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Abstract— Determining the direction of incoming signals is a crucial research subject in 4G and 5G communication. Many spectral 

and eigen structure methods can be used to determine the direction of narrow band bases. These approaches cannot forecast the path of 

the indicator while the channel is coherent and the signal to noise ratio stays low. Maximum Likelihood is a statistical technique for 

estimating that circumvents the drawbacks of traditional systems to detect and follow signals in challenging circumstances accurately. 

By using unspecified parameters to minimize the complex log likelihood function. The ML approximation is determined. The author of 

this chapter suggested the use of the Cray Fish Optimization algorithm to approximate the narrow band foundation path in a low signal 

to noise ratio situation. Swarm intelligence algorithm Cray Fish Optimization is capable of both exploration and exploitation. 

According to the simulation outcomes Cray Fish Optimization performs better in provisions of root mean square error and probability 

of resolution than both traditional methods and the sine cosine algorithm. 

Index Terms— ML, COA, SCA, RMSE, PR.  

I. INTRODUCTION  

The technique of optimizing is determining the most optimal solution given the limitations that exist. It is the process of 

determining the best course of action given the circumstances. Numerous imperfections can be seen as barriers to optimization. 

Numerous methods for solving optimization problems have been created and have advanced dramatically during the previous few 

decades. A higher-level method for finding solutions in artificial intelligence and mathematical optimization, "Metaheuristic" [1] 

generates or chooses the fractional search strategy that can adequately explain an optimization problem, particularly in cases where 

computational power is limited, or data is uncertain and untrustworthy. Solutions that are large enough to sample completely 

makeup collections of metaheuristic samples. In contrast to optimization algorithms, which do not ensure that a globally optimal 

solution can be found for a given collection of problems, this method makes few assumptions about how the optimization problem 

will be addressed, making it potentially beneficial for a wide range of problems. Metaheuristics are rules for the search process. 

Determining the most efficient solutions requires a comprehensive exploration of the search field. Metaheuristic algorithms include 

simple local actions and complex learning strategies. Although they are typically non-deterministic and approximate, they are not 

excessively imprecise. A lot of metaheuristics make use of optimization in some way to guarantee that the solution is derived from 

a set of variables that are created at random. By considering a wide range of alternatives, metaheuristics can often find good 

answers with less computational effort than optimization techniques. Metaheuristic optimization algorithms have become more and 

more popular as an optimization strategy in recent years. Some of the most well-known algorithms in this field are genetic 

algorithms (GA) [2], particle swarm optimization (PSO) [3], ant colony optimization (ACO) [4], ant lion optimization (ALO) [5], 

differential evolution (DE) [6] and evolutionary programming (EP) [7], cuckoo search (CS) [8], firefly algorithm (FA) [9], and 
dragonfly algorithm (DA) [10]. 

To replicate the foraging, summer vacation, and rivalry patterns of crayfish, COA [21] recommended a novel methodology. The 

algorithm's capacity for exploration and exploitation is balanced by adjusting the temperature. 

The target of coming approximation (DOA) [13–14] and adaptive beamforming (ABF) [15–16] are two key components in the 

wireless communication domain that are essential to smart antenna [17–18] and MIMO systems [19]. The authors of this chapter 

examined the effectiveness of the suggested algorithm for determining the direction of signals in varied SNR environments by 
optimizing the deterministic ML [20] function. 

II. DATA MODEL 

Let us assume a ULA with M-sensing components. The distance, d, between successive sensors equals half the wavelength of 

the signals that are received. 

 
 

Fig. 1 Assume that the ULA is imposed by D narrow band far-field signal sources with unique DOAs 
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The array steering vector of size M X 1 represents the ith user's direction as mentioned below, whereas the phase source is the 

first element of the ULA. 

 𝑎(𝜃ⅈ) = [1, 𝑧, … , 𝑧𝑀−1]𝑇 ,   𝑧 = 𝑒
(

𝑗2𝜋𝑑

𝜆
)𝑠𝑖𝑛Ѳ𝑖

           Eq. 1 

 

Where λ is the originating signal's main wavelength and the angle observed from the array broadside is represented by θⅈ. The 

entire signal that the array members have received at the time sample  𝑡𝑡ℎ can be expressed as follows:  

 

𝑥̅(𝑡) = 𝐴̅(𝜃) *𝑠̅(t)+𝑛̅(𝑡)             Eq. 2 

 

Where the noise vector is indicated by 𝑛̅(𝑡), the incident complex monochromatic signals are denoted by 𝑠̅(t), and 𝐴̅(𝜃) array 

steering vectors compose the array steering matrix, which is defined as follows: 

𝐴̅(𝜃) = [𝑎̅(𝜃1) … 𝑎̅(𝜃𝐷)]    Eq. 3 

     Instead of using the actual array output x(t), correlation matrices are used for DOA estimation in array signal processing; the 

correlation matrix is defined by: 

  𝑅𝑥𝑥
̅̅ ̅̅ ̅ = 𝐸[𝑥. 𝑥𝐻̅̅ ̅̅ ] = 𝐴̅𝑅𝑠𝑠

̅̅ ̅̅ 𝐴̅𝐻+𝑅𝑛𝑛
̅̅ ̅̅ ̅         Eq. 4 

 

     Where E[],()𝐻signifies the expectation and Hermitian operation, respectively, and 𝑅𝑠𝑠
̅̅ ̅̅   denotes the origin matrix and 𝑅𝑛𝑛

̅̅ ̅̅ ̅  the 

noise correlation matrix. In this case, the deterministic approach for determining the direction of arriving signals was proposed by 

the authors. Consequently, the signal vector is predictable given unknown configurations. In the stochastic model, ML obtains 
the incoming signal's angle estimate, θ, through continuously enhancing the non-direct multimodal work, which is 
provided by: 

  𝑓𝐷𝑀𝐿= tr [(𝐼𝑀 - 𝐴̅(𝐴̅𝐻𝐴̅)−1 𝐴̅𝐻)𝑅̅]        Eq. 5 

 

     Where M X M is the sequence of 𝐼𝑀 and tr [] indicates the trace. 

 

III. CONVENTIONAL DOA APPROXIMATION PROCEDURE 

The standard DOA evaluation mechanism provides an appropriate representation in a deterministic high SNR scenario. It is a 

simple, effective, and less complex method. We illustrate these computations using both subspace and non-subspace methods. 

Subspace draws near, also known as Eigen structure strategies, deterioration of the cluster connection network into two subspaces 

of sign and clamor using Eigen deterioration to assess the approaching sign's bearing. Non-subspace strategies, also known as 

terrifying, assessment techniques, evaluate the acquired sign's course by observing the peak of the pseud-range. The methods used 

by Capon and Bartlett, two nonlinear spectral estimating techniques, differ in how the weights for synthesizing the 

pseudospectrum are determined. Several of the most important Eigen structure methodologies utilizing orthogonal signal 

subspaces for DOA estimation are ESPRIT, Root-MUSIC, MUSIC, matrix pencil, Pisarenko harmonic decomposition, as well as 

a min-norm estimate. 

 

IV. CAPON 

    A minimum variance distortion less response (MVDR) indicates what the Capon DOA approximation is. The objective is to 

send the signal of interest in phase and amplitude without distortion to maximize the signal-to-interference ratio (SIR). It is 

expected that the source correlation matrix (𝑅𝑠𝑠
̅̅ ̅̅ ) will be diagonal. A set of array weights (𝑤̅ = [𝑤1𝑤2 … … 𝑤𝑀]𝑇) is used to 

produce this maximized SIR. The array weights are arranged as follows: 

𝑤̅ 
𝑅̅𝑥𝑥

−1𝑎̅(𝜃)

𝑎̅𝐻(𝜃)𝑅𝑥𝑥̅̅ ̅̅ ̅̅ −1
𝑎̅(𝜃)

  Eq. 6 

In which 𝑅̅𝑥𝑥
−1 is the array correlation matrix. The information that follows is the pseudo spectrum: - 

 

  𝑃𝐶(𝜃) = 
1

𝑎̅𝐻(𝜃)𝑅̅𝑥𝑥
−1𝑎̅(𝜃)

        Eq. 7 

 

V. MUSIC 

Nevertheless, the traditional MUSIC method collapses whenever signal correlation becomes significant, necessitating the 

introduction of compensatory measures. One needs to either search the eigenvalues or estimate the total quantity of signals that 

arrive in anticipation. If there are multiple D signals (where M is the number of array items), then there are M-D noise 

eigenvalues and eigenvectors alongside the D signal eigenvalues and eigenvectors. Although MUSIC uses noise as an eigenvector 

subspace, it is sometimes referred to as the subspace technique. The following is the mathematical framework for MUSIC: 

I. Compute the array correlation matrix (𝑅𝑥𝑥
̅̅ ̅̅ ̅) under the assumption that the noise has no correlation and has equivalent 

variances. 

II. Next, determine the eigenvalues and eigenvectors for (𝑅𝑥𝑥
̅̅ ̅̅ ̅ ). D eigenvectors are subsequently used to indicate the 

signals, while M-D eigenvectors are used to symbolize the noise. The eigenvectors selected have the lowest possible 

eigenvalues. For unrelated signals, the lowest eigenvalues are equal to the variance of the noise. Following that, the noise 

eigenvectors' M × (M − D) dimensional subdomain can be built as follows: 
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𝐸̅𝑁=[𝑒1̅  𝑒2̅…. 𝑒𝑀̅−𝐷]    Eq.8 

III. The array steering vectors at the angles of arrival  𝜃1, 𝜃2 … . , 𝜃𝐷  are orthogonal to the noise subspace eigenvectors. The 

orthogonality constraint allows us to express the Euclidean distance as follows: 

 

𝑑2= 𝑎̅(𝜃)𝐻𝐸̅𝑁𝐸̅𝑁
𝐻𝑎̅(𝜃) = 0    Eq.9 

 

IV. Significant peaks show up at the arrival angles when the denominator is calculated using this distance formula. The 

following is the new MUSIC pseudo spectrum: 

𝑃𝑀𝑈(𝜃)= 
1

|𝑎̅(𝜃)𝐻𝐸̅𝑁𝐸̅𝑁
𝐻𝑎̅(𝜃) |

    Eq.10 

 

V. Locate the sharply defined tops throughout the pseudo spectrum that corresponds to the appearance point of the 

approaching signals. 

 

 

VI. CRAY FISH OPTIMIZATION 

Inspired by the movement and feeding habits of crayfish, the Crayfish Optimization method (COA) is a population-based 

metaheuristic optimization method. Crayfish exhibit flexible locomotion patterns, alternating between exploitation (finding new 

solutions) and exploration (exploring new areas). This behavior is the basis for the CFO method, which finds optimal solutions in 

difficult optimization problems by combining angular turns with forward and backward motions. 

 

VII. POPULATION INITIALIZATION 

Every crayfish in the multi-dimensional problem of optimization is a 1 × dim matrix. A problem's solution is represented by 

each column matrix. Each variable Xi in a collection of variables (Xi,1, Xi,2,…, Xi,dim) must fall between the upper and lower 

bounds. A set of potential solutions X is randomly generated as the COA's initialization in space. Based on population size N and 

dimension dim, candidate solution X is proposed. Eq.11 displays the COA algorithm's initialization. 

 

X= [X1, X2,…, XN] = [

X1,1 X1,j X1,dim

Xi,1 Xi,j Xi,dim

XN,1 XN,j XN,dim

]  Eq.11 

 

Where Xi,j is the position of individual i in the j dimension, N is the total quantity of populations, dim is the population 

dimension, and the value of Xi,j is derived from Eq. 12. 

       Xi,j = lbj + (ubj- lbj) × rand   Eq.12 

 

The variables lbj and ubj denote the lower and upper bounds of the jth dimension, respectively, and rand is a random number. 

 

VIII. DESCRIBE THE CRAYFISH’S CONSUMPTION AND TEMPERATURE 

The crayfish will undergo numerous stages of behavior due to temperature changes. Eq.13 defines temperature.When 

temperatures rise above 30 °C, crayfish will choose a cool location for their summer vacation. The correct temperature will lead 

crayfish to begin feeding. The temperature influences how much crayfish eat. Crayfish have a feeding range of 15, 30, and 25 °C, 

which is ideal. Consequently, the crayfish feeding amount may be roughly compared to the usual distribution, indicating that 

temperature has an impact on the feeding amount, as temperatures range from 20 and 30 °C, crayfish exhibit robust foraging 

behavior. Accordingly, the COA specifies a temperature range of 20 to 35 °C. The crayfish intake mathematical model is 

displayed in Eq.14. 

 

 temp = rand × 15 + 20    Eq.13 

 

Where, temp, is the ambient temperature of the crayfish's location. 

 

                               p  = C1 ×((
1

√2×π×σ
 ) ×exp (

-1

2σ2) ×(temp- μ)2)         Eq.14 

 

While 𝜇 indicates the ideal temperature for crayfish, C1 and σ regulate the amount of seafood that is consumed at various 

temperatures. 
 

IX. EXPLORATION 

The temperature is high enough when it exceeds thirty. The crayfish will now decide to explore within the cave. The cave  

Xshade is described as follows: 

 Xshade = 
(XG+XL)

2
     Eq.15 
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Where XL denotes the ideal location of the present population and XG is the ideal location reached thus far based on the number 

of iterations. Crayfish battles over caves occur completely randomly. When the rand is less than 0.5, it indicates that there are no 

other crayfish battling for the cave, and the crayfish will enter the cave without delay to explore. At this moment, the crayfish will 

head into the cave for investigation using Eq. 16: 

 

      Xi,j
t+1 = Xi,j

t  + C2 × rand × (Xshade - Xi,j
t )  Eq. 16 

 

Where t denotes the iteration number of the current generation, t + 1 denotes the iteration number of the subsequent generation 

and C2 is a curve that declines as described in the below Eq. 17. 

 

 C2 = 2 - (
t

T
)      Eq. 17 

 

Where T is the maximum quantity of loops that can be made. 
 

Crayfish wants to get as close to the cave as possible during the exploring stage since it is the best course of action. The 

crayfish will now move towards the cave. This improves the capacity of COA to be exploited and brings participants closer to the 

best response. Facilitate a faster convergence of the algorithm. 

 

X. EXPLORATION 

A combination of rand ≥ 0.5 and temp > 30 indicates the attraction of other crayfish in the cave. Now, they will attempt to 

capture the cave. The crayfish uses Eq. 18 to compete for the cave. 

 

 Xi,j
t+1 = Xi,j

t  -  Xz,j
t  + Xshade    Eq. 18 

 

Where, according to Eq. 19: z stands for the randomized member of crayfish. 

 

Z = round (rand × (N-1)) + 1   Eq. 19 

 

Crayfish compete with one another at the exploitation stage, and crayfish Xi modifies their position in response to another 

crayfish's position (Xz). The position can be changed to increase the search range of COA and improve the algorithm's exploration 

capability. 

 

The temperature is ideal for crayfish feeding when it is less than thirty degrees. The crayfish will now start to approach the 

meal. The crayfish will determine the size of the meal after locating it. Should the food be excessively huge, the crayfish will use 

its claws to break it up and use its second and third walking foot to consume it in turn. Xfood is a food location that is described as: 

     Xfood = XG      Eq. 20 

 

Q is the food size specified as: 

 

Q = C3 × rand × (
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑜𝑜𝑑
)    Eq. 21 

 

Where 𝑓ⅈ𝑡𝑛𝑒𝑠𝑠𝑖 is the fitness value of the ith crayfish, 𝑓ⅈ𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑 is the fitness value of the food location, and C3 is the food 

factor, which indicates the largest food. The value of C3 is fixed at 3. The largest food serves as the basis for the crayfish's 

estimation of food size. Q > (C3 + 1)/ 2 indicates that the meal is enormous. The crayfish will now use its first claw foot to tear 

the food as described below: 

 

𝑋𝑓𝑜𝑜𝑑 = exp (
-1

Q
) × Xfood     Eq. 22 

 

The food will alternatively be picked up and placed into the mouth by the second and third claws as it shreds and gets smaller. 

A mixture of the sine and cosine functions is utilized to simulate the alternating process. Furthermore, the food consumption and 

the food that crayfish get are connected, therefore the search equation is as follows: 

 

Xi,j
t+1 = Xi,j

t  + 𝑋𝑓𝑜𝑜𝑑 × p × (cos (2 × π × rand) - sin (2 × π × rand))  Eq. 23 

 

The crayfish only needs to go in the direction of the food to eat it immediately when Q ≤ (C3 + 1)/ 2. The equation is as 

follows: 

 

 Xi,j
t+1 = (Xi,j

t  - Xfood) × p + p × rand × Xi,j
t    Eq. 24 

 

Based on the size of their meal Q, crayfish employ a variety of feeding techniques throughout the searching stage, with food 

Xfood serving as the best option. The crayfish will approach the meal when it is of a size that they can consume. When Q is 

excessively large, it suggests that the best solution and reality deviate significantly from one another. Xfood should therefore be 

lowered and moved closer proximity to the food. COA will become closer to the ideal solution during the searching stage, 

improving the algorithm's exploitation and convergence capabilities. 
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XI. SINE-COSINE ALGORITHM 

SCA is a stochastic optimization algorithm proposed by S. Mirjalili in 2015. The algorithm is inspired by the basic behavior of 

mathematical sine and cosine functions. In SCA a random initial solution is created in the search space, and they fluctuate around 

the best solution using sine and cosine functions. Therefore, the simple variation of sine and cosine function values is used to 

achieve the final optimal solution. The positions of the random solutions are updated using the following equations: 

 

  𝑃𝑖
𝑡+1 =  {

𝑃𝑖
𝑡 + 𝑟1 ∗ 𝑠ⅈ𝑛(𝑟2) ∗ |𝑟3𝑅𝑖

𝑡 − 𝑃𝑖
𝑡|, 𝑟4 < 0.5  

𝑃𝑖
𝑡 + 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) ∗ |𝑟3𝑅𝑖

𝑡 − 𝑃𝑖
𝑡|, 𝑟4 ≥ 0.5

  Eq. 25 

 

Where the current iteration is denoted as t, 𝑅𝑖
𝑡 is the i-th dimension destination point positioning, and 𝑃𝑖

𝑡 is the i-th dimension 

location of the main approach, at iteration t. The random numbers are 𝑟1, 𝑟2, 𝑟3, and 𝑟4 . 𝑟1 and 𝑟3 have a homogenous distribution 

between 0 and 2. Both r2 and r4 have a homogenous distribution between 0 and 2. r2 and r4 both follow a uniform distribution 

between 0 and 2 and a homogenous distribution between 0 and 1. 

 

In Eq. 25, the algorithm's global research and local improvement capacities are collaboratively guided by 𝑟1 ∗ sin(𝑟2) or 𝑟1 ∗
cos(𝑟2). The algorithm does a global exploration search when the result of 𝑟1 ∗ sin(𝑟2) or 𝑟1 ∗ cos(𝑟2) is higher than 1 or less than -

1. The algorithm does a local development search when the value of 𝑟1 ∗ sin(𝑟2) or 𝑟1 ∗ cos(𝑟2) is within the range of [-1 1]. 

Within the range of [-1 1], the value of sin(𝑟2) or cos(𝑟2). As a result, the control parameter 𝑟1 is critical in global exploration, it is 

in charge of the algorithm's shift from global exploration to local development. The control parameter r 1 in the original algorithm 

uses a linear decreasing technique to direct the process from global exploration to local development, and it is adaptively changed 
over the course of iterations, as follows:    

  

𝑟1=a(1 −
𝑡

𝑇
)       Eq. 26 

 

Where a is a constant, t characterizes the existing repetition, and T is the total amount of repetitions. SCA has been used to 
identify the global best solution to both constraint and unconstrained optimization issues. 

 

 

XII. SIMULATION RESULTS & DISCUSSION 

This section presents and discusses the simulation results of DOA estimation using ML-COA, ML-SCA, MUSIC and CAPON. 

 

 
 

Fig. 2 Implementation of COA and SCA for estimating the direction of signals 

 

Using 100 Monte Carlo at a 10-element ULA, two narrow-band plane waves with arrival angles of 35° and 38° are taken into 

consideration for MATLAB software simulation. The uncorrelated BPSK signals are simulated in the virtual environment since the 

model is deterministic. Regarding the two traditional algorithms, MUSIC and CAPON, the peaks of the pseudospectrum indicate 

the direction of incoming signals and are in the [-90°, 90°] range. Since 100 Monte Carlo runs are taken into consideration to 

determine the optimal value of the direction of incoming signals, COA and SCA are stochastic algorithms. Table 1 lists the criteria 

that COA and SCA took into consideration. 

 

        Table 1 Parameters considered for COA and SCA 

Sr. No. Algorithm Configurations 
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1 ML- Algorithm Population Size Parameters 

2 COA 30 Constant (b) = 1 

3 SCA 30 Controlling (r1) = [0, 2] 

 

 

Since ML-COA and ML-SCA are iterative algorithms, their effectiveness is also evaluated in terms of the rate of convergence. 
The performance of all four methods listed is evaluated using RMSE and PR criteria. 

 

XIII. ROOT MEAN SQUARE ERROR 

The difference between the actual signal and the determined signal heading is represented by the root mean square error, which 

can be defined as follows: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁𝑛𝑁𝑟𝑢𝑛𝑠
∑ ∑ [𝜃𝑦(𝑥) − 𝜃𝑦]

2𝑁𝑛
𝑦=1

𝑁𝑟𝑢𝑛𝑠
𝑥=1     Eq. 27 

 

Where 𝑁𝑟𝑢𝑛𝑠 represents the Monte Carlo runs, 𝑁𝑛 denotes the total number of sources, 𝜃𝑦(𝑥) represents the 𝑦𝑡ℎ direction of the 

signal in the 𝑥𝑡ℎ run and 𝜃𝑦 denotes the true direction of the 𝑦𝑡ℎ signal. 

 

 
 

Fig. 3 RMSE plot of DOA estimation w.r.t SNR for MUSIC, CAPON, ML-COA and ML-SCA 

 

Fig. 3 illustrates the variation of RMSE for CAPON, MUSIC, ML-COA and ML-SCA with respect to SNR in the range [-30, 

20] dB. The result shows that the ML-COA algorithm presents the best results with respect to ML-SCA and conventional 

algorithms till 16 dB SNR while at SNR higher than 16 dB MUSIC algorithm outperforms all three algorithms. Therefore, the ML-
COA algorithm produces the best result and can be utilized for estimating the direction of signals in a low SNR environment.  

 

XIV. PROBABILITY OF RESOLUTION 

The capacity of the algorithm to resolve sources that are closely spaced is known as the probability of resolution. It is crucial to 

assess the algorithm's resolving ability based on the multi-source estimation criteria, which states that sources are considered 

determined if the difference between the estimated and true angles of signals is less than half of the variance between the two 

signals. 
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Fig. 4 Demonstrates the variation of PR with respect to SNR for CAPON, MUSIC, ML-COA and ML-SCA. 
 

The result shows that the ML-COA algorithm presents the best results and at 16 dB completely resolves the two signals while 

MUSIC and ML-SCA completely resolve the two signals at 18 dB and 20 dB. CAPON didn’t resolve the two signals till 20 dB. 

With these results, we can conclude that the ML-COA algorithm can be used in situations where the two signals have narrow 
angular separation. 

 

XV. BOXPLOT 

The rate of convergence is crucial in DOA estimation since adaptive methods are used to align the beam in the intended user's 

direction once the signal direction has been estimated. The boxplot for ML-COA and ML-SCA for 100 Monte-Carlo runs is 

displayed. The results show that, in contrast to ML-SCA, ML-COA correctly determines the direction of closely spaced signals. 

 

 
 

Fig. 5 Boxplot of ML-COA and ML-SCA 
 

I. CONCLUSION 

This chapter proposes a COA algorithm that optimizes the deterministic ML function to estimate the direction of incoming 

signals toward a linear array. The algorithm's performance is examined in terms of RMSE and PR and contrasted with that of the 

ML-SCA, MUSIC, and CAPON algorithms. The outcome demonstrates that ML-COA performs better than other methods in low 

SNR environments, yields the best results, and correctly predicts the direction of signals with small angular separation. The 

performance of the suggested algorithm is also examined using the fitness value distribution, which is an essential measurement for 
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optimization algorithms. The outcome demonstrates that ML-COA produces trustworthy conclusions and converges significantly 

earlier than ML-SCA. 

 

Future research could investigate the suggested metaheuristic approach for DOA estimation in a variety of channel 

environments and array configurations. Other challenging issues in the domains of science and engineering can also be resolved 

with the help of the suggested COA algorithm. 
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