IJSDR
IJSDR
INTERNATIONAL JOURNAL OF SCIENTIFIC DEVELOPMENT AND RESEARCH
International Peer Reviewed & Refereed Journals, Open Access Journal
ISSN Approved Journal No: 2455-2631 | Impact factor: 8.15 | ESTD Year: 2016
open access , Peer-reviewed, and Refereed Journals, Impact factor 8.15

Issue: March 2024

Volume 9 | Issue 3

Impact factor: 8.15

Click Here For more Info

Imp Links for Author
Imp Links for Reviewer
Research Area
Subscribe IJSDR
Visitor Counter

Copyright Infringement Claims
Indexing Partner
Published Paper Details
Paper Title: Application KPCA-Based BiLSTM for Power Converter Fault Detection and Diagnosis in Wind Turbine Systems
Authors Name: Mr.G.Purushothaman , Mr.P.Vinothkumar , Dr.R.Arulmozhiyal , Ms.S.Rathika
Unique Id: IJSDR2301016
Published In: Volume 8 Issue 1, January-2023
Abstract: The current work presents an effective fault detection and diagnosis (FDD) technique in wind energy converter (WEC) systems. The proposed FDD framework merges the benefits of kernel principal component analysis (KPCA) model and the bidirectional long short-term memory (BiLSTM) classifier. In the developed FDD approach, the KPCA model is applied to extract and select the most effective features, while the BiLSTM is utilized for classification purposes. The developed KPCA-based BiLSTM approach involves two main steps: feature extraction and selection, and fault classification. The KPCA model is developed in order to select and extract the most efficient features and the final features are fed to the BiLSTM to distinguish between different working modes. Different simulation scenarios are considered in this study in order to show the robustness and performance of the developed technique when compared to the conventional FDD methods. To evaluate the effectiveness of the proposed KPCA-based BiLSTM approach, we utilize data obtained from a healthy WTC, which are then injected with several fault scenarios: simple fault generator-side, simple fault grid-side, multiple fault generator-side, multiple fault grid-side, and mixed fault on both sides. The diagnosis performance is analyzed in terms of accuracy, recall, precision, and computation time. Furthermore, the efficiency of fault diagnosis is shown by the classification accuracy parameter. The experimental results show the efficiency of the developed KPCA-based BiLSTM technique compared to the classical FDD techniques (an accuracy of 97.30%).
Keywords: In the developed FDD approach, the KPCA model is applied to extract and select the most effective features, while the BiLSTM is utilized for classification purposes. The developed KPCA-based BiLSTM approach involves two main steps: feature extraction and selection, and fault classification.
Cite Article: "Application KPCA-Based BiLSTM for Power Converter Fault Detection and Diagnosis in Wind Turbine Systems", International Journal of Science & Engineering Development Research (www.ijsdr.org), ISSN:2455-2631, Vol.8, Issue 1, page no.82 - 92, January-2023, Available :http://www.ijsdr.org/papers/IJSDR2301016.pdf
Downloads: 000336256
Publication Details: Published Paper ID: IJSDR2301016
Registration ID:203345
Published In: Volume 8 Issue 1, January-2023
DOI (Digital Object Identifier):
Page No: 82 - 92
Publisher: IJSDR | www.ijsdr.org
ISSN Number: 2455-2631

Click Here to Download This Article

Article Preview

Click here for Article Preview







Major Indexing from www.ijsdr.org
Google Scholar ResearcherID Thomson Reuters Mendeley : reference manager Academia.edu
arXiv.org : cornell university library Research Gate CiteSeerX DOAJ : Directory of Open Access Journals
DRJI Index Copernicus International Scribd DocStoc

Track Paper
Important Links
Conference Proposal
ISSN
DOI (A digital object identifier)


Providing A digital object identifier by DOI
How to GET DOI and Hard Copy Related
Open Access License Policy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Creative Commons License
This material is Open Knowledge
This material is Open Data
This material is Open Content
Social Media
IJSDR

Indexing Partner