Vehicle-to-Grid (V2G) technology, enable electricity to be returned to or drawn from the grid, offering benefits not only to energy producers but also to vehicle owners. Electric engines, compared to combustion engines, demonstrate superior efficiency, particularly when charged using electricity from low-CO2 sources, reducing overall CO2 emissions by one third to one half. Plug-in electric vehicles (PEVs) hold great promise for reducing the carbon footprint of transportation.

Electric-drive vehicles, whether powered by batteries, fuel cells, or gasoline hybrids, harbor the capability to generate 50 Hz AC electricity, akin to that used in homes and offices. The concept of "vehicle-to-grid" (V2G) entails allowing this electricity to flow bidirectionally between cars and power lines, effectively turning vehicles into power sources for the grid. With V2G technology, grid-integrated vehicle controls can dispatch power according to system needs, leveraging parked vehicles' substantial idle time to facilitate electricity transfer between vehicles and the grid.

2. LIST OF COMPONENTS
2.1 Three-phase AC Source
A three-phase AC voltage source is a type of electrical power source that delivers alternating current (AC) electricity with three separate voltage waveforms, each phase being 120 degrees out of phase with the others. Here's an analysis of three-phase AC voltage sources. A three-phase AC voltage source consists of three voltage waveforms, labeled as phase A, phase B, and phase C. These phases are typically denoted as VA, VB, and VC, respectively. The voltage waveforms in a three-phase system are balanced and evenly spaced, with each phase being offset from the others by 120 degrees. This phase relationship ensures efficient power delivery and smooth operation of three-phase equipment. In ideal conditions, the voltage waveforms generated by a three-phase AC source are sinusoidal, with a constant frequency (usually 50 Hz or 50 Hz in most power systems). The magnitude of the voltage waveform typically remains constant, although it may vary depending on the specific application and design of the voltage source.

2.2 Three phase V-I measurement block
A three-phase V-I (voltage-current) measurement block is a device or circuit used to measure both voltage and current in a three-phase AC electrical system. Here's an overview of such a block: The V-I measurement block typically includes voltage measurement circuits for each phase (phase A, phase B, and phase C) of the three-phase system.
These circuits may utilize voltage transformers or potential dividers to scale down the high voltages present in the system to levels suitable for measurement. Similarly, the block includes current measurement circuits for each phase. Current transformers (CTs) are commonly used to step down the high currents in the system to levels compatible with measurement equipment. The measured voltage and current signals are then typically processed by analog-to-digital converters (ADCs) to convert them into digital signals that can be processed by microcontrollers, digital signal processors (DSPs), or other data acquisition systems. V-I measurement blocks are used in power monitoring systems to monitor the voltage and current levels in three-phase electrical systems. This information is essential for assessing power quality, monitoring energy consumption, and diagnosing electrical faults.

2.3 Buck/Boost Converter
A buck-boost converter is a type of DC-DC converter that can step up (boost) or step down (buck) a DC voltage efficiently. It's a versatile power electronics device commonly used in various applications where the input voltage may vary or needs to be regulated to a specific level.

In buck mode, the converter steps down the input voltage to a lower output voltage. This is achieved by controlling the duty cycle of a switch (usually a transistor) in the circuit. During this mode, the switch is turned on and off at a high frequency, and an inductor and a diode are used to control the output voltage.

In boost mode, the converter steps up the input voltage to a higher output voltage. This is also achieved by controlling the duty cycle of the switch, but the energy stored in an inductor is released to the output through a diode and capacitor, effectively boosting the voltage.

Components:
- **Switching Element**: Typically a MOSFET or a transistor that controls the flow of current.
- **Inductor**: Stores and releases energy during the switching cycle.
- **Diode**: Allows current flow in one direction and blocks it in the reverse direction.
- **Capacitor**: Smoothen the output voltage by filtering out ripples.

Control Circuitry: Usually consists of a feedback loop that regulates the output voltage by adjusting the duty cycle of the switch.

2.4 PWM Generator
A PWM (Pulse Width Modulation) generator is a device or circuit that generates a digital waveform with variable pulse widths. PWM is a widely used technique in electronics for controlling the power delivered to electrical devices or systems. PWM is a method of digitally encoding analog signal levels. In PWM, the width of the pulses in the waveform is varied proportionally to the amplitude of an analog input signal. This modulation technique is often used to control the average power delivered to a load, such as a motor or LED, by varying the duty cycle of the waveform.

The duty cycle of a PWM waveform is the ratio of the pulse width (on-time) to the total period of the waveform. It determines the average power delivered to the load. For example, a 50% duty cycle means the waveform is on half the time and off half the time. The PWM generator typically receives a control signal, such as an analog voltage or digital command, that specifies the desired duty cycle. The generator then produces a PWM waveform with a duty cycle corresponding to the input signal.

Components:
- **Comparator**: Compares the input control signal to a reference signal and generates a digital output based on the comparison result.
- **Oscillator**: Generates a high-frequency clock signal that determines the frequency of the PWM waveform.
- **Digital Counter/Timer**: Divides the oscillator signal to produce the desired PWM frequency and controls the timing of the pulse edges.
- **Driver Circuitry**: Amplifies and shapes the digital PWM signal to drive the load, such as a power transistor or MOSFET.
- **Feedback Circuitry (optional)**: Monitors the output of the PWM waveform and provides feedback to adjust the duty cycle based on the actual performance of the system.

2.5 Power Measurement Block
A power measurement block is a device or system used to measure various parameters related to electrical power in a circuit or system. It typically includes components for measuring voltage, current, and sometimes other factors like power factor or harmonic distortion. Here's an overview of a power measurement block: The power measurement block includes circuits or sensors to measure the voltage across the load or the entire circuit. This measurement is crucial for calculating power. Similarly, circuits or sensors are employed to measure the current flowing through the load or circuit. Current measurement is essential for power calculation. Once voltage and current are measured, the power measurement block calculates various power parameters, including instantaneous power, average power, reactive power, and apparent power. The measured voltage and current values are often processed digitally to...
calculate power parameters, which may include multiplication, integration, and filtering operations. The calculated power parameters may be displayed on a screen or output to a data logging system for further analysis or monitoring.

Components:

Voltage Sensors: These sensors measure the voltage across the load or circuit. They may include voltage dividers, transformers, or voltage transducers.

Current Sensors: Current sensors measure the current flowing through the load or circuit. They may include current transformers (CTs), Hall effect sensors, or shunt resistors.

Analog-to-Digital Converters (ADC): ADCs are used to convert the analog voltage and current measurements into digital signals for processing.

Microcontroller or Processor: A microcontroller or processor may be used to process the digitized voltage and current signals and calculate power parameters.

Display/Output Interface: This interface allows the calculated power parameters to be displayed on a screen or transmitted to external devices for further analysis.

2.6 IGBT and MOSFET

IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) are both types of power semiconductor devices used in electronic circuits for switching and amplification.

IGBT (Insulated Gate Bipolar Transistor):

An IGBT is a three-terminal semiconductor device consisting of a MOSFET input section and a bipolar transistor output section. It combines the advantages of MOSFETs and bipolar junction transistors (BJTs) in terms of voltage and current handling capabilities. In an IGBT, the gate terminal controls the conductivity of the device, similar to a MOSFET. However, once the device is turned on, it behaves like a BJT in the conducting state, with low conduction loss.

MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor):

A MOSFET is a three-terminal semiconductor device with a gate, source, and drain terminals. It operates by controlling the flow of current between the source and drain terminals using an electric field generated by the gate voltage. When a voltage is applied to the gate terminal, it creates an electric field that controls the conductivity of the channel between the source and drain. MOSFETs can be either enhancement-mode (normally-off) or depletion-mode (normally-on).

2.7 PID Controller

A PID controller, short for Proportional-Integral-Derivative controller, is a type of feedback control system widely used in industrial automation and process control applications. It adjusts the output control signal based on the difference between a desired setpoint and the measured process variable. Here's an overview of how a PID controller works and its components: The PID controller continuously compares the desired setpoint (desired value) with the measured process variable (actual value) to calculate the error signal, which represents the deviation between the desired and actual values. The controller adjusts the control signal (output) to the system based on the error signal to minimize the error and bring the system closer to the desired setpoint.

The PID controller operates in a closed-loop feedback system, continuously adjusting the control signal based on the error signal until the system reaches the desired setpoint.

Three Control Actions:

Proportional (P) Action: The controller's output is proportional to the current error signal. This action provides immediate response to changes in the error but may result in steady-state error if used alone.

Integral (I) Action: The controller accumulates the error over time and adjusts the output based on the integral of the error signal. This action eliminates steady-state error and ensures the system reaches the setpoint.

Derivative (D) Action: The controller predicts the future trend of the error by measuring its rate of change and adjusts the output based on the derivative of the error signal. This action helps dampen oscillations and improve stability.

Components:

Proportional Gain (Kp): Determines the proportionality between the error signal and the controller output. It influences the responsiveness of the controller but can lead to overshoot or instability if too high.

Integral Gain (Ki): Determines the rate at which the integral of the error signal accumulates over time. It eliminates steady-state error but can cause instability or oscillations if too high.

Derivative Gain (Kd): Determines the rate at which the controller responds to changes in the error signal. It helps dampen oscillations and improve stability but can lead to noise amplification if too high.

Summing Junction: Adds the weighted contributions of the proportional, integral, and derivative actions to calculate the control signal.
Actuator: Device or system that receives the control signal and adjusts the process variable accordingly (e.g., motor, valve, heater).

Process: The system or process being controlled, whose variable (e.g., temperature, pressure, position) is adjusted by the controller.

2.8 Scope
Scope typically refers to a visualization tool or component used to display simulation results. It allows users to observe and analyze the behavior of a simulated system over time.

Here's an overview of what a scope is in simulation and how it's used:

Visualization Tool: A scope in simulation software is a graphical interface or window that displays various parameters, signals, or variables of interest from a simulation model.

It provides a visual representation of simulation results, allowing users to observe the behavior of the simulated system and analyze its performance.

Displayed Parameters: A scope can display a wide range of parameters, depending on the simulation software and the specific model being simulated.

Common parameters displayed on a scope include time, voltage, current, temperature, position, velocity, acceleration, and other variables relevant to the simulated system.

Customization Options: Scopes in simulation software typically offer customization options to configure the appearance and behavior of the displayed signals.

Users can adjust parameters such as signal color, line style, axis scaling, time range, and display format to optimize visualization and analysis.

Data Analysis: Scopes facilitate data analysis by providing tools for zooming in on specific regions of interest, measuring signal characteristics, and performing waveform analysis.

Users can identify trends, anomalies, and critical events in the simulation results, helping them make informed decisions and optimize system performance.

2.9 PowerGUI
PowerGUI is a simulation tool commonly used for power electronics and power systems analysis. It provides a graphical user interface (GUI) that allows users to model, simulate, and analyze various aspects of power systems, including power converters, electrical machines, renewable energy systems, and distribution networks. Here's an overview of PowerGUI and its features in simulation:

Graphical User Interface (GUI):
PowerGUI offers an intuitive and user-friendly interface for creating, editing, and simulating power system models. The GUI typically includes drag-and-drop functionality, graphical representations of components, and parameter settings to facilitate model creation and configuration.

Users can interact with the simulation model, adjust parameters, and visualize simulation results directly within the GUI.

Component Library:
PowerGUI provides a library of predefined components representing various elements of power systems, such as power converters, transformers, generators, loads, and transmission lines.

Users can select components from the library and place them on the workspace to construct complex power system models.

3. BLOCK DIAGRAM AND CIRCUIT DIAGRAM

3.1 Block Diagram
V2G technology enables electric vehicles to act as distributed energy resources by integrating them into the electricity grid. When plugged into the grid, V2G-capable vehicles can charge their batteries during periods of low electricity demand or surplus renewable energy generation. This stored energy can then be used to power the vehicle or discharged back into the grid during peak demand or in response to grid signals. The key components of V2G systems include bidirectional chargers, vehicle communication interfaces, and smart charging algorithms. The operation of V2G technology involves sophisticated control strategies to manage charging and discharging cycles effectively. Communication protocols, such as ISO 15118, enable seamless interaction between EVs and charging infrastructure, allowing vehicles to negotiate charging rates, schedules, and energy exchange with the grid. V2G systems can provide valuable grid services such as frequency regulation, peak shaving, and voltage support, contributing to grid stability and reliability.

4.1 Operation of G2V Technology
Conversely, Grid-to-Vehicle (G2V) technology focuses on charging electric vehicles directly from the electric grid. EVs equipped with onboard chargers or connected to external charging stations can draw grid electricity to replenish their batteries. G2V systems encompass various charging standards, including AC charging (Level 1 and Level 2) and DC fast charging, which enable rapid charging at public charging stations.
The G2V process involves converting grid AC power into DC power suitable for battery charging. Charging infrastructure such as charging stations and power electronics play a crucial role in delivering the required power safely and efficiently to electric vehicles. G2V technology is essential for expanding the charging infrastructure network and accommodating the growing number of electric vehicles on the roads.

4.2 Synergies Between V2G and G2V
The integration of V2G and G2V technologies offers synergistic benefits that extend beyond individual vehicle operations. V2G-capable electric vehicles can serve as flexible storage assets that support renewable energy integration and grid stability. By participating in demand response programs or providing ancillary services, V2G-enabled vehicles can help utilities manage grid constraints and optimize energy resources. Moreover, the bidirectional flow of energy facilitated by V2G and G2V technologies enables dynamic energy management strategies. EV owners can benefit from optimized charging schedules based on electricity prices or grid conditions, maximizing cost savings and minimizing environmental impact. Additionally, V2G systems unlock new revenue streams for vehicle owners through grid services and energy trading opportunities.

5. RESULT
5.1 Output Waveform of V2G

Fig.5.1.1: V2G Technology Output Waveform

Fig.5.1.2: DC Bus Voltage Output Waveform (V2G Operation)
5.2 Output Waveform of G2V Technology

Fig. 5.2.1: G2V Technology Output Waveform

Fig. 5.2.2: DC Bus Voltage Output Waveform (G2V Operation)

5. CONCLUSION

Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies represent innovative solutions at the intersection of transportation and energy sectors, offering significant opportunities for grid optimization and renewable energy integration. These technologies enable electric vehicles (EVs) to serve as dynamic assets within smart grid ecosystems, capable of storing and supplying electricity based on grid demand and renewable energy availability. V2G and G2V systems contribute to grid stability, flexibility, and resilience by supporting demand response programs and enhancing energy management strategies.

The future of V2G and G2V holds promise for accelerating the adoption of EVs, reducing carbon emissions, and advancing sustainable transportation. Continued research and development efforts will focus on improving battery technologies, optimizing charging infrastructure, and implementing supportive policies to drive widespread adoption and commercialization of V2G and G2V technologies. Collaboration among stakeholders including automakers, utilities, policymakers, and researchers will be essential in realizing the full potential of V2G and G2V to transform our energy systems and contribute to a cleaner, more sustainable future.
ACKNOWLEDGEMENT

For our team, the project “Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies” successful completion has been a great source of pride and practical experience. We want to express our sincere gratitude to everyone who helped and advised us during this project.

We express our profound appreciation to Dr. B. S. CHAWLA, Principal of Government Engineering College Bilaspur, for enabling our experimental work and supplying the project’s essential materials.

We also thank Dr. A. K. SHUKLA, Head of the Department of Electrical Engineering at Government Engineering College Bilaspur, for his encouragement and assistance in helping to make our experimental work possible. We would especially like to thank ASTT PROF. UMA RATHORE, a professor in the Government Engineering College Bilaspur Electrical Engineering Department, for giving us the necessary space to carry out our experimental study.

Moreover, we cannot ignore the enormous body of information that is contained in the several articles that we have referenced and consulted while conducting our research. We would like to convey our sincere appreciation for the insightful information provided by these sources. We extend our heartfelt gratitude to everyone who helped make this initiative a success, whether directly or indirectly.

REFERENCES: