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Abstract— Determining the direction of incoming signals is a crucial research subject in 4G and 5G communication. Many spectral
and eigen structure methods can be used to determine the direction of narrow band bases. These approaches cannot forecast the path of
the indicator while the channel is coherent and the signal to noise ratio stays low. Maximum Likelihood is a statistical technique for
estimating that circumvents the drawbacks of traditional systems to detect and follow signals in challenging circumstances accurately.
By using unspecified parameters to minimize the complex log likelihood function. The ML approximation is determined. The author of
this chapter suggested the use of the Cray Fish Optimization algorithm to approximate the narrow band foundation path in a low signal
to noise ratio situation. Swarm intelligence algorithm Cray Fish Optimization is capable of both exploration and exploitation.
According to the simulation outcomes Cray Fish Optimization performs better in provisions of root mean square error and probability
of resolution than both traditional methods and the sine cosine algorithm.

Index Terms— ML, COA, SCA, RMSE, PR.

. INTRODUCTION

The technique of optimizing is determining the most optimal solution given the limitations that exist. It is the process of
determining the best course of action given the circumstances. Numerous imperfections can be seen as barriers to optimization.
Numerous methods for solving optimization problems have been created and have advanced dramatically during the previous few
decades. A higher-level method for finding solutions in artificial intelligence and mathematical optimization, "Metaheuristic" [1]
generates or chooses the fractional search strategy that can adequately explain an optimization problem, particularly in cases where
computational power is limited, or data is uncertain and untrustworthy. Solutions that are large enough to sample completely
makeup collections of metaheuristic samples. In contrast to optimization algorithms, which do not ensure that a globally optimal
solution can be found for a given collection of problems, this method makes few assumptions about how the optimization problem
will be addressed, making it potentially beneficial for a wide range of problems. Metaheuristics are rules for the search process.
Determining the most efficient solutions requires a comprehensive exploration of the search field. Metaheuristic algorithms include
simple local actions and complex learning strategies. Although they are typically non-deterministic and approximate, they are not
excessively imprecise. A lot of metaheuristics make use of optimization in some way to guarantee that the solution is derived from
a set of variables that are created at random. By considering a wide range of alternatives, metaheuristics can often find good
answers with less computational effort than optimization techniques. Metaheuristic optimization algorithms have become more and
more popular as an optimization strategy in recent years. Some of the most well-known algorithms in this field are genetic
algorithms (GA) [2], particle swarm optimization (PSO) [3], ant colony optimization (ACO) [4], ant lion optimization (ALO) [5],
differential evolution (DE) [6] and evolutionary programming (EP) [7], cuckoo search (CS) [8], firefly algorithm (FA) [9], and
dragonfly algorithm (DA) [10].

To replicate the foraging, summer vacation, and rivalry patterns of crayfish, COA [21] recommended a novel methodology. The
algorithm's capacity for exploration and exploitation is balanced by adjusting the temperature.

The target of coming approximation (DOA) [13-14] and adaptive beamforming (ABF) [15-16] are two key components in the
wireless communication domain that are essential to smart antenna [17-18] and MIMO systems [19]. The authors of this chapter
examined the effectiveness of the suggested algorithm for determining the direction of signals in varied SNR environments by
optimizing the deterministic ML [20] function.

Il. DATA MODEL

Let us assume a ULA with M-sensing components. The distance, d, between successive sensors equals half the wavelength of
the signals that are received.
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Fig. 1 Assume that the ULA is imposed by D narrow band far-field signal sources with unique DOASs
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The array steering vector of size M X 1 represents the i*h user's direction as mentioned below, whereas the phase source is the
first element of the ULA.

j2md

a(0i) = [1,z,..., 24717, 7 = (7 Jsine Eq. 1

Where A is the originating signal's main wavelength and the angle observed from the array broadside is represented by 6i. The
entire signal that the array members have received at the time sample tt* can be expressed as follows:

%(t) = A(0) *s(t)+7(t) Eq. 2

Where the noise vector is indicated by 7(t), the incident complex monochromatic signals are denoted by 5(t), and A(8) array
steering vectors compose the array steering matrix, which is defined as follows:

A6) = [a(8,) ...a6p)] Eq. 3

Instead of using the actual array output x(t), correlation matrices are used for DOA estimation in array signal processing; the
correlation matrix is defined by:
Rex = E[x.x"| = AR A" +R,, Eq. 4

Where E[],()signifies the expectation and Hermitian operation, respectively, and Ry, denotes the origin matrix and R,,,, the
noise correlation matrix. In this case, the deterministic approach for determining the direction of arriving signals was proposed by
the authors. Consequently, the signal vector is predictable given unknown configurations. In the stochastic model, ML obtains
the incoming signal's angle estimate, 6, through continuously enhancing the non-direct multimodal work, which is
provided by:

four=1tr [(Iy - A(A¥ &)~ A¥)R] Eq.5

Where M X M is the sequence of Iy, and tr [] indicates the trace.

I11. CONVENTIONAL DOA APPROXIMATION PROCEDURE

The standard DOA evaluation mechanism provides an appropriate representation in a deterministic high SNR scenario. It is a
simple, effective, and less complex method. We illustrate these computations using both subspace and non-subspace methods.
Subspace draws near, also known as Eigen structure strategies, deterioration of the cluster connection network into two subspaces
of sign and clamor using Eigen deterioration to assess the approaching sign's bearing. Non-subspace strategies, also known as
terrifying, assessment techniques, evaluate the acquired sign's course by observing the peak of the pseud-range. The methods used
by Capon and Bartlett, two nonlinear spectral estimating techniques, differ in how the weights for synthesizing the
pseudospectrum are determined. Several of the most important Eigen structure methodologies utilizing orthogonal signal
subspaces for DOA estimation are ESPRIT, Root-MUSIC, MUSIC, matrix pencil, Pisarenko harmonic decomposition, as well as
a min-norm estimate.

1V. CAPON

A minimum variance distortion less response (MVDR) indicates what the Capon DOA approximation is. The objective is to
send the signal of interest in phase and amplitude without distortion to maximize the signal-to-interference ratio (SIR). It is
expected that the source correlation matrix (Ry;) will be diagonal. A set of array weights (W = [wyw; ... ... wy]T) is used to
produce this maximized SIR. The array weights are arranged as follows:

Rx£a(6)

aH(0)Rex 1a(o) Ea. 6

W =
In which I?;xl is the array correlation matrix. The information that follows is the pseudo spectrum: -

Pe(0) = o Eq. 7

-
O)Rx2a(6)

V. Music

Nevertheless, the traditional MUSIC method collapses whenever signal correlation becomes significant, necessitating the
introduction of compensatory measures. One needs to either search the eigenvalues or estimate the total quantity of signals that
arrive in anticipation. If there are multiple D signals (where M is the number of array items), then there are M-D noise
eigenvalues and eigenvectors alongside the D signal eigenvalues and eigenvectors. Although MUSIC uses noise as an eigenvector
subspace, it is sometimes referred to as the subspace technique. The following is the mathematical framework for MUSIC:

I Compute the array correlation matrix (R,,) under the assumption that the noise has no correlation and has equivalent

variances.

. Next, determine the eigenvalues and eigenvectors for (R, ). D eigenvectors are subsequently used to indicate the
signals, while M-D eigenvectors are used to symbolize the noise. The eigenvectors selected have the lowest possible
eigenvalues. For unrelated signals, the lowest eigenvalues are equal to the variance of the noise. Following that, the noise
eigenvectors' M x (M — D) dimensional subdomain can be built as follows:
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Ey=[e; &,.... eéy_p] Eq.8
1. The array steering vectors at the angles of arrival 6,6, ...., 8, are orthogonal to the noise subspace eigenvectors. The
orthogonality constraint allows us to express the Euclidean distance as follows:

d*=a(@)"EyEfa(9) =0 Eq.9

V. Significant peaks show up at the arrival angles when the denominator is calculated using this distance formula. The

following is the new MUSIC pseudo spectrum:
1
Puu (0= g

Eq.10
V. Locate the sharply defined tops throughout the pseudo spectrum that corresponds to the appearance point of the
approaching signals.

VI. CRAY FISH OPTIMIZATION

Inspired by the movement and feeding habits of crayfish, the Crayfish Optimization method (COA) is a population-based
metaheuristic optimization method. Crayfish exhibit flexible locomotion patterns, alternating between exploitation (finding new
solutions) and exploration (exploring new areas). This behavior is the basis for the CFO method, which finds optimal solutions in
difficult optimization problems by combining angular turns with forward and backward motions.

V1. POPULATION INITIALIZATION
Every crayfish in the multi-dimensional problem of optimization is a 1 x dim matrix. A problem’s solution is represented by
each column matrix. Each variable Xi in a collection of variables (X;1, Xi,,..., Xj4im) Must fall between the upper and lower

bounds. A set of potential solutions X is randomly generated as the COA's initialization in space. Based on population size N and
dimension dim, candidate solution X is proposed. Eq.11 displays the COA algorithm's initialization.

Xi1 X1y Xidim
X=Xy, Xoso s Xnl = | Xin Xij Xidim Eq.11
Xn1 Xnj  XNdim

Where X;; is the position of individual i in the j dimension, N is the total quantity of populations, dim is the population
dimension, and the value of X;; is derived from Eq. 12.
Xi,j = lbl + (ubj— lb]) x rand Eq12

The variables Ib; and ub; denote the lower and upper bounds of the jth dimension, respectively, and rand is a random number.

VIIl. DESCRIBE THE CRAYFISH’S CONSUMPTION AND TEMPERATURE

The crayfish will undergo numerous stages of behavior due to temperature changes. Eq.13 defines temperature.When
temperatures rise above 30 °C, crayfish will choose a cool location for their summer vacation. The correct temperature will lead
crayfish to begin feeding. The temperature influences how much crayfish eat. Crayfish have a feeding range of 15, 30, and 25 °C,
which is ideal. Consequently, the crayfish feeding amount may be roughly compared to the usual distribution, indicating that
temperature has an impact on the feeding amount, as temperatures range from 20 and 30 °C, crayfish exhibit robust foraging
behavior. Accordingly, the COA specifies a temperature range of 20 to 35 °C. The crayfish intake mathematical model is
displayed in Eq.14.

temp = rand x 15 + 20 Eq.13

Where, temp, is the ambient temperature of the crayfish's location.
1 -1
p=C x((—mxc ) Xexp (ﬁ) x (temp- u)z) Eq.14

While p indicates the ideal temperature for crayfish, C1 and o regulate the amount of seafood that is consumed at various
temperatures.

IX. EXPLORATION

The temperature is high enough when it exceeds thirty. The crayfish will now decide to explore within the cave. The cave

Xshade 1S described as follows:

(Xg+XL)
Xshade = % EQ-]-S

IJSDR2502001 | International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org \ a3



ISSN: 2455-2631 February 2025 IJSDR | Volume 10 Issue 2

Where X;, denotes the ideal location of the present population and X is the ideal location reached thus far based on the number
of iterations. Crayfish battles over caves occur completely randomly. When the rand is less than 0.5, it indicates that there are no
other crayfish battling for the cave, and the crayfish will enter the cave without delay to explore. At this moment, the crayfish will
head into the cave for investigation using Eq. 16:

X{Ft =X{; + C, x rand x (Xshade - Xit,j) Eq. 16

Where t denotes the iteration number of the current generation, t + 1 denotes the iteration number of the subsequent generation
and C, is a curve that declines as described in the below Eq. 17.

_ t
C,=2- (;) Eq. 17
Where T is the maximum quantity of loops that can be made.

Crayfish wants to get as close to the cave as possible during the exploring stage since it is the best course of action. The
crayfish will now move towards the cave. This improves the capacity of COA to be exploited and brings participants closer to the
best response. Facilitate a faster convergence of the algorithm.

X. EXPLORATION

A combination of rand > 0.5 and temp > 30 indicates the attraction of other crayfish in the cave. Now, they will attempt to
capture the cave. The crayfish uses Eq. 18 to compete for the cave.

X{ =Xf; - X35 + Xohade Eq. 18
Where, according to Eq. 19: z stands for the randomized member of crayfish.
Z =round (rand x (N-1)) +1 Eq. 19

Crayfish compete with one another at the exploitation stage, and crayfish X; modifies their position in response to another
crayfish's position (X,). The position can be changed to increase the search range of COA and improve the algorithm's exploration
capability.

The temperature is ideal for crayfish feeding when it is less than thirty degrees. The crayfish will now start to approach the
meal. The crayfish will determine the size of the meal after locating it. Should the food be excessively huge, the crayfish will use
its claws to break it up and use its second and third walking foot to consume it in turn. X¢,,q is @ food location that is described as:

Xfood = XG Eq 20

Q is the food size specified as:

Q=C; x rand x (&) Eq. 21

fitness food

Where fitness; is the fitness value of the ith crayfish, fitnessg,,q is the fitness value of the food location, and C3 is the food
factor, which indicates the largest food. The value of C3 is fixed at 3. The largest food serves as the basis for the crayfish's
estimation of food size. Q > (C3 + 1)/ 2 indicates that the meal is enormous. The crayfish will now use its first claw foot to tear
the food as described below:

-1
Xfooa = EXP (6) X Xfood Eq. 22

The food will alternatively be picked up and placed into the mouth by the second and third claws as it shreds and gets smaller.
A mixture of the sine and cosine functions is utilized to simulate the alternating process. Furthermore, the food consumption and
the food that crayfish get are connected, therefore the search equation is as follows:

XiTt =Xij + Xpooa X P X (cos (2 x z x rand) - sin (2 x z x rand))  Eq. 23

The crayfish only needs to go in the direction of the food to eat it immediately when Q < (C3 + 1)/ 2. The equation is as
follows:

Xt = (X} - Xooa) X P+ p x rand x Xf; Eq. 24

Based on the size of their meal Q, crayfish employ a variety of feeding techniques throughout the searching stage, with food
Xfood SEIVINg as the best option. The crayfish will approach the meal when it is of a size that they can consume. When Q is
excessively large, it suggests that the best solution and reality deviate significantly from one another. X¢,,q should therefore be
lowered and moved closer proximity to the food. COA will become closer to the ideal solution during the searching stage,
improving the algorithm's exploitation and convergence capabilities.
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XI. SINE-COSINE ALGORITHM

SCA is a stochastic optimization algorithm proposed by S. Mirjalili in 2015. The algorithm is inspired by the basic behavior of
mathematical sine and cosine functions. In SCA a random initial solution is created in the search space, and they fluctuate around
the best solution using sine and cosine functions. Therefore, the simple variation of sine and cosine function values is used to
achieve the final optimal solution. The positions of the random solutions are updated using the following equations:

pr+l = {Pf + 1y * sin(ry) = |r3RE = PY|, 1, < 0.5 Eq. 25
P!+ 1y % cos(ry) * |r3RE — PE|, 7, = 0.5

Where the current iteration is denoted as t, R} is the i-th dimension destination point positioning, and P} is the i-th dimension
location of the main approach, at iteration t. The random numbers are ry, r,, 13, and . r; and r3 have a homogenous distribution
between 0 and 2. Both r2 and r4 have a homogenous distribution between 0 and 2. r2 and r4 both follow a uniform distribution
between 0 and 2 and a homogenous distribution between 0 and 1.

In Eq. 25, the algorithm's global research and local improvement capacities are collaboratively guided by 7,  sin(r,) orry =
cos(r,). The algorithm does a global exploration search when the result of r; * sin(r;) or r; * cos(r,) is higher than 1 or less than -
1. The algorithm does a local development search when the value of r; * sin(r,) orr; * cos(r,) is within the range of [-1 1].
Within the range of [-1 1], the value of sin(r,) or cos(r,). As a result, the control parameter r, is critical in global exploration, it is
in charge of the algorithm's shift from global exploration to local development. The control parameter r 1 in the original algorithm
uses a linear decreasing technique to direct the process from global exploration to local development, and it is adaptively changed
over the course of iterations, as follows:

r1:a(1 — %) Eq. 26
Where a is a constant, t characterizes the existing repetition, and T is the total amount of repetitions. SCA has been used to

identify the global best solution to both constraint and unconstrained optimization issues.

XII. SIMULATION RESULTS & DISCUSSION
This section presents and discusses the simulation results of DOA estimation using ML-COA, ML-SCA, MUSIC and CAPON.
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Fig. 2 Implementation of COA and SCA for estimating the direction of signals

Using 100 Monte Carlo at a 10-element ULA, two narrow-band plane waves with arrival angles of 35° and 38° are taken into
consideration for MATLAB software simulation. The uncorrelated BPSK signals are simulated in the virtual environment since the
model is deterministic. Regarding the two traditional algorithms, MUSIC and CAPON, the peaks of the pseudospectrum indicate
the direction of incoming signals and are in the [-90°, 90°] range. Since 100 Monte Carlo runs are taken into consideration to
determine the optimal value of the direction of incoming signals, COA and SCA are stochastic algorithms. Table 1 lists the criteria
that COA and SCA took into consideration.

Table 1 Parameters considered for COA and SCA
| Sr.No. |  Algorithm Configurations |
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1 ML- Algorithm Population Size Parameters
2 COA 30 Constant (b) =1
3 SCA 30 Controlling (r1) = [0, 2]

Since ML-COA and ML-SCA are iterative algorithms, their effectiveness is also evaluated in terms of the rate of convergence.
The performance of all four methods listed is evaluated using RMSE and PR criteria.

XIIl. ROoOT MEAN SQUARE ERROR

The difference between the actual signal and the determined signal heading is represented by the root mean square error, which
can be defined as follows:

~ 2
RMSE = [yl nn (6,06, Eq.27

NTLNTMTLS =

Where Np,,s represents the Monte Carlo runs, Ny, denotes the total number of sources, 8,,(x) represents the y* direction of the
signal in the x*" run and 6,, denotes the true direction of the y*" signal.

RMSE Comgarison

AMSE (2oqgiee)

Fig. 3 RMSE plot of DOA estimation w.r.t SNR for MUSIC, CAPON, ML-COA and ML-SCA

Fig. 3 illustrates the variation of RMSE for CAPON, MUSIC, ML-COA and ML-SCA with respect to SNR in the range [-30,
20] dB. The result shows that the ML-COA algorithm presents the best results with respect to ML-SCA and conventional
algorithms till 16 dB SNR while at SNR higher than 16 dB MUSIC algorithm outperforms all three algorithms. Therefore, the ML-
COA algorithm produces the best result and can be utilized for estimating the direction of signals in a low SNR environment.

XIV. PROBABILITY OF RESOLUTION

The capacity of the algorithm to resolve sources that are closely spaced is known as the probability of resolution. It is crucial to
assess the algorithm's resolving ability based on the multi-source estimation criteria, which states that sources are considered
determined if the difference between the estimated and true angles of signals is less than half of the variance between the two
signals.
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Fig. 4 Demonstrates the variation of PR with respect to SNR for CAPON, MUSIC, ML-COA and ML-SCA.

The result shows that the ML-COA algorithm presents the best results and at 16 dB completely resolves the two signals while
MUSIC and ML-SCA completely resolve the two signals at 18 dB and 20 dB. CAPON didn’t resolve the two signals till 20 dB.
With these results, we can conclude that the ML-COA algorithm can be used in situations where the two signals have narrow
angular separation.

XV. BOXPLOT

The rate of convergence is crucial in DOA estimation since adaptive methods are used to align the beam in the intended user's
direction once the signal direction has been estimated. The boxplot for ML-COA and ML-SCA for 100 Monte-Carlo runs is
displayed. The results show that, in contrast to ML-SCA, ML-COA correctly determines the direction of closely spaced signals.

Boxplot

Fig. 5 Boxplot of ML-COA and ML-SCA

I. CONCLUSION

This chapter proposes a COA algorithm that optimizes the deterministic ML function to estimate the direction of incoming
signals toward a linear array. The algorithm's performance is examined in terms of RMSE and PR and contrasted with that of the
ML-SCA, MUSIC, and CAPON algorithms. The outcome demonstrates that ML-COA performs better than other methods in low
SNR environments, yields the best results, and correctly predicts the direction of signals with small angular separation. The
performance of the suggested algorithm is also examined using the fitness value distribution, which is an essential measurement for
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optimization algorithms. The outcome demonstrates that ML-COA produces trustworthy conclusions and converges significantly

earlier than ML-SCA.

Future research could investigate the suggested metaheuristic approach for DOA estimation in a variety of channel
environments and array configurations. Other challenging issues in the domains of science and engineering can also be resolved

with the help of the suggested COA algorithm.
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