Assessment of anti diabetic potential of Combretum roxburghii by invitro

Sravanthi Porika¹, Yellu Narsimha Reddy²

Department of Pharmacology & Toxicology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India – 506009.

Abstract: In India, the figure of persons bear from diabetes is trusted to be standout by degrees and the present antidiabetic treatments have often appeared to have adverse side effects. Traditional medicinal plant use has revealed for the growth of low-cost antidiabetic agents with hardly any side effects. The focus of this work was to explore the anti diabetic pursuit of methanolic leaf extract produced from Combretum roxburghii by invitro. The results of the plant extracts on glucose discharge in Hep G2 cells were explored using cell culture policy. α-amylase, α-glucosidase inhibition assays were also carried out. Both MECR and EACR extracts significantly elevated glucose uptake in Hep G2 cell lines, with potency remarkably elevated than the positive control, berberine. The MECR extract showed higher levels of inhibition on α-amylase and α-glucosidase than EACR. The pursuit was not remarkably non-identical from acarbose. The MECR and EACR extracts of C.roxburghii authorised, for that reason, carry medicinally working and corresponding non-toxic hypoglycaemic chemicals, which may be successful replacement in the therapy of diabetes mellitus.

Keywords: In Vitro Antidiabetic Activity, Combretum roxburghii, Hep G2 cell lines, Acarbose.

Introduction

One characteristic that distinguishes diabetes mellitus, a chronic metabolic disorder brought on by either decreased insulin secretion or diminished insulin's ability to promote glucose absorption. The prevalence of diabetes has dramatically increased over the past 30 years, and current figures indicate that during the next 20 years, the number will double.

According to projections made by the international Diabetes Federation, 643 million people will have diabetes globally by 2030 and 784 million (1 in 8 adults) by 2045. In the world's population, a person is diagnosed with diabetes every five seconds, and 10 people die from it. Therefore, diabetes is constricting the scope of the biologic cosmos. It was estimated that the expense of treating diabetes-related disorders would be 966 billion USD in 2021 and climb to 1,054 billion USD by 2045.

The hormone insulin has many functions in the body's metabolism. By directing the liver, muscle and fat cells to absorb glucose from the blood, insulin aids in the control of blood sugar levels. As a result, insulin facilitates the uptake of glucose by cells for energy utilisation. When a person has type 1 diabetes, their body does not create sufficient insulin to manage blood sugar levels. Many of the body's cells cannot absorb glucose from the blood without insulin, therefore the body must turn to other energy sources. The liver produces ketones as an alternate energy source, but too much of them can cause a serious illness called ketoacidosis. In order to make up for their body's shortage of insulin, people with type 1 diabetes must inject themselves with insulin⁸.

Even though new research indicate that free radicals are involved in the aetiology of diabetes and its consequences, the pathophysiology of diabetes is not fully understood⁶. Free radicals frequently cause harm to DNA, proteins, lipids, and other biological components, which causes cellular malfunction and death. Therefore, changes in lipids and proteins are key contributors to the emergence of diabetes complications.

The Indian subcontinent's healthcare system heavily relies on the complementary or traditional medical system as well as a variety of cultural and socioreligious traditions¹⁷. Up to 90% of people in developing countries utilise plants and their products as conventional medicine for primary healthcare, according to the World Health Organization (WHO)¹⁵. Herbal items are used for more than just nutritional purposes like food and nourishment; they also play a vital part in the treatment of a number of ailments⁷.
The people are using natural blood sugar-lowering treatments in greater numbers. Numerous journals have published studies on herbs that can manage diabetes. Today, herbal medicine, sometimes referred to as phytomedicine, is the most traditional and popular kind of medical procedure. In India, China, Greece, Rome, and Syria, the usage of these medicinal herbs has been recorded in literature for more than 5000 years\(^8\).

Plants have the capacity to provide both food and medical remedies. India is fortunate to have a long and rich history of cultural traditions. But just 6% of the 250,000–400,000 plant species have had their biological potential examined, and only 15% have had their phytochemical potential explored\(^13\). These customs are linked to the usage of wild plants as herbal medicines. Ethnic groups living in foothills of dense forests and undulating plains have continued to practise the usage of medicinal herbs\(^14\).

The use of medicinal plants dates back many centuries, and they are still widely utilised today to treat a wide range of illnesses. The use of medicinal plants is growing for a number of reasons. Numerous plants from various parts of the world have been researched for their potential to treat diabetes\(^2\). Recently, certain medicinal plants have been utilised ephemerally as anti-diabetic therapies and notified to be beneficial for diabetes across the globe.

MATERIALS AND METHODS

The chemicals used such as the 4-Nitrophenyl β-d-glucopyranoside (PNPG), Dulbecco’s Modified Eagle Medium (DMEM), α-amylase type VI-B from porcine pancreas (A3176-1MU), α-glucosidase type I from Baker’s yeast (G5003-100UN), dipeptidyl peptidase IV (DPPIV), human (D3446-10UG) and FBS (fetal bovine serum) were purchased from Sigma (South Africa). Unless otherwise specified, all reagents were purchased from Sigma (Johannesburg, South Africa).

Plant material:

Dr. Md. Mustafa, a taxonomist and professor of botany at Kakatiya University in Warangal, Telangana, India, gathered and verified the plant samples. After passing through sieve number 60, comos tricum roxburghii leaves were pulverised, dried, and stored in an airtight container. In a separate round-bottom flask, 1 kg of powder was roughly crushed before being extracted with methanol (by maceration) for 7 days at room temperature. The filtrate was kept at 4 °C and concentrated under decreased pressure at 40 °C.

Determination of Enzyme Inhibitory Activity:

Alpha amylase activity:

Based on the colorimetric technique, the α-amylase inhibitory activity of chia extracts was assessed\(^12\). Steaming and rousing 0.25g of tuber starch in 50 ml of distilled dihydrogen oxide for 15 minutes produced the Starch mixture (0.5% w/v). 0.001g of α-amylase was dissolved in 100 ml of 20 M Na\(_3\)PO\(_4\) buffer (pH 6.9) carrying 6.7 mM NaCl. The concentrations of the extracts are 50, 100, 200, 500 μg/ml. A mixture of 96 mM DNSA, 5.31 M Rochelle salt, 2 M NaOH, and deionized water served as the colourant (12 mL). 1 milliliter of the biological catalyst mixture and 1 ml of each plant extract remain combined in a tube, then procreated for 30 min at 25 °C. The tube was spawned at 25°C for 3 minutes while containing 1 ml of this solution and 1 milliliter of cellulose remedy. The closed tube was then arranged into an 85°C bain-marie following 1 mL of the colourant reagent had been introduced. The reaction mixture was taken out of the water bath following 15 minutes, permitted to cold, followed by diluting with 9 mL of deionised water. At 540 nm, the absorbance value was designed. Controls were maintained by substituting 1 ml of the extracted solvent for the plant extracts. As a positive control, acarbose solution (at 25, 50, 75, and 100 μg/mL concentrations) was utilised\(^1\).

\[
\% \alpha\text{-amylase Inhibition} = \left(\frac{\text{Absorbance of control} - \text{Absorbance of compound}}{\text{Absorbance of control}} \right) \times 100
\]

Alpha glucosidase activity

Enzyme mixture was produced by liquefying 1 mg of α-glucosidase in 100 mL of PBS (pH 7) which holding 200mg of BSA earlier to utilize,1 mL of enzyme mixture was weaken 25 times with PBS\(^16\). The reaction compound was produced
in the micro plate wells that included of 25 μl of 10 mM p-nitrophenyl-D-glucopyranose as substratum and 50 μl of 100mM PBS (pH 7). Shortly, various fractions MEHR, MECR, and MELF were disintegrated in DMSO and diluents of extort specimens (10 μL) were add on to the response solution to closing captivation of: 50,100,200 and 500 μg/mL. Then the contents were assorted with 2N Hydrochloric acid of identical mass (1:1) and was extracted. Diluents of resilient (10 μL) was grasped and affixed into the response batter. Each concentration of samples, together with blanks and controls, were performed in triplicate. 25 μl of the enzyme mixture was add on to the response mixture after the initial 5-minute incubation at 37°C, and the solution was then forward spawned for 15 minutes. By affixing 100μl of 200 mM sodium bicarbonate the enzyme process was grid locked. Samples, controls and blanks a microplate reader spectrophotometer was utilizes to calculate the product's absorbance at a vision of 400 nm. Acarbose at the concentration of 10 μg/ml was used as reference inhibitor. Rate of forbid of the enzyme persuit was designed employ the supervene formula:

\[
\% \alpha-\text{Glucosidase inhibition} = \frac{\text{absorbance of control} - \text{absorbance of sample}}{\text{Absorbance of control}} \times 100
\]

Glucose uptake Assay

HepG2 follicles were raised in DMEM with 10% deactivated by heat FBS and 4.5 g/L Dextrose at 37°C in a 5% CO2 environment. The cells were trypsinized, counted using the tryphan blue test, and planted with 5000 cells per well on 96-well plates, leaving six wells empty. The used culture media was removed after 48 hours of incubation and displaced with a 25 μl evolution buffer (DMEM adulterated with PBS, 0.1% BSA, and 8 millimetre glucose), which was then produced for an extra 3 h at 37 °C. The positive control was glipizide, and the untreated group contained just the negative test was the incubation buffer without extract.

In order to measure the amount of glucose in the medium, the evolution intermediate 10 μl from each well was taken out after incubation and deposited onto a fresh 96-well plate with 200 μl of the reagent for glucose oxidase. A Multi scan plate reader was used to measure the absorbance at 492 nm following 15 minutes of evolution at 37 °C. Deliberated as the contrast among the cell retaining and cell- free wells, the amount of sugar used. In comparison to the unprocessed controls, the glucose utilisation % was computed.

Statistically Analysis

The mean ± SEM was used to express all experimental values. Turkeys' multiple comparison test was conducted after one way analysis of variance (ANOVA) to examine the statistical significance among the groups. P value less than 0.05 is seen as having statistical significance.

Results and Discussion:

The α- amylase and α-glucosidase inhibitory movement of each fraction was tested before the methanolic extracts of Combretum roxburghii aerial parts were back-to-back fractionated. The results show that other test fractions have beneficial inhibitory effects on alpha amylase and alpha glucosidase enzymes at concentrations as low as 50 μg/ml, with a peak reaction shown at 500 μg/ml. Although the test portions had positive alpha amylose inhibitory and alpha glucosidase inhibitory effects, it was initially determined that these effects were less significant than those of the common inhibitor Acarbose.

The glucose uptake in HepG2 cells exposed to test doses at various concentrations (10, 25, 50, and 100 μg/ml) is shown in the figure 1. Methanolic extract of Combretum roxburghii enhances glucose discharge in HepG2 cells considerably (P 0.05) at 100 μg/ml.

However, compared to berberine and Glipizide, which were utilised as a positive control, the ethyl acetate portion of Combretum roxburghii (EACR) showed a concentration-dependent increase in glucose absorption.
Table 1

In vitro glucose uptake assay

<table>
<thead>
<tr>
<th></th>
<th>MECR</th>
<th>EACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100±1.15</td>
<td>100±1.15</td>
</tr>
<tr>
<td>Berberine</td>
<td>136±2.41</td>
<td>136±2.41</td>
</tr>
<tr>
<td>Glipizide (0.1 µg/ml)</td>
<td>138±2.61***</td>
<td>138±2.61***</td>
</tr>
<tr>
<td>5 µg/ml</td>
<td>104.19±1.06*</td>
<td>106.39±1.21*</td>
</tr>
<tr>
<td>10 µg/ml</td>
<td>109.47±1.18**</td>
<td>113.54±1.69**</td>
</tr>
<tr>
<td>25 µg/ml</td>
<td>122.64±1.63***</td>
<td>134.27±2.12***</td>
</tr>
<tr>
<td>50 µg/ml</td>
<td>137.93±2.87**</td>
<td>148.06±3.15***</td>
</tr>
<tr>
<td>100 µg/ml</td>
<td>148.31±4.16***</td>
<td>161.86±3.27***</td>
</tr>
</tbody>
</table>

Data was represented as mean±SEM (n=3). Statistically significant***p<0.001, **p<0.01, *p<0.05 Vs Control group.

Fig:1 Glucose uptake assay

Table 2

alpha amylase

<table>
<thead>
<tr>
<th></th>
<th>50µg/ml</th>
<th>100µg/ml</th>
<th>200µg/ml</th>
<th>500µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECR</td>
<td>15.79±0.065*</td>
<td>28.29±0.094**</td>
<td>42.58±0.116**</td>
<td>55.49±0.154***</td>
</tr>
<tr>
<td>nHCR</td>
<td>15.02±0.045*</td>
<td>27.19±0.084**</td>
<td>40.18±0.106**</td>
<td>50.48±0.144***</td>
</tr>
<tr>
<td>EACR</td>
<td>18.68±0.128*</td>
<td>33.79±0.184**</td>
<td>52.47±0.139***</td>
<td>69.09±0.173***</td>
</tr>
<tr>
<td>nBCR</td>
<td>17.50±0.120*</td>
<td>32.19±0.174**</td>
<td>42.47±0.130**</td>
<td>59.01±0.125***</td>
</tr>
<tr>
<td>Acarbose</td>
<td>35.23±0.024**</td>
<td>55.34±0.015***</td>
<td>69.35±0.027***</td>
<td>75.63±0.32***</td>
</tr>
</tbody>
</table>

Data was represented as mean±SEM (n=3). Statistically significant***p<0.001, **p<0.01, *p<0.05 Vs Control group.
Fig: 2 alpha amylase inhibitory activity of Combretum roxburghii

Table: 3. alpha glucosidase

<table>
<thead>
<tr>
<th>Groups</th>
<th>50µg/ml</th>
<th>100µg/ml</th>
<th>200µg/ml</th>
<th>500µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECR</td>
<td>6.37±0.038</td>
<td>15.55±0.069</td>
<td>31.88±0.315**</td>
<td>50.69±0.472***</td>
</tr>
<tr>
<td>nHCR</td>
<td>16.25±0.105</td>
<td>25.25±0.140*</td>
<td>44.20±0.215**</td>
<td>62.20±0.412***</td>
</tr>
<tr>
<td>EACR</td>
<td>10.73±0.095</td>
<td>28.14±0.156*</td>
<td>48.83±0.251**</td>
<td>69.20±0.431***</td>
</tr>
<tr>
<td>nBCR</td>
<td>17.73±0.115</td>
<td>29.15±0.156*</td>
<td>45.13±0.250**</td>
<td>65.20±0.421***</td>
</tr>
<tr>
<td>Acarbose</td>
<td>25.36±0.014*</td>
<td>45.55±0.016**</td>
<td>65.21±0.025**</td>
<td>80.52±0.31***</td>
</tr>
</tbody>
</table>

Data was represented as mean± SEM (n=3). Statistically significant***p<0.001, **p<0.01, *p<0.05 Vs Control group.

Fig: 3 alpha glucosidase inhibitory activity of Combretum roxburghii
Conclusions
The strong alpha amylase and alpha glucosidase activity in Combretum roxburghii extracts suggests that the polyphenols in the extracts may be able to lessen the activity of the enzymes linked to diabetes. To define these molecules and assess their potential pharmacological activity as an antidiabetic, more research is necessary.

Acknowledgment:
Kakatiya University in warangal, Telangana, provided technical support for the current study. We cheerfully thank of University College of Pharmaceutical Sciences. I am very much thankful to Prof. Y. Narsimha Reddy for his constant encouragement.

REFERENCES